首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Are two photoreceptors involved in the flowering of a long-day plant?   总被引:1,自引:0,他引:1  
The effect of daylength extension with narrow spectral bands on the flowering of a long-day plant, Brassica campestris L. cv. Ceres, was investigated to obtain clues to the identity of the photoreceptor involved. Extension of a 9 h photoperiod with 5 h of light pulses at various wavelengths resulted in maximal flowering occurring after irradiation at 710 nm, less at 730 nm, and none at 550, 660 and 750 nm. Flowering at 710 and 730 nm was negated by simultaneous exposures at 550 nm, but not at 660 nm. A short preirradiation at 660 nm enabled a following irradiation at 750 nm to induce flowering. This latter induction was prevented by 550 nm irradiation.
Short flashes of light at 710 nm induced flowering that was negated by a following flash at 550 nm but not at 660 nm. The negation by 550 nm radiation was prevented by subsequent flashes at 710 nm, indicating photoreversibility. A flash at 660 nm enabled subsequent light flashes at 750 nm to initiate flowering that was reversed by a following 550 nm flash.
From the results showing the necessity of red and far-red lights, it is proposed that flowering in this long-day plant is due to two photoreceptors - one is phytochrome and the other an unknown pigment with far-red, green photoreversible properties. By using fluence response data, it is deduced that the unidentified photoreceptor has weak absorption bands in the far-red, but has a strong absorption band in the green. Flowering is induced when effects of red light absorbed by phytochrome interact with effects of far-red light absorbed by the unidentified photoreceptor.  相似文献   

2.
In order for far-red radiation at 760 nm to delay dark closing of Albizzia julibrissin pinnules, red light must be given simultaneously with or just prior to it. Studies have been made to determine whether a phytohormone can replace this red light requirement. Abscisic acid, gibberellin, kinetin, and indole-3-acetic acid have been found to replace the red light. Indole-3-carboxylic acid and a cytokinin antagonist are ineffective. In this hormone and far-red interaction, all hormones are effective at μ M or lower concentrations. The hormones show no interaction with red light at 660 nm. Simultaneous irradiation at 550 nm negates the effect of hormone and far-red interaction in delaying leaflet closing. These results are additional evidence that an unidentified far-red absorbing pigment could be involved with phytochrome in some far-red-mediated processes.  相似文献   

3.
Photocontrol of Chlorophyll Loss in Papaya Leaf Discs   总被引:1,自引:0,他引:1  
Both red and blue light pulses are separately shown to retarddark-stimulated chlorophyll loss of papaya leaf discs suggestingparticipation of phytochrome and blue light photoreceptors inregulating the pigment loss. The red light effect is fully reversibleby far-red light. The partial failure of far-red pulses to reversethe action of blue light suggests that blue light effect maynot be entirely through the phytochrome action. The apparentineffectiveness of continuous white light to check the chlorophyllloss is attributed to a balance of photooxidation and photoprotectionof the pigment. The interaction of blue light and kinetin at its different concentrationssuggests that the effect of interactions is additive. The bluelight effect in retarding chlorophyll loss is partly independentof the hormone level. (Received December 10, 1985; Accepted August 25, 1986)  相似文献   

4.
An “action spectrum” between 400 and 620 nm for the radiation-induced phytochrome increase was obtained with mung bean hooks. A broad band between 410 and 480 nm was found to induce significant increases in phytochrome content. Radiation from 500 to 620 nm failed to promote any significant increase. Red irradiation immediately following far-red treatment showed no reversal. These results and an earlier finding that far-red irradiation promotes phytochrome increase suggest that the photoreceptor for the radiation-induced increase is probably not phytochrome, but could be a related pigment if the phenomenon is due to one photoreceptor. The blue light-induced increase in phytochrome content increases the possibility of the participation of phytochrome in blue light-mediated high irradiance responses of plants.  相似文献   

5.
Tanada T 《Plant physiology》1982,70(3):901-904
The nyctinastic closing of Albizzia julibrissin pinnules is delayed by exposure to far-red radiation at 710 and 730 nanometers, with the former more effective than the latter. Far-red radiation at 750 and 770 nanometers has no effect on the process. Red light at 660 nanometers, which by itself has no effect, delayed closure when given before or simultaneously with far-red radiation at 750 or 770 nanometers. Low doses of green light, on the other hand, prevented all far-red radiations from delaying closure when given together with one of them. Effectiveness peaks at 550 nanometers. Green light by itself has no effect on the closing process.

From these and previous results, it is concluded that phytochrome is one of two photoreceptors in the process, that the other photoreceptor is an unknown pigment, and that the unknown photoreceptor requires some prior effect of the far-red-absorbing form of phytochrome before its action. Predictions are made of some of the properties of the unidentified pigment.

  相似文献   

6.
Protonemata of Onoclea sensibilis and Diyopteris filix-mas elongate in response to both red and far-red light. The promotion caused by far-red is larger than that caused by red light. This phenomenon differs from a typical response to phytochrome, the photoreceptor pigment immediately suggested by the activity of red and far-red light. The phenomenon has been explained by two different hypotheses, one of which holds that phytochrome is solely responsible for the response, whereas the other postulates an interaction between phytochrome and P580, a yellow-green light absorbing pigment, to account for the response. The hypothesis that phytochrome is the sole photoreceptor leads to some specific predictions concerning the shapes of the dose-response curves for light-induced protonema elongation. These predictions were tested with both continuous and short-term irradiation. In all instances saturating far-red light caused greater elongation than did saturating red light, and no dose of red light duplicated the activity of saturating far-red light. Other experiments tested the interactions of red and far-red light and the effects of different doses of yellow-green light on protonema elongation. The results of many of the experiments were not in agreement with the hypothesis that phytochrome is the sole photoreceptor, whereas they were in agreement with the assumption that filament elongation is controlled by both phytochrome and P580.  相似文献   

7.
Chloroplast orientation in the green alga Mougeotia has been induced by unidirectional red or blue light, given continuously during one hour. In addition, part of the preparations obtained scattered strong far-red light simultaneously with the orienting light. This far-red light completely abolished the response to red light, consistent with phytochrome as the sensor pigment for orientation in Mougeotia. In blue light, however, the response was completely insensitive to far-red light, thus pointing to a different sensor pigment in the shortwavelength region.Abbreviation Pfr far-red-absorbing form of phytochrome  相似文献   

8.
Environmental light information such as quality, intensity, and duration in red (approximately 660 nm) and far-red (approximately 730 nm) wavelengths is perceived by phytochrome photoreceptors in plants, critically influencing almost all developmental strategies from germination to flowering. Phytochromes interconvert between red light-absorbing Pr and biologically functional far-red light-absorbing Pfr forms. To ensure optimal photoresponses in plants, the flux of light signal from Pfr-phytochromes should be tightly controlled. Phytochromes are phosphorylated at specific serine residues. We found that a type 5 protein phosphatase (PAPP5) specifically dephosphorylates biologically active Pfr-phytochromes and enhances phytochrome-mediated photoresponses. Depending on the specific serine residues dephosphorylated by PAPP5, phytochrome stability and affinity for a downstream signal transducer, NDPK2, were enhanced. Thus, phytochrome photoreceptors have developed an elaborate biochemical tuning mechanism for modulating the flux of light signal, employing variable phosphorylation states controlled by phosphorylation and PAPP5-mediated dephosphorylation as a mean to control phytochrome stability and affinity for downstream transducers.  相似文献   

9.
The action spectrum for promotion of elongation of protonemata of Onoclea sensibilis has peaks at 400–420, 580–600 and 640–660 nm. The largest growth increments at saturating light doses are produced by yellow and far-red light. Elongation induced by yellow and far-red irradiation persists in old as well as young filaments, while red-light promotion is found only in young filaments. The growth promotion caused by yellow light is partially reversed by red light down to the level of growth produced by red irradiation alone. Elongation of rhizoids is under reversible red, far-red control, while yellow light is inactive. A model is proposed and discussed in which the light-sensitive elongation of filaments is accounted for by the presence of three distinct photoreceptors: phytochrome; a pigment absorbing yellow light. P580; and a pigment absorbing blue light, P420.  相似文献   

10.
De-etiolation results in phytochrome destruction, greening, and the loss of the far-red high irradiance responses (HIR). Evidence is presented against the hypothesis that the loss of the far-red HIR is a direct consequence of phytochrome destruction. Loss of the far-red HIR for the inhibition of elongation in hypocotyls of Raphanus sativus involves two different, but linked, actions of phytochrome. An induction reaction requires the far-red absorbing form of phytochrome for about 20 min after which accumulation of its product depends only on time. A second reaction requires continuous light or frequent short irradiations and involves cycling of the phytochrome system. This acts on the product of the induction reaction. It is proposed that in green plants an important mode of operation of phytochrome in the light depends on pigment cycling, and that during de-etiolation this system is established under phytochrome control.Abbreviations HIR high irradiance response - R red - FR farred light - Ptot phytochrome, Pr its red absorbing form, Pfr its far-red absorbing form A.M. Jose was the holder of Ministry of Agriculture, Fisheries and Food award AE 6819  相似文献   

11.
A series of new studies reveal how the red/far-red light photoreceptors called phytochromes act. Phytochrome A and phytochrome B each move to the nucleus when activated by light, and phytochrome A is a kinase. Phytochrome-interacting proteins provide candidate signal transduction components and a recent physiological study suggests how phyA may mediate responses to far-red light. Regulation of phytochrome nuclear localization and kinase activities creates multiple phytochrome species, which may each have different regulatory activities.  相似文献   

12.
Blue-light responses in higher plants are mediated by specific photoreceptors, which are thought to be flavoproteins; one such flavin-type blue-light receptor, CRY1 (for cryptochrome), which mediates inhibition of hypocotyl elongation and anthocyanin biosynthesis, has recently been characterized. Prompted by classical photobiological studies suggesting possible co-action of the red/far-red absorbing photoreceptor phytochrome with blue-light photoreceptors in certain plant species, the role of phytochrome in CRY1 action in Arabidopsis was investigated. The activity of the CRY1 photoreceptor can be substantially altered by manipulating the levels of active phytochrome (Pfr) with red or far-red light pulses subsequent to blue-light treatments. Furthermore, analysis of severely phytochrome-deficient mutants showed that CRY1-mediated blue-light responses were considerably reduced, even though Western blots confirmed that levels of CRY1 photoreceptor are unaffected in these phytochrome-deficient mutant backgrounds. It was concluded that CRY1-mediated inhibition of hypocotyl elongation and anthocyanin production requires active phytochrome for full expression, and that this requirement can be supplied by low levels of either phyA or phyB.  相似文献   

13.
Plants respond to changes in the environment by altering their growth pattern. Light is one of the most important environmental cues and affects plants throughout the life cycle. It is perceived by photoreceptors such as phytochromes that absorb light of red and far-red wavelengths and control, for example, seedling de-etiolation, chlorophyll biosynthesis and shade avoidance response. We report that the terminal flower2 (tfl2) mutant, carrying a mutation in the Arabidopsis thaliana HETEROCHROMATIN PROTEIN1 homolog, functions in negative regulation of phytochrome dependent light signalling. tfl2 shows defects in both hypocotyl elongation and shade avoidance response. Double mutant analysis indicates that mutants of the red/far-red light absorbing phytochrome family of plant photoreceptors, phyA and phyB, are epistatic to tfl2 in far-red and red light, respectively. An overlap between genes regulated by light and by auxin has earlier been reported and, in tfl2 plants light-dependent auxin-regulated genes are misexpressed. Further, we show that TFL2 binds to IAA5 and IAA19 suggesting that TFL2 might be involved in regulation of phytochrome-mediated light responses through auxin action.  相似文献   

14.
Unrolling of the second leaf of 8-day-old rice (Oryza sativa L.) seedlings was promoted by weak blue light (B), but not by red light (R). The effect of B was counteracted by irradiation with R just before or after the B. The counteracting effect of R was reversed by subsequent irradiation with far-red light but not by B, even if B was applied for 10 h. The B was effective when the region 0.5–2 cm from the tip of the leaf was irradiated. These results indicate that in rice photoreceptors for blue light located in the region 0.5–2 cm from the tip of the leaf play a key role in leaf unrolling and that a B-absorbing pigment and phytochrome participate in leaf unrolling in a closely related manner.Abbreviations B blue light - R red light - FR far-red light - W white light - D dark This work was presented at the Annual Meeting of the Japanese Society of Plant Physiologists on April 4, 1978, in Hiroshima  相似文献   

15.
16.
In etiolated seedlings of Raphanus sativus L. the inhibition of hypocotyl elongation by continuous light showed a major bimodal peak of action in the red and far-red, and two minor peaks in the blue regions of the spectrum. It is argued that, under conditions of prolonged irradiation, phytochrome is the pigment controlling the inhibition of hypocotyl elongation by red and far-red light, but that its mode of action in far-red is different from that in red. A distinct pigment is postulated for blue light.Abbreviations B blue - FR far red - G green - R red - HIR high irradiance reaction - Pr and Pfr red and far red absorbing forms of phytochrome - R red  相似文献   

17.
After it was observed that light induces changes in electron partitioning between the cytochrome and the alternative pathway, the focus interest was directed to assessing what type of photoreceptors are involved and the extent of such modifications. Studies on 5-day-old soybean (Glycine max L.) cotyledons using an oxygen isotope fractionation technique showed that phytochrome is involved in changes in electron partitioning between the cytochrome and the alternative respiratory pathway. A follow-up of a previous study, showing that 5 min of white light caused changes in mitochondrial electron partitioning, demonstrated that while blue light was not involved in any such changes, red light caused a significant shift of electrons toward the alternative pathway. The major shift, observed after 24 h of light, is mainly due to both a decrease in the activity of the cytochrome pathway and an increase in the activity of the alternative pathway. The involvement of a phytochrome receptor was confirmed by demonstration of reversibility by far-red light. The implications of the possible involvement of phytochrome in the regulation of mitochondrial electron transport are discussed.  相似文献   

18.
A specific light program consisting of multiple treatments with alternating red and far-red light pulses was used to isolate mutants in phytochrome A-dependent signal transduction pathways in Arabidopsis. Because of their phenotype, the mutants were called eid for empfindlicher im dunkelroten Licht, which means hypersensitive in far-red light. One of the isolated mutants, eid4, is a novel semi-dominant allele of the phytochrome A gene that carries a missense mutation in the chromophore-binding domain. The mutation did not change the photochemical properties of the photoreceptor, but it leads to an increased stability under light conditions that induce its rapid degradation. Fusion proteins with the green fluorescent protein exhibited clear alterations in subcellular localization of the mutated photoreceptor: The fusion protein was impaired in the formation of sequestered areas of phytochrome in the cytosol, which can explain its reduced light-dependent degradation. In contrast, the mutation stabilizes nuclear speckles (NUS) that appear late under continuous far-red light, whereas the formation of early, transiently appearing NUS remained more or less unaltered.  相似文献   

19.
Janet R. Hilton 《Planta》1982,155(6):524-528
Seeds ofBromus sterilis L. germinated between 80–100% in darkness at 15° C but were inhibited by exposure to white or red light for 8 h per day. Exposure to far-red light resulted in germination similar to, or less than, that of seeds maintained in darkness. Germination is not permanently inhibited by light as seeds attain maximal germination when transferred back to darkness. Germination can be markedly delayed by exposure to a single pulse of red light following 4 h inhibition in darkness. The effect of the red light can be reversed by a single pulse of far-red light indicating that the photoreversible pigment phytochrome is involved in the response. The response ofB. sterilis seeds to light appears to be unique; the far-red-absorbing form of phytochrome (Pfr) actually inhibiting germination.Abbreviations Pr red absorbing form of phytochrome - Pfr far-red absorbing form of phytochrome  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号