首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Larval diapause development in the chestnut weevilCurculio elephas (Coleoptera, Curculionidae) was studied in the laboratory at different temperatures. The results proved that exposure to low temperatures (3–6°C) in the period December–February is not required to complete diapause. The diapause is terminated in December and from January on, the larvae can initiate post-diapause morphogenesis in the laboratory, if temperatures allow it. In the field developmental rates are negligible during winter cold (4–6°C) and only after March morphogenesis can proceed with no interruption until adult emergence. Diapause and post-diapause quiescence contribute to individual synchronization for initiation of development. The observed spread of adult emergence was 30 days in the laboratory. This variability produced during post-diapause development may be a response to annual variation in the phenology of the chestnuts.  相似文献   

2.
Effects of photoperiod and cold exposure on diapause termination, post-diapause development and reproduction in Loxostege sticticalis were examined. Larvae were reared at diapause inducing condition (22 °C, L:D 12:12) consistently or transferred to long day photoperiod (L:D 16:8) and darkness (L:D 0:24) respectively, after entering into diapause. Diapause was terminated in approximately 40% of the larvae after 36 days, and no significant differences were observed between photoperiods, suggesting larval diapause was terminated spontaneously without being induced by photoperiods. Cold exposure significantly hastened diapause termination. The diapause termination incidence increased significantly with peaks of 98% at both 5 °C and 0 °C exposure for 30 days, as compared to 42% in controls not exposed to cold, while the mortality and number of days required for diapause termination decreased dramatically. The optimal low temperature exposure periods under 5 °C or 0 °C were 20 days and 30 days, showing a higher termination incidence and shorter time for diapause termination. This suggests that the low temperatures in winter play an important role in diapause termination under natural conditions. The threshold temperatures for post-diapause development in prepupae and pupae were 9.13 °C and 10.60 °C respectively, with corresponding accumulations of 125 and 200 degree-days. Adults that experienced larval diapause significantly delayed their first oviposition, oviposition period was prolonged, and the lifetime number of eggs laid was decreased, however both males and females have significantly longer longevity. The field validation of diapause termination, the degree-days model, and the relationship between diapause and migration in L. sticticalis were also discussed.  相似文献   

3.
The various diapause and post-diapause stages entered by cabbage root fly pupae during the overwintering period are shown schematically. Although diapause induction started in mid-Aug., the early-pupating insects did not develop further but were maintained in diapause by the warm autumn temperatures. Therefore, diapause development was simultaneous in all Wellesbourne pupae, whether of second or third generation origin. Diapause development started only in mid-Oct., when mean soil temperatures fell below 10°. In the field, 90% of the overwintering population of cabbage root fly pupae had completed pleted diapause by 5 March 1980, 17 Feb. 1981 and 18 Feb. 1982. This was equivalent to a duration of 19 weeks from mid-Oct. onwards, during the winters of 1979–80, 1980–81 and 1981–82 respectively. A further break between the completion of diapause and the warm conditions required to start post-diapause development also helps to condense the emergence of flies in the spring. Hence, an accurate forecast of the time of spring attack by populations of flies similar to those at Wellesbourne should be possible.This study was financed partly by the Commission of the European Communities as CEC Contract No. 0771.  相似文献   

4.
Diapause in a New Zealand strain of codling moth (Cydia pomonella Linnaeus [Lepidoptera: Olethreutidae]) was induced in larvae by photoperiods of 15 h or less. Once diapause had been initiated, it could not be terminated by any combination of conditions tested for at least 20 days after cocooning. In diapausing larvae a low rate of pupation occurred at 25 °C under a long day (18 h) photoperiod. A high rate of pupation was achieved under a long day regime when larvae were decocooned, and provided with apple as nourishment. Diapause could be terminated predictably in 94–100% of larvae by 1) conditioning at 15 °C and constant darkness for periods of 40–100 days, then 2) chilling at 2±2 °C and constant darkness for 20–50 days followed by 3) any post-chill condition periods at 25 °C, 18 h photoperiod. Complete diapause termination was achieved when 100 days conditioning was followed by 30 days or 50 days post-chill period. Under these conditions, 76% termination occurred in the post-chill period after 10 days, and 93% after 25 days.To terminate diapause in codling moth larvae, we recommend that a 100 days conditioning followed by 30 days chilling and 50 days post chilling periods be used.  相似文献   

5.
Overwintering larvae of the Shonai ecotype of the rice stem borer, Chilo suppressalis, enter diapause in early September and terminate diapause at the end of October. Cold acclimation at 0°C did not influence glycerol, trehalose or glycogen content in larvae collected on 22 September. Acclimation at 0°C increased the glycerol content and reduced the glycogen content significantly in larvae collected on 2 October and 22 November compared with acclimation at 15°C. These results indicate that overwintering larvae at different phases of diapause development respond differently to the low temperature stimulus for glycerol synthesis. Thus, we evaluated the metabolic rearrangements associated with glycerol synthesis during diapause development and after temperature acclimation. Larvae collected on 2 October were acclimated at 15°C for 15 and 60 days. Some of those acclimated at 15°C were then moved to 0°C for 15 days. The larvae acclimated at 15°C for 15 days were in deep diapause and accumulated little glycerol, while larvae acclimated at 15°C for 60 days were nearly ready to emerge from diapause and accumulated glycerol at 155.5 μmol/g. When larvae acclimated to 15°C for 15 days were transferred to 0°C, glycerol accumulation was stimulated to the same extent (ca 140 μmol/g) as it was in larvae that were acclimated to 15°C for 60 days and then transferred to 0°C. These results indicate that low temperature has a cumulative effect on glycerol production in larvae at different phases of diapause development. Glycerol accumulation was accomplished by activation of glycogen phosphorylase and inhibition of fructose-1,6-bisphosphatase, and activation of enzymes associated with glycerol synthesis, mainly glyceraldehyde-3-phosphatase and polyol dehydrogenase with glyceraldehyde activity.  相似文献   

6.
W. Wipking 《Oecologia》1995,102(2):202-210
The onset of larval diapause in the burnet moth Zygaena trifolii is clearly characterized by the larva molting into a specialized dormant morph. In a potentially bivoltine Mediterranean population (Marseille) two types of diapause can occur within 1 year: firstly, a facultative summer diapause of 3–10 weeks, and secondly, an obligate winter diapause, which can be lengthened by a period of thermal quiescence to several months in temperatures of 5°C. For the first time, three successive physiological periods have been experimentally distinguished within an insect dormancy (between onset of diapause and molting to the next non-diapause stage), using chilling periods of 30–180 days at 5°C, and varying conditions of photoperiod and temperature. These stages are: (1) a continuous Diapause-ending process (DEP); (2) thermal quiescence (Q); and finally, (3) a period of postdiapause development (PDD) before molting to the next larval instar. The result of transferring dormant larvae from chilling at 5°C to 20°C depended on the length of the chilling period. After chilling for 120–180 days, molting to the next instar occurred after 6–10 days, independent of daylength. This period corresponds with the duration of PDD. After shorter chilling periods (90, 60, 30 days and the control, 0 days) the period to eclosion increased exponentially, and included both the latter part of the previous diapause process and the 6–10 day period of PDD. However, photoperiod also influences the time to eclosion after chilling. Short daylength (8 h light / 16 h dark: LD 8/16) lengthened the diapause in comparison to long daylength (16 h light / 8 h dark: LD 16/8). Short daylength had a similar effect during chilling at 5°C, as measured by the longer time to eclosion after transfer. The shorter time to eclosion resulting from longer chilling periods (30–90 days) demonstrates that the state of diapause is continuously shortened at 5°C, and corresponds to the neuroendocrine controlled DEP. Presumably the DEP has already started after the onset of diapause. When chilling was continued after the end of the DEP, which ranged between 90 and 120 days, thermal quiescence (Q) followed (observed maximum 395 days). Different photoperiodic conditions during the pre-diapause inductive period modified diapause intensity (measured as the duration of diapause), in that a photoperiodic signal just below the critical photoperiod for diapause induction (LD 15/9) intensified diapause. Experiments simulating the summer diapause showed that PDD occurred in the range of 10–25°C. Higher temperatures (15 and 20°C) shortened the DEP at LD 16/8, so that at 20°C many individuals had already terminated diapause after 10–40 days and had molted after the 6–10 days of PDD. A temperature of 25°C unexpectedly lengthened the DEP to 110 days in several individuals. The ecological consequences and the adaptive significance of variation in the duration of the diapause are discussed in relation to the persistence of local populations predictably variable and rare climatic extremes throughout the year.  相似文献   

7.
Cohorts ofCotesia melanoscela (Ratzeburg) (Hymenoptera: Braconidae) cocoons were exposed in the field at three Maryland locations to attack by natural enemies for two week periods, then were held in an outdoor insectary untilC. melanoscela adult or hyperparasitoid emergence. The timing of placement of theC. melanoscela cocoons in the field had a profound effect on the number ofC. melanoscela that survived and emerged as adults in synchrony with the field occurence of susceptible early-instarLymantria dispar (L.) larvae. The proportion of emerged adults available during susceptible host stages ranged from 1–92%, depending on dates of release. November or December placements ofC. melanoscela cocoons were most effective with 74–92 % emergence of adults during peak periods of susceptible host stages. Spring placements were least effective. The causes of ineffective placement, which varied with location and with date, were program (handling) loss, non-emergence, attack by hyperparasitoids, predation, andC. melanoscela adult emergence at times when appropriateL. dispar life stages would not be present. We concluded that November/December releases avoided natural enemies and promoted appropriate diapause and post-diapause development that enhanced survival and synchrony of adult emergence with host stage susceptibility.  相似文献   

8.
The resumption of spermatogenesis in post-diapause development was examined in the sweet potato hornworm (Agrius convolvuli) with in vivo bromodeoxyuridine (BrdU) incorporation experiments used to determine the starting point. Diapausing pupae were “overwintered” by chilling at 10 °C for over 4 months, after which they initiated post-diapause development by transferring the pupae to 25 °C with a 12-h light/12-h dark photoperiod. The testes of living, post-diapause pupae were injected with BrdU, which is incorporated into newly synthesized DNA strands. During the first 2 days after diapause termination, the nuclei of spermatogonia and spermatocytes failed to label with BrdU. However, on day 3 of post-diapause pupae (PDP3), labeling studies showed that cell proliferation was initiated by spermatogonia, but not by spermatocytes. In both hemolymph and testes, ecdysteroid concentrations rose gradually, reaching 0.3 μg/ml hemolymph at PDP3. These results led to the following three conclusions. The spermatogonial cell division is highly suppressed during diapause. After a long-term diapause, spermatogenesis resumes in the spermatogonia but not in the spermatocytes of diapause-terminated pupae. Cell division begins in advance of peak ecdysteroid concentrations. The latter result indicates that in post-diapause development, high concentrations of the hormone are not required to initiate spermatogonial proliferation.  相似文献   

9.
The minimum life cycle of Dermacentor silvarum Olenev had a mean duration of 87.5 days (range 74–102 days) under laboratory conditions [(27±1 °C), 70% RH, 6 L: 18 D]. The mean time in (days) for the different stages of its cycle was as follows: incubation period of eggs was 15.3 days; prefeeding, feeding and premoulting periods of larvae and nymphs averaged 5.5, 4.0 and 7.3 days, and 5.2, 5.0 and 14.6 days, respectively; prefeeding, feeding, preoviposition and oviposition periods of female adults lasted for 7.8, 4.5, 4.3 and 14.0 days, respectively. There existed a highly significant correlation between engorged body weight of females and egg masses laid (r = 0.9877, p<0.001). The reproductive efficiency index (REI) and reproductive fitness index (RFI) in females were 11.09 and 9.58, respectively. No relationship between nymphal engorged body weight and resultant sexes was observed. Delayed feeding and non-oviposition (in June and July) existed in females, and low temperature (−10 °C) treatment for 45 days could terminate oviposition diapause. However, the egg masses laid by post-diapause females were significantly smaller than those laid by females engorged in March, April and May.  相似文献   

10.
Diapause termination under natural and simulated overwintering conditions, the effect of subzero temperature on postdiapause development and the relationship between postdiapause development rate and constant and fluctuating temperatures was studied in a Dutch population ofAphelinus mali Hald. (Hymenoptera: Aphelinidae).The rate of diapause termination was similar in larvae overwintering under natural and simulated conditions. Most larvae had terminated diapause by the last week of February. Some female larvae may have remained in diapause until the end of March. The exposure of postdiapause larvae to –10°C for two weeks did not affect their survival or postdiapause development rate.PostdiapauseA. mali larvae could complete development and the adults emerge from their mummified aphid hosts at constant temperatures from 12 to 24°C. Although some larvae completed postdiapause development at 10°C, few emerged. The theoretical threshold temperature (to) for postdiapause development was 9.4°C and the thermal constant (K) 136.4 degree-days. K was 121.4 and 134.8 for first and 50% emergence, respectively.The number of heat units accumulating above 9.4°C to 1st and 50% emergence was similar under constant and fluctuating temperatures.
Fin de la diapause et exigences thermiques pour le développement après la diapause d'Aphelinus mali soumis à des températures constantes ou à des thermopériodes
Résumé L'achèvement de la diapause en conditions naturelles ou simulant l'hiver, les effets des températures inférieures à zéro sur le développement après la diapause et les relations entre la vitesse de développement après la diapause et les températures constantes ou en thermopériodes ont été examinés sur des populations néerlandaises d'A. mali (Hymenop.; Aphélinidae).Les taux d'achèvement de la diapause de larves hivernantes étaient semblables en conditions naturelles ou simulées. La plupart des larves ont terminé leur diapause la dernière semaine de février. Quelques larves femelles sont restées en diapause jusqu'à fin mars. L'exposition pendant 2 semaines des larves sorties de diapause à –10 °C ne compromet pas leur survie ou leur taux de développement après la diapause.Les larves ayant diapause peuvent terminer leur développement et les adultes émerger des pucerons momifiés aux températures constantes comprises entre 12 et 24 °C. Bien que quelques larves achèvent leur développement à 10 °C, peu émergent. La température seuil théorique de développement après la diapause (to) a été de 9,4 °C et la constante thermique (K), 136,5 degrés-jours. Pour la première émergence et pour 50% d'émergences, les valeurs de K étaient respectivement: 121,4 et 134,8.Le nombre d'unités thermiques pour la première émergence et pour 50% d'émergences était le même à température constante ou avec une thermopériode.
  相似文献   

11.
The duration of diapause in the stem borers Busseola fusca (Fuller) and Chilo partellus (Swinhoe) was studied in South Africa by collecting diapausing larvae from the field throughout winter (April–August). B. fusca larvae emerged as moth around the middle of October regardless of the date of collection and the length of time they were kept in the laboratory under constant 21 °C. C. partellus larvae collected in April–June emerged in November, those collected in July emerged in October, and those collected in August emerged in September. Regardless of the collection date C. partellus started to emerge from diapause earlier and moth emergence lasted up to twice as long as in B. fusca. Under laboratory conditions at 60% RH both borer larvae lost about 50% of their body mass during diapause. When provided with water B. fusca larvae lost about 30% of their body mass and adults emerged 20 days earlier than when kept dry. C. partellus, on the other hand, lost only 13% of their body weight and emerged 34 days earlier. The differences between the two species are discussed in light of different types of diapause; i.e., obligatory diapause in B. fusca and facultative diapause in C. partellus.  相似文献   

12.
Diapause survival and post-diapause performance (i.e., if a queen starts to lay eggs) of in total 2210 bumblebee queens (Bombus terrestris) were measured under different diapause regimes: 5 temperatures (–5, 0, 5, 10 and 15 °C) in combination with 5 durations of exposure (1, 2, 4, 6 and 8 months).The results show that weight at the start of diapause determines to a large extent whether a queen will be able to survive diapause. Queens with a wet weight below 0.6 g prior to diapause did not survive, but for those queens exceeding this threshold a higher pre- diapause weight did not increase their post-diapause performance.There was no effect of temperature on diapause survival; 76% of the variance in survival could be explained by the duration of the treatment. Neither temperature nor duration of exposure had an effect on post-diapause performance. The preoviposition period of the queens that laid eggs was also determined. The preoviposition period was affected by both temperature and duration of exposure: the preoviposition period decreased with decreasing temperature but also with increasing duration of the treatment.  相似文献   

13.
The life cycle of Sericostoma personatum (Spence) was studied at 6 °C, 10 °C and 14 °C and at each temperature at 8 and 14 hrs daylength. Embryogenesis was not temperature dependent in the 12°–18°C range. Only 7 of 38 (app. 18%) had a direct development, the rest remained in diapause with partly developed larvae. Hatching success of single egg masses was over 95%. At 6 °C at both LDs, about 452 days are required for larval development. At 10 °C 370 days (LD 8/16), or 320 days (LD 14/10) and at 14° C 319 days (LD 8/16) and 295 days (LD 14/10) were required. Duration of instars III and IV was longer at 6 °C (both LDs), compared with all other groups. Vth instar larvae of the 14 °C (LD 14/10) group grew fastest. Instar VI larvae of the 10 °C short day group developed faster than all others. Instar VII larvae of both 14 °C groups and of the 10 °C long day group develop faster than the rest. Duration of pupal instar is only temperature dependent, regardless of light regime. The field life cycle of S. personatum may require 2–5 years. Larvae are night active. They feed on Coarse Particular Organic Material (CPOM) on the sediment surface at night. They release faeces (Fine Particular Organic Material, FPOM) into the sediment where they rest by day at a few cm depth. Their burrowing behavior thus contributes to the retention of FPOM in the stream channel. Daily food consumption at constant 10 °C is significantly dependent on night length (r 2 = 0.979, p < 0.05). Two factors thus may limit food consumption: in winter, low temperatures, and in summer short nights. The species thus avoids competition by day-active shredders and predation by day-active predators.  相似文献   

14.
中红侧沟茧蜂滞育诱导和滞育茧的冷藏   总被引:1,自引:0,他引:1  
中红侧沟茧蜂Microplitis mediator (Haliday)是夜蛾科害虫低龄幼虫的重要寄生蜂。田间实验表明,在冀中地区秋季田间条件下,当日平均气温为21.5℃、日平均光照时间为12 h 33 min时,少数个体进入滞育;当气温降至17.9℃以下、日光照时间缩短到11 h 45 min以下时,全部个体进入滞育。室内模拟实验结果表明,在17~26℃、光照时间10~14 h范围内,随着温度的降低和光照时间的缩短,滞育率明显提高。高温能抵消短光照对滞育诱导的影响,在26℃下,短光照不能诱导滞育。因此,低温和短光照是诱导该种天敌昆虫滞育的主要因子。中红侧沟茧蜂感受滞育信号的敏感期为低龄幼虫期,以预蛹(茧)进入滞育。低龄幼虫感受滞育信号以后,需要在滞育环境中发育到老熟幼虫才能全部进入滞育。将室内诱导的滞育茧在4℃左右环境条件下冷藏240天,成蜂的羽化率和寄生能力与没有冷藏的非滞育茧差异不显著;冷藏300天,滞育茧仍有81.4%可以正常羽化。本项研究结果为中红侧沟茧蜂的规模化、标准化生产提供了科学的依据。  相似文献   

15.
This paper is focused on diapause and polyphenism of development of Lagria hirta L. and tries to unravel its mechanism of life-history adaptation. Lagria hirta, distributed widely in Europe, has a strictly univoltine life cycle. The results showed that larval diapause and moulting polymorphism were the deciding factors that made L. hirta maintain its univoltinism and keep a flexible relation between seasonal changes and life-history phases. In the laboratory, larvae of this species were not able to pupate if kept at constant temperatures of 5 °, 10 °, 15 °, 20 °, 25 ° or 30 °C combined with a photoperiod of either LD (L16:D8) or SD (L8:L16). Pupation only occurred if larvae were reared at 15 °–25 °C when intervened by a three-month chilling at 5 °C in stages L3, L4, L5 or L6. A chilling treatment was shown to be obligatory for the termination of its larval diapause and had an accelerating and synchronizing effect on larval development. Larval diapause of L. hirta was characterized by no pupation and more moulting in advanced instars, longer duration of each single stage, and moulting desynchronization. Larval development was found to be variable with respect to the total number of instars: most larvae underwent a total of seven or eight moults; some larvae might even moult once or twice more, but they seldom pupated. It seemed that the choice for the 7-instar or the 8-instar development did not directly relate to any of the external conditions, such as temperature, photoperiod, and stages with chilling treatment. This polyphenism was observed in the same group under identical conditions and even in a single egg clutch. In L. hirta, overwintering in different stages of L3–L6, and choosing the 7- or 8-instar pathway of development are two features that increase the plasticity and flexibility in coordinating its life cycle with seasonal change, that varies unpredictably from year to year.  相似文献   

16.
Summary Floronia bucculenta hibernates in the egg stage; the egg sacs are deposited on the leaves of grass tussocks without any shelter. The morphogenesis of the eggs was divided into 10 arbitrarily chosen stages, in order to test the dependence of embryonic development on temperature in the laboratory. The eggs developed slowly at 23°C, 16°, 12.5°; embryogenesis stopped after 70–45 days, when prosomal appendage rudiments began to form. At 10°, 7.5°, 5°, 0° complete embryogenesis was possible until the emergence of the first complete stage. The eggs developed most rapidly at 5° (mean developmental time 203 days). The egg development was normal at 5° and 0°, when compared with the timetable of the embryogenesis of the linyphiid Bathyphantes gracilis, a species which has no egg diapause. At 7.5° and 10° the embryogenesis was strongly delayed during the median phases of development (elongation of the germ band, formation of prosomal appendages); after reversion the development was accelerated (postdiapause phase). After long exposure to low temperatures (-10° to +10°) the diapause was terminated. A temperature of 0° was optimal (minimal time of exposure 8–9 weeks). The time required for embryonic development of postdiapause eggs decreased hyperbolically with increasing temperature. In the field the median phases of embryogenesis were retarded by low ambient temperatures; diapause was terminated from late December to mid-January. The spread of hatching in spring was 7–15 days.During the diapause phase the O2-consumption of the eggs at 25° was depressed. It rose from 1.55 (in late diapause) to 4.21 ml/100 eggs·h at the onset of postdiapause, whereas O2-utilization did not change significantly at 5° (from 0.54 to 0.61 ml/100 eggs·h just after the termination of diapause).The diapause phase was not characterized by higher resistance to cold, drought, or flooding. As compared with single eggs removed from the cocoon, the silken wall of the intact egg sac did not affect the survival of postdiapause eggs exposed to-15° (LD50=28 days); it raised, however, the survival time of eggs exposed to a R.H. of 32% (at 5°) or flooding by distilled water (at 5°): from LD50=37 to 68 days at drought, from LD50=30 to 92 days at flooding.Diapause is important for synchronizing the life-cycle of F. bucculenta with the seasonal fluctuations of environment. The egg stage is highly tolerant to the extreme factors of the winter. Some implications of the relation of the studied spider to its habitat are discussed.  相似文献   

17.
Many insects in temperate zones withstand the adverse conditions of winter through entering diapause and the two most important environmental stimuli that induce diapause are photoperiod and ambient temperature. The Large Copper butterfly, Lycaena dispar Haworth (Lepidoptera: Lycaenidae), is a Palearctic butterfly that hibernates as larvae. Since this butterfly is a near threatened species in some regions, there has been a growing need for a standardized protocol for mass rearing of this butterfly based on the adequate knowledge of its ecology. In the present study, we first identified that L. dispar larvae were sensitive to the photoperiodic induction of diapause during their first larval instar. We then investigated to what extent the diapause-inducing effects of photoperiod could be modified by ambient temperatures in L. dispar larvae by exposing them to the range of day-lengths (L:D 14:10, 12:12, 10:14 and 8:16) at three different temperatures (15, 20 and 25 °C). All larvae were induced to enter diapause at low ambient temperature (15 °C) regardless of photoperiod, whereas most of them (86 %) exhibited direct development when temperature was high (25 °C). The photoperiodic induction of diapause was evident when day-length was shorter than 14 h at intermediate temperature (20 °C). Pre-diapause development was prolonged at low temperatures. Finally, we found that post-diapause development of L. dispar larvae was determined by both the chilling temperature experienced by diapausing larvae and the duration of larval diapause. Adult emergence was enhanced when larvae were chilled at 8 °C and when they had been under the state of diapause for 20 days before they were treated to terminate diapause.  相似文献   

18.
The cold-hardening capacity of field-collected larvae from southeast Missouri and laboratory-reared larvae of the southwestern corn borer, Diatraea grandiosella Dyar, was examined. Supercooling points of non-diapause and diapause larvae collected from maize plants grown in Missouri (36°30 N lat.) were ca.-7.0°C. The hemolymph melting points of diapause field larvae (-0.8°C) were significantly lower than those of non-diapause larvae collected in July (-0.5°C). The supercooling points of hemolymph from non-diapause and diapause field larvae ranged randomly from-10° to-18°C. Supercooling points of non-diapause laboratory larvae increased from-13° to-10°C prior to pupation, whereas those of diapause larvae increased similarly before the onset of diapause, but then decreased during diapause to ca.-17°C. No change in supercooling points or capacity to survive in the presence of ice was observed in diapause laboratory larvae acclimated at 4°C for 63 days. Laboratory and field larvae began to freeze at ca.-1.5°C in the presence of ice, but survived to several degrees below their melting points. The high supercooling points of field larvae appeared to be due to the presence of an environmental ice-nucleator. Although data for laboratory larvae indicate sufficiently low supercooling points to permit winter survival in southeastern Missouri, considerable larval mortality occurs in the field due to inoculative freezing and the presence of an ice-nucleator.  相似文献   

19.
The effect of four prediapause temperatures (18, 22, 26 and 30°C) on the photoperiodic response of the codling moth, Cydia pomonella (L.), was studied under controlled conditions. The highest rates of diapause were recorded, for all day-lengths, at temperatures of 22 and 26°C while relatively lower rates of diapause were elicited at 18 and 30°C. The same trend was demonstrated by projecting the values of the critical photoperiod which induces 50% diapause (=CPhP50) over the prediapause temperature. The change in diapause incidence as a function of photoperiod, at all prediapause temperatures, exhibited a response characteristic of long-day insects, i.e. high rates of diapause at short days (12–13.5 h) and a decrease in diapause incidence at long days (14–15 h). The results for temperatures 22, 26 and 30°C support the view that lower prediapause temperatures enhance diapause induction, at a give photoperiod, while higher temperatures tend to avert or diminish the process. On the other hand, the low rates of diapause obtained at 18°C contradict this view. Nevertheless, high correlation was found between the laboratory evidence and field data, indicating the adaptability of the Israeli codling moth to subtropical climate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号