首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously shown that pretransplant donor lymphocyte infusion (DLI) together with transient depletion of CD4(+) T cells could induce permanent rat-to-mouse heart graft survival, whereas depleting CD4(+) T cells alone failed to do so. In this study, we investigated the mechanism leading to long-term xenograft survival. We found that peripheral CD4(+) T cells from DLI/anti-CD4-treated mice could mount rat heart graft rejection after adoptive transfer into B6 CD4(-/-) mice. Infusing donor-Ag-loaded mature dendritic cells (DCs) could break long-term cardiac xenograft survival in DLI/anti-CD4-treated mice. Interestingly, when the number and phenotype of graft-infiltrating cells were compared between anti-CD4- and DLI/anti-CD4-treated groups, we observed a significant increase in both the number and suppressive activity of alphabeta-TCR(+)CD3(+)CD4(-)CD8(-) double negative regulatory T cells and decrease in the numbers of CD4(+) and CD8(+) T cells in the xenografts of DLI/anti-CD4-treated mice. Moreover, there was a significant reduction in MHC class II-high DCs within the xenografts of DLI/anti-CD4-treated recipients. DCs isolated from the xenografts of anti-CD4- but not DLI/anti-CD4-treated recipients could stimulate CD4(+) T cell proliferation. Our data indicate that functional anti-donor T cells are present in the secondary lymphoid organs of the mice that permanently accepted cardiac xenografts. Their failure to reject xenografts is associated with an increase in double negative regulatory T cells as well as a reduction in Ag stimulation by DCs found within grafts. These findings suggest that local regulatory mechanisms need to be taken into account to control anti-xenograft T cell responses.  相似文献   

2.
Previous studies have shown that pretransplant donor lymphocyte infusion (DLI) can enhance xenograft survival. However, the mechanism by which DLI induces xenograft survival remains obscure. Using T cell subset-deficient mice as recipients we show that CD4+, but not CD8+, T cells are necessary to mediate the rejection of concordant cardiac xenografts. Adoptive transfer of naive CD4+ T cells induces rejection of accepted cardiac xenografts in CD4-/- mice. This rejection can be prevented by pretransplant DLI in the absence of any other treatment. Furthermore, we demonstrate that DLI activates alphabeta-TCR+CD3+CD4-CD8- double-negative (DN) regulatory T (Treg) cells in xenograft recipients, and that DLI-activated DN Treg cells can inhibit the proliferation of donor-specific xenoreactive CD4+ T cells in vitro. More importantly, adoptive transfer of DLI-activated DN Treg cells from xenograft recipients can suppress the proliferation of xenoreactive CD4+ T cells and their ability to produce IL-2 and IFN-gamma in vivo. Adoptive transfer of DLI-activated DN Treg cells also prevents CD4+ T cell-mediated cardiac xenograft rejection in an Ag-specific fashion. These data provide direct evidence that DLI can activate recipient DN Treg cells, which can induce donor-specific long-term cardiac xenograft survival by suppressing the proliferation and function of donor-specific CD4+ T cells in vivo.  相似文献   

3.
Despite the recognition that humoral rejection is an important cause of allograft injury, the mechanism of Ab-mediated injury to allograft parenchyma is not well understood. We used a well-characterized murine hepatocellular allograft model to determine the mechanism of Ab-mediated destruction of transplanted liver parenchymal cells. In this model, allogeneic hepatocytes are transplanted into CD8-deficient hosts to focus on CD4-dependent, alloantibody-mediated rejection. Host serum alloantibody levels correlated with in vivo allospecific cytotoxic activity in CD8 knockout hepatocyte rejector mice. Host macrophage depletion, but not CD4(+) T cell, NK cell, neutrophil, or complement depletion, inhibited in vivo allocytotoxicity. Recipient macrophage deficiency delayed CD4-dependent hepatocyte rejection and inhibited in vivo allocytotoxicity without influencing alloantibody production. Furthermore, hepatocyte coincubation with alloantibody and macrophages resulted in Ab-dependent hepatocellular cytotoxicity in vitro. These studies are consistent with a paradigm of acute humoral rejection in which CD4(+) T cell-dependent alloantibody production results in the targeting of transplanted allogeneic parenchymal cells for macrophage-mediated cytotoxic immune damage. Consequently, strategies to eliminate recipient macrophages during CD4-dependent rejection pathway may prolong allograft survival.  相似文献   

4.
We determined whether distinct subclasses of dendritic cells (DC) could polarize cytokine production and regulate the pattern of xenograft rejection. C57BL/6 recipients, transplanted with Lewis rat hearts, exhibited a predominantly CD11c(+)CD8alpha(+) splenic DC population and an intragraft cytokine profile characteristic of a Th1-dominant response. In contrast, BALB/c recipients of Lewis rat heart xenografts displayed a predominantly CD11c(+)CD8alpha(-) splenic DC population and IL-4 intragraft expression characteristic of a Th2 response. In addition, the CD11c(+)IL-12(+) splenic DC population in C57BL/6 recipients was significantly higher than that in BALB/c recipients. Adoptive transfer of syngeneic CD8alpha(-) bone marrow-derived DC shifted a Th1-dominant, slow cell-mediated rejection to a Th2-dominant, aggressive acute vascular rejection (AVR) in C57BL/6 mice. This was associated with a cytokine shift from Th1 to Th2 in these mice. In contrast, transfer of CD8alpha(+) bone marrow-derived DC shifted AVR to cell-mediated rejection in BALB/c mice and significantly prolonged graft survival time from 6.0 +/- 0.6 days to 14.2 +/- 0.8 days. CD8alpha(+) DC transfer rendered BALB/c mice susceptible to cyclosporine therapy, thereby facilitating long-term graft survival. Furthermore, CD8alpha(+) DC transfer in IL-12-deficient mice reconstituted IL-12 expression, induced Th1 response, and attenuated AVR. Our data suggest that the pattern of acute xenogeneic rejection can be regulated by distinct DC subsets.  相似文献   

5.
Transplantation of tissues from other species has been advocated as a way to overcome the extreme shortage of human donors. Rejection, however, remains a major hurdle for clinical xenotransplantation. Although activation of macrophages by T cells is critical for the cellular rejection of xenografts, what other important interactions between these two types of cells remain less defined. When we activated macrophages of immuno-deficient mice (SCID or Rag-/-) using interferon-gamma and lipopolysacharide, xenogeneic cells were rejected by activated macrophages in the peritoneal cavity (which has an abundance of resident macrophages), but were not rejected under the kidney capsule (which requires the recruitment of effectors). This difference between the two sites implies that activated macrophages are inefficient for self-recruitment to peripheral graft sites and that T cells may still be required for the process. To test this hypothesis further, immunodeficient mice that had received xenogeneic cells were infused with peritoneal exudate cells (containing activated macrophages and activated T cells) from preimmunized immunocompetent mice. Xenogeneic cells at both the kidney capsule and peritoneal sites were rejected soon after cell transfer. However, when the exudate cells were transferred into SCID recipients that first had been injected with T cell depleting antibodies, xenograft rejection was only prominent at the peritoneal site but not kidney capsule site. These results argue that activated macrophages (as the result of T cell activation) still require T cells for xenograft rejection at peripheral sites.  相似文献   

6.
Although CD4 cells are major mediators in cellular rejection of fetal pig pancreas (FPP) in the mouse, rejection still occurs in the absence of CD4 cells, albeit with delayed kinetics. CD4 cell-independent mechanisms of cellular rejection are poorly understood. To investigate the involvement of CD8 T cells in FPP rejection and their activation requirements, we used mice transgenic for anti-CD4 Ab; this is the most complete model of CD4 cell deficiency. We showed that in such mice FPP was infiltrated with CD8 cells starting from 2 wk posttransplantation and FPP was eventually rejected 8 wk posttransplantation. Ab depletion of CD8 cells greatly improved the survival of FPP and reduced cell infiltration at the graft site. This suggests that CD8 cells can mediate the rejection of porcine xenografts in the absence of CD4 cells. This CD8-mediated rejection of FPP is independent of their perforin-mediated lytic function, as graft survival was not affected in mice deficient in perforin. The production of IFN-gamma and IL-5 by the graft infiltrates indicates that CD8 cells may act through cytokine-mediated mechanisms. Remarkably, in the absence of CD4 cells, lymphocyte infiltration at the graft site was absent in mice transgenic for CTLA4Ig such that the islet grafts flourished beyond 24 wk. In contrast, rejection was little affected by CD40 ligand deficiency. Therefore, we show that CD8 cells are activated to mediate FPP rejection independent of perforin and that this CD4-independent activation of CD8 cells critically depends on B7/CD28 costimulation.  相似文献   

7.
To evaluate the priming and trafficking of male Ag-reactive CD4(+) T cells in vivo, we developed an adoptive transfer model, using Marilyn (Mar) TCR transgenic T cells that are specific for the H-Y minor transplantation Ag plus I-A(b). By manipulating donor and recipient strain combinations, we permitted the Mar CD4(+) T cells to respond to the H-Y Ag after processing and presentation by recipient APCs (indirect pathway), or to the male Ag as expressed on donor APCs (direct pathway). Mar CD4(+) T cells responding through the indirect pathway specifically proliferated and expressed activation markers between days 2 and 4 posttransplant, migrated to the graft 2-3 days before cessation of graft heartbeat, and were detected in close proximity to transplant-infiltrating recipient APCs. Intriguingly, adoptively transferred Mar T cells did not respond to male heart or skin grafts placed onto syngeneic MHC class II-deficient female recipients, demonstrating that activation of Mar T cell preferentially occurs through cognate interactions with processed male Ag expressed on recipient APCs. The data highlight the potency of indirect processing and presentation pathways in vivo and underscore the importance of indirectly primed CD4(+) T cells as relevant participants in both the priming and effector phases of acute graft rejection.  相似文献   

8.
Human CD4+ T cells mediate rejection of porcine xenografts   总被引:4,自引:0,他引:4  
It has previously been demonstrated that xenograft rejection in rodents is dependent on CD4+ T cells. However, because of the lack of an appropriate in vivo model, little is known about the cellular basis of human T cell-mediated rejection of xenografts. In this study, we have evaluated the ability of human T cells to mediate rejection of porcine skin grafts in a novel in vivo experimental system using immunodeficient mice as recipients. Recombinase-activating gene-1-deficient mice (R-) lacking mature B and T cells were grafted with porcine skin and received human lymphocytes stimulated in vitro with irradiated porcine PBMC. Skin grafts on mice given either unseparated, activated human lymphocytes, or NK cell-depleted lymphocyte populations were rejected within 18 days after adoptive cell transfer. In contrast, skin grafts on mice given T cell-depleted human lymphocytes or saline showed no gross or histologic evidence of rejection up to 100 days after adoptive transfer. Purified CD4+ T cells were also able to mediate rejection of porcine skin grafts. These data suggest that human CD4+ T cells are sufficient to induce rejection of porcine xenografts. Thus, strategies directed toward CD4+ T cells may effectively prevent cellular rejection of porcine xenografts in humans.  相似文献   

9.
Acute rejection is mediated by T cell infiltration of allografts, but mechanisms mediating the delayed rejection of allografts in chemokine receptor-deficient recipients remain unclear. The rejection of vascularized, MHC-mismatched cardiac allografts by CCR5(-/-) recipients was investigated. Heart grafts from A/J (H-2(a)) donors were rejected by wild-type C57BL/6 (H-2(b)) recipients on day 8-10 posttransplant vs day 8-11 by CCR5(-/-) recipients. When compared with grafts from wild-type recipients, however, significant decreases in CD4(+) and CD8(+) T cells and macrophages were observed in rejecting allografts from CCR5-deficient recipients. These decreases were accompanied by significantly lower numbers of alloreactive T cells developing to IFN-gamma-, but not IL-4-producing cells in the CCR5(-/-) recipients, suggesting suboptimal priming of T cells in the knockout recipients. CCR5 was more prominently expressed on activated CD4(+) than CD8(+) T cells in the spleens of allograft wild-type recipients and on CD4(+) T cells infiltrating the cardiac allografts. Rejecting cardiac allografts from wild-type recipients had low level deposition of C3d that was restricted to the graft vessels. Rejecting allografts from CCR5(-/-) recipients had intense C3d deposition in the vessels as well as on capillaries throughout the graft parenchyma similar to that observed during rejection in donor-sensitized recipients. Titers of donor-reactive Abs in the serum of CCR5(-/-) recipients were almost 20-fold higher than those induced in wild-type recipients, and the high titers appeared as early as day 6 posttransplant. These results suggest dysregulation of alloreactive Ab responses and Ab-mediated cardiac allograft rejection in the absence of recipient CCR5.  相似文献   

10.
We previously reported that IL-7(-/-)RAG(-/-) mice receiving naive T cells failed to induce colitis. Such abrogation of colitis may be associated with not only incomplete T cell maintenance due to the lack of IL-7, but also with the induction of colitogenic CD4(+) T cell apoptosis at an early stage of colitis development. Moreover, NK cells may be associated with the suppression of pathogenic T cells in vivo, and they may induce apoptosis of CD4(+) T cells. To further investigate these roles of NK cells, RAG(-/-) and IL-7(-/-)RAG(-/-) mice that had received naive T cells were depleted of NK cells using anti-asialo GM1 and anti-NK1.1 Abs. NK cell depletion at an early stage, but not at a later stage during colitogenic effector memory T cell (T(EM)) development, resulted in exacerbated colitis in recipient mice even in the absence of IL-7. Increased CD44(+)CD62L(-) T(EM) and unique CD44(-)CD62L(-) T cell subsets were observed in the T cell-reconstituted RAG(-/-) recipients when NK cells were depleted, although Fas, DR5, and IL-7R expressions in this subset differed from those in the CD44(+)CD62L(-) T(EM) subset. NK cell characteristics were the same in the presence or absence of IL-7 in vitro and in vivo. These results suggest that NK cells suppress colitis severity in T cell-reconstituted RAG(-/-) and IL-7(-/-)RAG(-/-) recipient mice through targeting of colitogenic CD4(+)CD44(+)CD62L(-) T(EM) and, possibly, of the newly observed CD4(+)CD44(-)CD62L(-) subset present at the early stage of T cell development.  相似文献   

11.
A novel subset of CD3(+)CD4(-)CD8(-) (double negative; DN) regulatory T cells has recently been shown to induce donor-specific skin allograft acceptance following donor lymphocyte infusion (DLI). In this study, we investigated the effect of DLI on rat to mouse cardiac xenotransplant survival and the ability of DN T cells to regulate xenoreactive T cells. B6 mice were given either DLI from Lewis rats, a short course of depleting anti-CD4 mAb, both DLI and anti-CD4 treatment together, or left untreated. DLI alone did not prolong graft survival when compared with untreated controls. Although anti-CD4-depleting mAb alone significantly prolonged graft survival, grafts were eventually rejected by all recipients. However, the combination of DLI and anti-CD4 treatment induced permanent cardiac xenograft survival. We demonstrate that recipients given both DLI and anti-CD4 treatment had a significant increase in the total number of DN T cells in their spleens when compared with all other treatment groups. Furthermore, DN T cells harvested from the spleens of DLI plus anti-CD4-treated mice could dose-dependently inhibit the proliferation of syngeneic antidonor T cells. Suppression mediated by these DN T cells was specific for antidonor T cells as T cells stimulated by third-party Ags were not suppressed. These results demonstrate for the first time that a combination of pretransplant DLI and anti-CD4-depleting mAb can induce permanent survival of rat to mouse cardiac xenografts and that DN T regulatory cells play an important role in preventing long-term concordant xenograft rejection through the specific suppression of antidonor T cells.  相似文献   

12.
Alloantibody is an important effector mechanism for allograft rejection. In this study, we tested the hypothesis that regulatory T cells with indirect allospecificity can prevent humoral rejection by using a rat transplant model in which acute rejection of MHC class I-disparate PVG.R8 heart grafts by PVG.RT1(u) recipients is mediated by alloantibody and is dependent upon help from CD4 T cells that can recognize the disparate MHC alloantigen only via the indirect pathway. Pretransplant treatment of PVG.RT1(u) recipients with anti-CD4 mAb plus donor-specific transfusion abrogated alloantibody production and prolonged PVG.R8 graft survival indefinitely. Naive syngeneic splenocytes injected into tolerant animals did not effect heart graft rejection, suggesting the presence of regulatory mechanisms. Adoptive transfer experiments into CD4 T cell-reconstituted, congenitally athymic recipients confirmed that regulation was mediated by CD4 T cells and was alloantigen-specific. CD4 T cell regulation could be broken in tolerant animals either by immunizing with an immunodominant linear allopeptide or by depleting tolerant CD4 T cells, but surprisingly this resulted in neither alloantibody generation nor graft rejection. These findings demonstrate that anti-CD4 plus donor-specific transfusion treatment results in the development of CD4 regulatory T cells that recognize alloantigens via the indirect pathway and act in an Ag-specific manner to prevent alloantibody-mediated rejection. Their development is associated with intrinsic tolerance within the alloantigen-specific B cell compartment that persists after T cell help is made available.  相似文献   

13.
We have previously demonstrated that IL-7 is essential for the persistence of colitis as a survival factor of colitogenic IL-7Rα-expressing memory CD4(+) T cells. Because IL-7Rα is broadly expressed on various immune cells, it is possible that the persistence of colitogenic CD4(+) T cells is affected by other IL-7Rα-expressing non-T cells. To test this hypothesis, we conducted two adoptive transfer colitis experiments using IL-7Rα(-/-) CD4(+)CD25(-) donor cells and IL-7Rα(-/-) × RAG-2(-/-) recipient mice, respectively. First, IL-7Rα expression on colitic lamina propria (LP) CD4(+) T cells was significantly higher than on normal LP CD4(+) T cells, whereas expression on other colitic LP immune cells, (e.g., NK cells, macrophages, myeloid dendritic cells) was conversely lower than that of paired LP cells in normal mice, resulting in predominantly higher expression of IL-7Rα on colitogenic LP CD4(+) cells, which allows them to exclusively use IL-7. Furthermore, RAG-2(-/-) mice transferred with IL-7Rα(-/-) CD4(+)CD25(-) T cells did not develop colitis, although LP CD4(+) T cells from mice transferred with IL-7Rα(-/-) CD4(+)CD25(-) T cells were differentiated to CD4(+)CD44(high)CD62L(-) effector-memory T cells. Finally, IL-7Rα(-/-) × RAG-2(-/-) mice transferred with CD4(+)CD25(-) T cells developed colitis similar to RAG-2(-/-) mice transferred with CD4(+)CD25(-) T cells. These results suggest that IL-7Rα expression on colitogenic CD4(+) T cells, but not on other cells, is essential for the development of chronic colitis. Therefore, therapeutic approaches targeting the IL-7/IL-7R signaling pathway in colitogenic CD4(+) T cells may be feasible for the treatment of inflammatory bowel diseases.  相似文献   

14.
Acute rejection of allogeneic and semiallogeneic marrow grafts has long been considered to be a function of the natural immune system because it shares many features with NK activity in mice. With the use of a recently developed in vivo adoptive transfer assay in which spleen cells are transferred from mice able to reject a particular marrow graft into mice that fail to do so, we show that the cells responsible for induction of marrow graft rejection indeed display the phenotype of NK cells: they lack the T cell Ag CD4 and CD8 but express the NK Ag NK1 and ASGM1. The rejection induced by adoptively transferred cells is exquisitely specific--a feature that points to a specific recognition process by the transferred cells. To elucidate what the recognition structure on these cells may be we found that they express CD3 and most likely the beta-chain of the TCR. Highly purified responder cells with the NK1+, CD3+, CD4-, CD8- phenotype, when transferred into nonresponder recipients, cause specific marrow graft rejection. We conclude that the acute rejection of bone marrow grafts is caused by a cell that expresses NK phenotype but is of T cell lineage. This may suggest the specificity of acute marrow graft rejection is caused by a specific recognition process that involves TCR.  相似文献   

15.
We present evidence that donor-reactive CD4(+) T cells present in mice tolerant to donor alloantigens are phenotypically and functionally heterogeneous. CD4(+) T cells contained within the CD45RB(high) fraction remained capable of mediating graft rejection when transferred to donor alloantigen-grafted T cell-depleted mice. In contrast, the CD45RB(low) CD4(+) and CD25(+)CD4(+) populations failed to induce rejection, but rather, were able to inhibit rejection initiated by naive CD45RB(high) CD4(+) T cells. Analysis of the mechanism of immunoregulation transferred by CD45RB(low) CD4(+) T cells in vivo revealed that it was donor Ag specific and could be inhibited by neutralizing Abs reactive with IL-10, but not IL-4. CD45RB(low) CD4(+) T cells from tolerant mice were also immune suppressive in vitro, as coculture of these cells with naive CD45RB(high) CD4(+) T cells inhibited proliferation and Th1 cytokine production in response to donor alloantigens presented via the indirect pathway. These results demonstrate that alloantigen-specific regulatory T cells contained within the CD45RB(low) CD4(+) T cell population are responsible for the maintenance of tolerance to donor alloantigens in vivo and require IL-10 for functional activity.  相似文献   

16.
Pretreatment of pancreatic islets in 95% oxygen culture depletes graft-associated APCs and leads to indefinite allograft acceptance in immunocompetent recipients. As such, the APC-depleted allograft represents a model of peripheral alloantigen presentation in the absence of donor-derived costimulation. Over time, a state of donor-specific tolerance develops in which recipients are resistant to donor APC-induced graft rejection. Thus, persistence of the graft is sufficient to induce tolerance independent of other immune interventions. Donor-specific tolerance could be adoptively transferred to immune-deficient SCID recipient mice transplanted with fresh immunogenic islet allografts, indicating that the original recipient was not simply "ignorant" of donor antigens. Interestingly, despite the fact that the original islet allograft presented only MHC class I alloantigens, CD8+ T cells obtained from tolerant animals readily collaborated with naive CD4+ T cells to reject donor-type islet grafts. Conversely, tolerant CD4+ T cells failed to collaborate effectively with naive CD8+ T cells for the rejection of donor-type grafts. In conclusion, the MHC class I+, II- islet allograft paradoxically leads to a change in the donor-reactive CD4 T cell subset and not in the CD8 subset. We hypothesize that the tolerant state is not due to direct class I alloantigen presentation to CD8 T cells but, rather, occurs via the indirect pathway of donor Ag presentation to CD4 T cells in the context of host MHC class II molecules.  相似文献   

17.
1alpha,25-dihydroxyvitamin D3, the active form of vitamin D3, and mycophenolate mofetil, a selective inhibitor of T and B cell proliferation, modulate APC function and induce dendritic cells (DCs) with a tolerogenic phenotype. Here we show that a short treatment with these agents induces tolerance to fully mismatched mouse islet allografts that is stable to challenge with donor-type spleen cells and allows acceptance of donor-type vascularized heart grafts. Peritransplant macrophages and DCs from tolerant mice express down-regulated CD40, CD80, and CD86 costimulatory molecules. In addition, DCs from the graft area of tolerant mice secrete, upon stimulation with CD4+ cells, 10-fold lower levels of IL-12 compared with DCs from acutely rejecting mice, and induce a CD4+ T cell response characterized by selective abrogation of IFN-gamma production. CD4+ but not CD8+ or class II+ cells from tolerant mice, transferred into naive syngeneic recipients, prevent rejection of donor-type islet grafts. Graft acceptance is associated with impaired development of IFN-gamma-producing type 1 CD4+ and CD8+ cells and an increased percentage of CD4+CD25+ regulatory cells expressing CD152 in the spleen and in the transplant-draining lymph node. Transfer of CD4+CD25+ cells from tolerant but not naive mice protects 100% of the syngeneic recipients from islet allograft rejection. These results demonstrate that a short treatment with immunosuppressive agents, such as 1alpha,25-dihydroxyvitamin D3/mycophenolate mofetil, induces tolerance to islet allografts associated with an increased frequency of CD4+CD25+ regulatory cells that can adoptively transfer transplantation tolerance.  相似文献   

18.
Chemokine-chemokine receptor interactions and the subsequent recruitment of T lymphocytes to the graft are believed to be among the initial events in the development of acute and chronic rejection of heart transplants. We sought to determine the role of chemokine receptor Cxcr3 on the development of acute and chronic rejection in a multiple minor Ag mismatched mouse heart transplant model. The frequencies and kinetics of immunodominant H60 (LTFNYRNL) miHA-specific CD8 T cells in wild-type or Cxcr3-/- C57BL/6 recipients were monitored using MHC class I tetramer after BALB/b donor hearts were transplanted. Acceptance of grafts, severity of rejection, and infiltration of T cells were not altered in Cxcr3-/- recipients. However, graft survival was moderately prolonged in Cxcr3-/- recipient mice undergoing acute rejection. Analyses of splenocytes, PBLs, and graft-infiltrating cells revealed increased alloreactive T cells (H60-specific CD8 T cells) in the peripheral blood and spleen but not in the graft. Adoptively transferred Cxcr3-/- CD8 T cells in the BALB/b heart-bearing B6 scid mice showed retention of alloreactive CD8 T cells in the blood but less infiltration into the graft. Cxcr3-/- recipients with long-term graft survival also showed a marked decrease of CD8+ T cell infiltration and reduced neo-intimal hyperplasia. These data indicate that Cxcr3 plays a critical role in the trafficking as well as activation of alloreactive T cells. This role is most eminent in a transplant model when a less complex inflammatory milieu is involved such as a well-matched graft and chronic rejection.  相似文献   

19.
CD154, one of the most extensively studied T cell costimulation molecules, represents a promising therapeutic target in organ transplantation. However, the immunological mechanisms of CD154 blockade that result in allograft protection, particularly in the context of alloreactive CD4/CD8 T cell activation, remain to be elucidated. We now report on the profound inhibition of alloreactive CD8(+) T cells by CD154 blockade via both CD4-dependent and CD4-independent activation pathways. Using CD154 KO recipients that are defective in alloreactive CD8(+) T cell activation and unable to reject cardiac allografts, we were able to restore CD8 activation and graft rejection by adoptively transferring CD4(+) or CD8(+) T cells from wild-type syngeneic donor mice. CD4-independent activation of alloreactive CD8(+) T cells was confirmed following treatment of wild-type recipients with CD4-depleting mAb, and by using CD4 KO mice. Comparable levels of alloreactive CD8(+) T cell activation was induced by allogenic skin engraftment in both animal groups. CD154 blockade inhibited CD4-independent alloreactive CD8(+) T cell activation. Furthermore, we analyzed whether disruption of CD154 signaling affects cardiac allograft survival in skin-sensitized CD4 KO and CD8 KO recipients. A better survival rate was observed consistently in CD4 KO, as compared with CD8 KO recipients. Our results document CD4-dependent and CD4-independent activation pathways for alloreactive CD8(+) T cells that are both sensitive to CD154 blockade. Indeed, CD154 blockade was effective in preventing CD8(+) T cell-mediated cardiac allograft rejection.  相似文献   

20.
Delayed ICOS-B7h signal blockade promotes significant prolongation of cardiac allograft survival in wild-type but not in CD8-deficient C57BL/6 recipients of fully MHC-mismatched BALB/c heart allografts, suggesting the possible generation of CD8(+) regulatory T cells in vivo. We now show that the administration of a blocking anti-ICOS mAb results in the generation of regulatory CD8(+) T cells. These cells can transfer protection and prolong the survival of donor-specific BALB/c, but not third party C3H, heart grafts in CD8-deficient C57BL/6 recipients. This is unique to ICOS-B7h blockade, because B7 blockade by CTLA4-Ig prolongs graft survival in CD8-deficient mice and does not result in the generation of regulatory CD8(+) T cells. Those cells localize to the graft, produce both IFN-gamma and IL-4 after allostimulation in vitro, prohibit the expansion of alloreactive CD4(+) T cells, and appear to mediate a Th2 switch of recipient CD4(+) T cells after adoptive transfer in vivo. Finally, these cells are not confined to the CD28-negative population but express programmed death 1, a molecule required for their regulatory function in vivo. CD8(+)PD1(+) T cells suppress alloreactive CD4(+) T cells but do not inhibit the functions by alloreactive CD8(+) T cells in vitro. These results describe a novel allospecific regulatory CD8(+)PD1(+) T cell induced by ICOS-B7h blockade in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号