首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We combine mathematical modeling with experiments in living mice to quantify the relative roles of intrinsic cellular vs. tissue-scale physiological contributors to chemotherapy drug resistance, which are difficult to understand solely through experimentation. Experiments in cell culture and in mice with drug-sensitive (Eµ-myc/Arf-/-) and drug-resistant (Eµ-myc/p53-/-) lymphoma cell lines were conducted to calibrate and validate a mechanistic mathematical model. Inputs to inform the model include tumor drug transport characteristics, such as blood volume fraction, average geometric mean blood vessel radius, drug diffusion penetration distance, and drug response in cell culture. Model results show that the drug response in mice, represented by the fraction of dead tumor volume, can be reliably predicted from these inputs. Hence, a proof-of-principle for predictive quantification of lymphoma drug therapy was established based on both cellular and tissue-scale physiological contributions. We further demonstrate that, if the in vitro cytotoxic response of a specific cancer cell line under chemotherapy is known, the model is then able to predict the treatment efficacy in vivo. Lastly, tissue blood volume fraction was determined to be the most sensitive model parameter and a primary contributor to drug resistance.  相似文献   

2.
Various vascular-targeted agents fused with tumor necrosis factor α (TNFα) have been shown to improve drug absorption into tumor tissues and enhance tumor vascular function. TCP-1 is a peptide selected through in vivo phage library biopanning against a mouse orthotopic colorectal cancer model and is a promising agent for drug delivery. This study further investigated the targeting ability of TCP-1 phage and peptide to blood vessels in an orthotopic gastric cancer model in mice and assessed the synergistic anti-cancer effect of 5-fluorouracil (5-FU) with subnanogram TNFα targeted delivered by TCP-1 peptide. In vivo phage targeting assay and in vivo colocalization analysis were carried out to test the targeting ability of TCP-1 phage/peptide. A targeted therapy for improvement of the therapeutic efficacy of 5-FU and vascular function was performed through administration of TCP-1/TNFα fusion protein in this model. TCP-1 phage exhibited strong homing ability to the orthotopic gastric cancer after phage injection. Immunohistochemical staining suggested that and TCP-1 phage/TCP-1 peptide could colocalize with tumor vascular endothelial cells. TCP-1/TNFα combined with 5-FU was found to synergistically inhibit tumor growth, induce apoptosis and reduce cell proliferation without evident toxicity. Simultaneously, subnanogram TCP-1/TNFα treatment normalized tumor blood vessels. Targeted delivery of low-dose TNFα by TCP-1 peptide can potentially modulate the vascular function of gastric cancer and increase the drug delivery of chemotherapeutic drugs.  相似文献   

3.
Coating of liposomes with polyethylene-glycol (PEG) by incorporation in the liposome bilayer of PEG-derivatized lipids results in inhibition of liposome uptake by the reticulo-endothelial system and significant prolongation of liposome residence time in the blood stream. Parallel developments in drug loading technology have improved the efficiency and stability of drug entrapment in liposomes, particularly with regard to cationic amphiphiles such as anthracyclines. An example of this new generation of liposomes is a formulation of pegylated liposomal doxorubicin known as Doxil® or Caelyx®, whose clinical pharmacokinetic profile is characterized by slow plasma clearance and small volume of distribution. A hallmark of these long-circulating liposomal drug carriers is their enhanced accumulation in tumors. The mechanism underlying this passive targeting effect is the phenomenon known as enhanced permeability and retention (EPR) which has been described in a broad variety of experimental tumor types. Further to the passive targeting effect, the liposome drug delivery platform offers the possibility of grafting tumor-specific ligands on the liposome membrane for active targeting to tumor cells, and potentially intracellular drug delivery. The pros and cons of the liposome platform in cancer targeting are discussed vis-à-vis nontargeted drugs, using as an example a liposome drug delivery system targeted to the folate receptor.  相似文献   

4.
Coating of liposomes with polyethylene-glycol (PEG) by incorporation in the liposome bilayer of PEG-derivatized lipids results in inhibition of liposome uptake by the reticulo-endothelial system and significant prolongation of liposome residence time in the blood stream. Parallel developments in drug loading technology have improved the efficiency and stability of drug entrapment in liposomes, particularly with regard to cationic amphiphiles such as anthracyclines. An example of this new generation of liposomes is a formulation of pegylated liposomal doxorubicin known as Doxil or Caelyx, whose clinical pharmacokinetic profile is characterized by slow plasma clearance and small volume of distribution. A hallmark of these long-circulating liposomal drug carriers is their enhanced accumulation in tumors. The mechanism underlying this passive targeting effect is the phenomenon known as enhanced permeability and retention (EPR) which has been described in a broad variety of experimental tumor types. Further to the passive targeting effect, the liposome drug delivery platform offers the possibility of grafting tumor-specific ligands on the liposome membrane for active targeting to tumor cells, and potentially intracellular drug delivery. The pros and cons of the liposome platform in cancer targeting are discussed vis-à-vis nontargeted drugs, using as an example a liposome drug delivery system targeted to the folate receptor.  相似文献   

5.
Molecular targeting of angiogenesis   总被引:2,自引:0,他引:2  
The majority of pharmacological approaches for the treatment of solid tumors suffer from poor selectivity, thus limiting dose escalation (i.e., the doses of drug which are required to kill tumor cells cause unacceptable toxicities to normal tissues). The situation is made more dramatic by the fact that the majority of anticancer drugs accumulate preferentially in normal tissues rather than in neoplastic sites, due to the irregular vasculature and to the high interstitial pressure of solid tumors. One avenue towards the development of more efficacious and better tolerated anti-cancer drugs relies on the targeted delivery of therapeutic agents to the tumor environment, thus sparing normal tissues. Molecular markers which are selectively expressed in the stroma and in neo-vascular sites of aggressive solid tumors appear to be particularly suited for ligand-based tumor targeting strategies. Tumor blood vessels are accessible to agents coming from the bloodstream, and their occlusion may result in an avalanche of tumor cell death. Furthermore, endothelial cells and stromal cells are genetically more stable than tumor cells and can produce abundant markers, which are ideally suited for tumor targeting strategies. This review focuses on recent advances in the development of ligands for the selective targeting of tumor blood vessels and new blood vessels in other angiogenesis-related diseases.  相似文献   

6.
One method for improving cancer treatment is the use of nanoparticle drugs functionalized with targeting ligands that recognize receptors expressed selectively by tumor cells. In theory such targeting ligands should specifically deliver the nanoparticle drug to the tumor, increasing drug concentration in the tumor and delivering the drug to its site of action within the tumor tissue. However, the leaky vasculature of tumors combined with a poor lymphatic system allows the passive accumulation, and subsequent retention, of nanosized materials in tumors. Furthermore, a large nanoparticle size may impede tumor penetration. As such, the role of active targeting in nanoparticle delivery is controversial, and it is difficult to predict how a targeted nanoparticle drug will behave in vivo. Here we report in vivo studies for αvβ6-specific H2009.1 peptide targeted liposomal doxorubicin, which increased liposomal delivery and toxicity to lung cancer cells in vitro. We systematically varied ligand affinity, ligand density, ligand stability, liposome dosage, and tumor models to assess the role of active targeting of liposomes to αvβ6. In direct contrast to the in vitro results, we demonstrate no difference in in vivo targeting or efficacy for H2009.1 tetrameric peptide liposomal doxorubicin, compared to control peptide and no peptide liposomes. Examining liposome accumulation and distribution within the tumor demonstrates that the liposome, and not the H2009.1 peptide, drives tumor accumulation, and that both targeted H2009.1 and untargeted liposomes remain in perivascular regions, with little tumor penetration. Thus H2009.1 targeted liposomes fail to improve drug efficacy because the liposome drug platform prevents the H2009.1 peptide from both actively targeting the tumor and binding to tumor cells throughout the tumor tissue. Therefore, using a high affinity and high specificity ligand targeting an over-expressed tumor biomarker does not guarantee enhanced efficacy of a liposomal drug. These results highlight the complexity of in vivo targeting.  相似文献   

7.
Various human solid tumors highly express IL-4 receptors which amplify the expression of some of anti-apoptotic proteins, preventing drug-induced cancer cell death. Thus, IL-4 receptor targeted drug delivery can possibly increase the therapeutic efficacy in cancer treatment. Macromolecular carriers with multivalent targeting moieties offered great advantages in cancer therapy as they not only increase the plasma half-life of the drug but also allow delivery of therapeutic drugs to the cancer cells with higher specificity, minimizing the deleterious effects of the drug on normal cells. In this study we designed a library of elastin like polypeptide (ELP) polymers containing tumor targeting AP1 peptide using recursive directional ligation method. AP1 was previously discovered as an atherosclerotic plaque and breast tumor tissue homing peptide using phage display screening method, and it can selectively bind to the interleukin 4 receptor (IL-4R). The fluorescently labeled [AP1-V12]6, an ELP polymer containing six AP1 enhanced tumor-specific targeting ability and uptake efficiency in H226 and MDA-MB-231 cancer cell lines in vitro. Surface plasmon resonance analysis showed that multivalent presentation of the targeting ligand in the ELP polymer increased the binding affinity towards IL-4 receptor compared to free peptide. The binding of [AP1-V12]6 to cancer cells was remarkably reduced when IL-4 receptors were blocked by antibody against IL-4 receptor further confirmed its binding. Importantly, the Cy5.5-labeled [AP1-V12]6 demonstrated excellent homing and longer retention in tumor tissues in MDA-MB-231 xenograft mouse model. Immunohistological studies of tumor tissues further validated the targeting efficiency of [AP1-V12]6 to tumor tissue. These results indicate that designed [AP1-V12]6 can serve as a novel carrier for selective delivery of therapeutic drugs to tumors.  相似文献   

8.
作为药物递送载体,脂质体(LPs)由于免疫原性低、稳定性好、毒性低和成本低而被认为是有前途的纳米药物递送系统。然而,LPs的靶向递送效果并不理想,往往会对正常的机体细胞造成伤害,因此,如何优化LPs药物,使其具有靶向性仍然是当前研究的重点。本文结合近年来国内外相关研究进展,重点介绍了多肽、抗体、糖类、配体,以及核酸适配体等靶向修饰物对LPs功能的影响,并归纳总结了各种靶向修饰目前存在的优势与挑战,以期对LPs给药系统的进一步研究提供科学参考及新药研发提供理论依据。  相似文献   

9.

Background

Pancreatic cancer is the fourth leading cause of cancer related deaths in America. Monoclonal antibodies are a viable treatment option for inhibiting cancer growth. Tumor specific drug delivery could be achieved utilizing these monoclonal antibodies as targeting agents. This type of designer therapeutic is evolving and with the use of gold nanoparticles it is a promising approach to selectively deliver chemotherapeutics to malignant cells.Gold nanoparticles (GNPs) are showing extreme promise in current medicinal research. GNPs have been shown to non-invasively kill tumor cells by hyperthermia using radiofrequency. They have also been implemented as early detection agents due to their unique X-ray contrast properties; success was revealed with clear delineation of blood capillaries in a preclinical model by CT (computer tomography). The fundamental parameters for intelligent design of nanoconjugates are on the forefront. The goal of this study is to define the necessary design parameters to successfully target pancreatic cancer cells.

Methodology/Principal Findings

The nanoconjugates described in this study were characterized with various physico-chemical techniques. We demonstrate that the number of cetuximab molecules (targeting agent) on a GNP, the hydrodynamic size of the nanoconjugates, available reactive surface area and the ability of the nanoconjugates to sequester EGFR (epidermal growth factor receptor), all play critical roles in effectively targeting tumor cells in vitro and in vivo in an orthotopic model of pancreatic cancer.

Conclusion

Our results suggest the specific targeting of tumor cells depends on a number of crucial components 1) targeting agent to nanoparticle ratio 2) availability of reactive surface area on the nanoparticle 3) ability of the nanoconjugate to bind the target and 4) hydrodynamic diameter of the nanoconjugate. We believe this study will help define the design parameters for formulating better strategies for specifically targeting tumors with nanoparticle conjugates.  相似文献   

10.
《Translational oncology》2020,13(9):100798
AimColon cancer is one of the leading causes of cancer-related mortality. However, specific biomarkers for its diagnosis or treatment are not established well.MethodsWe developed a colon-cancer specific peptide probe using phage display libraries. We validated the specificity of this probe to colon cancer cells with immunohistochemical staining and FACS analysis using one normal cell and five colon cancer cell lines.ResultsThis peptide probe maintained binding affinity even after serum incubation. For therapeutic applications, this peptide probe was conjugated to hematoporphyrin, a photosensitizer, which showed a significantly enhanced cellular uptake and high photodynamic effect to kill tumor cells. As another application, we made a nanoparticle modified from the peptide probe. It efficiently delivered SN-38, an anticancer drug, into tumor cells, and its tumor-targeting ability was observed in vivo after intravenous injection to the same xenograft model.ConclusionThe noble dodecapeptide probe can be a promising candidate for both colon tumor diagnosis and targeted drug delivery.  相似文献   

11.
固体脂质纳米粒(SLN)是20世纪90年代发展起来的一种性能优异的新型纳米粒给药剂型作为一种新型载体,可有效提高包封药物的稳定性、提高病变部位靶向性、低毒性与组织亲和性,为药物的体内递送提供了一种新的方法。本文主要针对固体脂质纳米粒的制备,发展现状,目前存在的问题及解决思路等作以介绍与总结。并在此基础上,介绍了新的脂质纳米粒,纳米脂质载体(nanostructured lipid carriers,NLC)和药脂结合物纳米粒(Lipid drug conjugate nanoparticles,LDC),以及未来固体脂质纳米粒的发展方向。  相似文献   

12.
We use a mathematical model to describe the delivery of a drug to a specific region of the brain. The drug is carried by liposomes that can release their cargo by application of focused ultrasound (US). Thereupon, the drug is absorbed through the endothelial cells that line the brain capillaries and form the physiologically important blood–brain barrier (BBB). We present a compartmental model of a capillary that is able to capture the complex binding and transport processes the drug undergoes in the blood plasma and at the BBB. We apply this model to the delivery of levodopa (L-dopa, used to treat Parkinson’s disease) and doxorubicin (an anticancer agent). The goal is to optimize the delivery of drug while at the same time minimizing possible side effects of the US.  相似文献   

13.
近年来将纳米载药系统应用于肿瘤靶向递药的研究层出不穷。与正常组织相比,肿瘤组织具有较低的pH环境、大量新生血管生成、 不规则的血流灌注、局部缺氧等特异性的微环境,利用这些特点进行合理的纳米载药系统设计能够实现肿瘤部位的高效递药及深层穿透, 显著提高肿瘤治疗效果。针对现有的肿瘤靶向纳米载药系统的构建与设计方法进行综述,以阐述纳米载药系统在肿瘤靶向传递中的研究进展  相似文献   

14.
Mitochondrion plays an important role in executing cell programmed death pathway. Therefore, drugs designed to target mitochondria are supposed to make superior contributions to cancer therapy. However, the problem that drugs or drug delivery systems being sequestrated in endosomes/lysosomes needs to be solved for effective drug delivery. Here, mitochondrial targeting and nonendocytic cell entry peptide SS20 modified HPMA copolymer (P‐FITC‐SS20) was synthesized. With SS20 peptide modification, the uptake behavior of HPMA copolymers changed remarkably compared with unmodified ones. The internalization of P‐FITC‐SS20 was not influenced by endocytic inhibitors and temperature. Further, the internalized copolymers were not trapped in endosomes/lysosomes. Although cellular uptake of HPMA copolymer was decreased after SS20 peptide modification, SS20 peptide significantly improved mitochondrial accumulation of HPMA copolymers due to its outstanding mitochondrial targeting ability. Moreover, owing to lower susceptibility to macrophagocyte in blood, P‐SS20‐Cy5 showed longer blood circulation time and enhanced tumor accumulation. The current study validated that SS20 peptide modification is a promising strategy for mitochondrial targeting drug delivery systems and can be further applied to mitochondria associated diseases to improve therapeutic efficacy.  相似文献   

15.
Biodegradable polymer nanoparticle drug delivery systems provide targeted drug delivery, improved pharmacokinetic and biodistribution, enhanced drug stability and fewer side effects. These drug delivery systems are widely used for delivering cytotoxic agents. In the present study, we synthesized GC/5-FU nanoparticles by combining galactosylated chitosan (GC) material with 5-FU, and tested its effect on liver cancer in vitro and in vivo. The in vitro anti-cancer effects of this sustained release system were both dose- and time-dependent, and demonstrated higher cytotoxicity against hepatic cancer cells than against other cell types. The distribution of GC/5-FU in vivo revealed the greatest accumulation in hepatic cancer tissues. GC/5-FU significantly inhibited tumor growth in an orthotropic liver cancer mouse model, resulting in a significant reduction in tumor weight and increased survival time in comparison to 5-FU alone. Flow cytometry and TUNEL assays in hepatic cancer cells showed that GC/5-FU was associated with higher rates of G0–G1 arrest and apoptosis than 5-FU. Analysis of apoptosis pathways indicated that GC/5-FU upregulates p53 expression at both protein and mRNA levels. This in turn lowers Bcl-2/Bax expression resulting in mitochondrial release of cytochrome C into the cytosol with subsequent caspase-3 activation. Upregulation of caspase-3 expression decreased poly ADP-ribose polymerase 1 (PARP-1) at mRNA and protein levels, further promoting apoptosis. These findings indicate that sustained release of GC/5-FU nanoparticles are more effective at targeting hepatic cancer cells than 5-FU monotherapy in the mouse orthotropic liver cancer mouse model.  相似文献   

16.
Liposomes have been employed as drug delivery systems to target solid tumors through exploitation of the enhanced permeability and retention (EPR) effect resulting in significant reductions in systemic toxicity. Nonetheless, insufficient release of encapsulated drug from liposomes has limited their clinical efficacy. Temperature-sensitive liposomes have been engineered to provide site-specific release of drug in order to overcome the problem of limited tumor drug bioavailability. Our lab has designed and developed a heat-activated thermosensitive liposome formulation of cisplatin (CDDP), known as HTLC, to provide triggered release of CDDP at solid tumors. Heat-activated delivery in vivo was achieved in murine models using a custom-built laser-based heating apparatus that provides a conformal heating pattern at the tumor site as confirmed by MR thermometry (MRT). A fiber optic temperature monitoring device was used to measure the temperature in real-time during the entire heating period with online adjustment of heat delivery by alternating the laser power. Drug delivery was optimized under magnetic resonance (MR) image guidance by co-encapsulation of an MR contrast agent (i.e., gadoteridol) along with CDDP into the thermosensitive liposomes as a means to validate the heating protocol and to assess tumor accumulation. The heating protocol consisted of a preheating period of 5 min prior to administration of HTLC and 20 min heating post-injection. This heating protocol resulted in effective release of the encapsulated agents with the highest MR signal change observed in the heated tumor in comparison to the unheated tumor and muscle. This study demonstrated the successful application of the laser-based heating apparatus for preclinical thermosensitive liposome development and the importance of MR-guided validation of the heating protocol for optimization of drug delivery.  相似文献   

17.
In continuing search for effective treatments of cancer, the emerging model aims at efficient intracellular delivery of therapeutics into tumor cells in order to increase the drug concentration. However, the implementation of this strategy suffers from inefficient cellular uptake and drug resistance. Therefore, pH-sensitive nanosystems have recently been developed to target slightly acidic extracellular pH environment of solid tumors. The pH targeting approach is regarded as a more general strategy than conventional specific tumor cell surface targeting approaches, because the acidic tumor microclimate is most common in solid tumors. When nanosystems are combined with triggered release mechanisms in endosomal or lysosomal acidic pH along with endosomolytic capability, the nanocarriers demonstrated to overcome multidrug resistance of various tumors. Here, novel pH sensitive carbonate apatite has been fabricated to efficiently deliver anticancer drug Doxorubicin (DOX) to cancer cells, by virtue of its pH sensitivity being quite unstable under an acidic condition in endosomes and the desirable size of the resulting apatite-DOX for efficient cellular uptake as revealed by scanning electron microscopy. Florescence microscopy and flow cytometry analyses demonstrated significant uptake of drug (92%) when complexed with apatite nanoparticles. In vitro chemosensitivity assay revealed that apatite-DOX nanoparticles executed high cytotoxicity in several human cancer cell lines compared to free drugs and consequently apatite-DOX-facilitated enhanced tumor inhibitory effect was observed in colorectal tumor model within BALB/cA nude mice, thereby shedding light on their potential applications in cancer therapy.  相似文献   

18.
Targeted drug delivery through folate receptor (FR) has emerged as a most biocompatible, target oriented, and non-immunogenic cargoes for the delivery of anticancer drugs. FRs are highly overexpressed in many tumor cells (like ovarian, lung, breast, kidney, brain, endometrial, and colon cancer), and targeting them through conjugates bearing specific ligand with encapsulated nanodrug moiety is undoubtedly, a promising approach toward tumor targeting. Folate, being an endogenous ligand, can be exploited well to affect various cellular events occurring during the progress of tumor, in a more natural and definite way. Thus, the aim of the review lies in summarizing the advancements taken place in the drug delivery system of different therapeutics through FRs and to refine its role as an endogenous ligand, in targeting of synthetic as well as natural bioactives. The review also provides an update on the patents received on the folate-based drug delivery system.  相似文献   

19.
Tuberculosis (TB) is a difficult to treat disease caused by the bacterium Mycobacterium tuberculosis. The need for improved therapies is required to kill different M. tuberculosis populations present during infection and to kill drug resistant strains. Protein complexes associated with energy generation, required for the survival of all M. tuberculosis populations, have shown promise as targets for novel therapies (e.g., phenothiazines that target type II NADH dehydrogenase (NDH-2) in the electron transport chain). However, the low efficacy of these compounds and their off-target effects has made the development of phenothiazines as a therapeutic agent for TB limited. This study reports that a series of alkyltriphenylphosphonium (alkylTPP) cations, a known intracellular delivery functionality, improves the localization and effective concentration of phenothiazines at the mycobacterial membrane. AlkylTPP cations were shown to accumulate at biological membranes in a range of bacteria and lipophilicity was revealed as an important feature of the structure–function relationship. Incorporation of the alkylTPP cationic function significantly increased the concentration and potency of a series of phenothiazine derivatives at the mycobacterial membrane (the site of NDH-2), where the lead compound 3a showed inhibition of M. tuberculosis growth at 0.5 μg/mL. Compound 3a was shown to act in a similar manner to that previously published for other active phenothiazines by targeting energetic processes (i.e., NADH oxidation and oxygen consumption), occurring in the mycobacterial membrane. This shows the enormous potential of alkylTPP cations to improve the delivery and therefore efficacy of bioactive agents targeting oxidative phosphorylation in the mycobacterial membrane.  相似文献   

20.
The mechanisms governing the efficient tumor spheroid penetration and transport by poly(amidoamine) (PAMAM) dendrimers displaying varying numbers of cyclic RGD targeting peptides (2, 3, 7, or 10) were evaluated in this work. The cell-free binding affinities and cellular internalization kinetics of PAMAM-RGD conjugates to malignant glioma cells were determined experimentally, and the results were incorporated into a mathematical model to predict the transport of these materials through a multicellular tumor spheroid. The theoretical analysis demonstrated that greater RGD crosslinking may improve transport through tumor spheroids due to their decreased integrin-binding affinity. This study provides evidence that altering the density of tumor-targeting ligands from a drug delivery platform is a feasible way to optimize the tumor-penetration efficiency of an anticancer agent, and provides insight into the physicochemical mechanisms governing the relative effectiveness of these conjugates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号