首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Huh JW  Kim DS  Ha HS  Kim TH  Kim W  Kim HS 《Molecules and cells》2006,22(3):360-363
Human endogenous retroviruses (HERVs) contribute to various kinds of genomic instability via rearrangement and retrotransposition events. In the present study the formation of a new human-specific solo-LTR belonging to the HERV-H family (AP001667; chromosome 21q21) was detected by a comparative analysis of human chromosome 21 and chimpanzee chromosome 22. The solo-LTR was formed as a result of an equal homologous recombination excision event. Several evolutionary processes have occurred at this locus during primate evolution, indicating that mammalian-wide interspersed repeat (MIR) and full-length HERV-H elements integrated into hominoid genomes after the divergence of Old World monkeys and hominoids, and that the solo-LTR element was created by recombination excision of the HERV-H only in the human genome.  相似文献   

2.
3.
Endogenous retroviruses (ERVs) are vertically transmitted intragenomic elements derived from integrated retroviruses. ERVs can proliferate within the genome of their host until they either acquire inactivating mutations or are lost by recombinational deletion. We present a model that unifies current knowledge of ERV biology into a single evolutionary framework. The model predicts the possible long-term outcomes of retroviral germline infection and can account for the variable patterns of observed ERV genetic diversity. We hope the model will provide a useful framework for understanding ERV evolution, enabling the testing of evolutionary hypotheses and the estimation of parameters governing ERV proliferation.  相似文献   

4.
Endogenous retroviruses (ERV), or the remnants of past retroviral infections that are no longer active, are found in the genomes of most vertebrates, typically constituting approximately 10% of the genome. In some vertebrates, particularly in shorter-lived species like rodents, it is not unusual to find active endogenous retroviruses. In longer-lived species, including humans where substantial effort has been invested in searching for active ERVs, it is unusual to find them; to date none have been found in humans. Presumably the chance of detecting an active ERV infection is a function of the length of an ERV epidemic. Intuitively, given that ERVs or signatures of past ERV infections are passed from parents to offspring, we might expect to detect more active ERVs in species with longer generation times, as it should take more years for an infection to run its course in longer than in shorter lived species. This means the observation of more active ERV infections in shorter compared to longer-lived species is paradoxical. We explore this paradox using a modeling approach to investigate factors that influence ERV epidemic length. Our simple epidemiological model may explain why we find evidence of active ERV infections in shorter rather than longer-lived species.  相似文献   

5.
Endogenous retroviruses (ERVs) are integrated as DNA proviruses in the genomes of all mammalian species. Several ERVs are replication-competent and produced as fully infectious viruses from host cell. Thus, live-attenuated vaccines and biological substances have been prepared using the cell lines which may produce ERV. Indeed, we recently reported that several commercial live-attenuated vaccines for pets were contaminated with the infectious feline endogenous retrovirus, RD-114. In this study, to establish a cell line for vaccine manufacture with reduced risk of ERVs, we generated a cell line stably expressing human tetherin (Teth-CRFK cells). The release of infectious ERV from Teth-CRFK cells was suppressed to undetectable levels, while the production of parvovirus in Teth-CRFK cells was similar to that in parental CRFK cells. These observations suggest that Teth-CRFK cells will be useful as a cell line for the manufacture of live-attenuated vaccines or biological substances with reduced risk of ERV.  相似文献   

6.
A considerable portion of vertebrate genomes are made up of endogenous retroviruses (ERVs). While aberrant or uncontrolled ERV expression has been perceived as a potential cause of disease, there is mounting evidence that some ERVs have become integral components of normal host development and physiology. Here, we revisit the longstanding concept that some of the gene products encoded by ERVs and other endogenous viral elements may offer to the host protection against viral infection. Notably, proteins produced from envelope (env) genes have been shown to act as restriction factors against related exogenous retroviruses in chickens, sheep, mice, and cats. Based on the proposed mode of restriction and the domain architecture of known antiretroviral env, we argue that many more env gene-derived restriction factors await discovery in vertebrate genomes, including the human genome.  相似文献   

7.
The ancestor of cetaceans underwent a macroevolutionary transition from land to water early in the Eocene Period >50 million years ago. However, little is known about how diverse retroviruses evolved during this shift from terrestrial to aquatic environments. Did retroviruses transition into water accompanying their hosts? Did retroviruses infect cetaceans through cross-species transmission after cetaceans invaded the aquatic environments? Endogenous retroviruses (ERVs) provide important molecular fossils for tracing the evolution of retroviruses during this macroevolutionary transition. Here, we use a phylogenomic approach to study the origin and evolution of ERVs in cetaceans. We identify a total of 8,724 ERVs within the genomes of 25 cetaceans, and phylogenetic analyses suggest these ERVs cluster into 315 independent lineages, each of which represents one or more independent endogenization events. We find that cetacean ERVs originated through two possible routes. 298 ERV lineages may derive from retrovirus endogenization that occurred before or during the transition from land to water of cetaceans, and most of these cetacean ERVs were reaching evolutionary dead-ends. 17 ERV lineages are likely to arise from independent retrovirus endogenization events that occurred after the split of mysticetes and odontocetes, indicating that diverse retroviruses infected cetaceans through cross-species transmission from non-cetacean mammals after the transition to aquatic life of cetaceans. Both integration time and synteny analyses support the recent or ongoing activity of multiple retroviral lineages in cetaceans, some of which proliferated into hundreds of copies within the host genomes. Although ERVs only recorded a proportion of past retroviral infections, our findings illuminate the complex evolution of retroviruses during one of the most marked macroevolutionary transitions in vertebrate history.  相似文献   

8.
Retroviral replication involves the formation of a DNA provirus integrated into the host genome. Through this process, retroviruses can colonize the germ line to form endogenous retroviruses (ERVs). ERV inheritance can have multiple adverse consequences for the host, some resembling those resulting from exogenous retrovirus infection but others arising by mechanisms unique to ERVs. Inherited retroviruses can also confer benefits on the host. To meet the different threats posed by endogenous and exogenous retroviruses, various host defences have arisen during evolution, acting at various stages on the retrovirus life cycle. In this Review, I describe our current understanding of the distribution and architecture of ERVs, the consequences of their acquisition for the host and the emerging details of the intimate evolutionary relationship between virus and vertebrate host.  相似文献   

9.
The genomes of many species are crowded with repetitive mobile sequences. In the case of endogenous retroviruses (ERVs) there is, for various reasons, considerable confusion regarding names assigned to families/groups of ERVs as well as individual ERV loci. Human ERVs have been studied in greater detail, and naming of HERVs in the scientific literature is somewhat confusing not just to the outsider. Without guidelines, confusion for ERVs in other species will also probably increase if those ERVs are studied in greater detail. Based on previous experience, this review highlights some of the problems when naming and classifying ERVs, and provides some guidance for detecting and characterizing ERV sequences. Because of the close relationship between ERVs and exogenous retroviruses (XRVs) it is reasonable to reconcile their classification with that of XRVs. We here argue that classification should be based on a combination of similarity, structural features, (inferred) function, and previous nomenclature. Because the RepBase system is widely employed in genome annotation, RepBase designations should be considered in further taxonomic efforts. To lay a foundation for a phylogenetically based taxonomy, further analyses of ERVs in many hosts are needed. A dedicated, permanent, international consortium would best be suited to integrate and communicate our current and future knowledge on repetitive, mobile elements in general to the scientific community.  相似文献   

10.
Endogenous retrovirus (ERV) genomes integrated into the chromosomal DNA of the host were first detected in chickens and mice as Mendelian determinants of Gag and Env proteins and of the release of infectious virus particles. The presence of ERV was confirmed by DNA hybridization. With complete host genomes available for analysis, we can now see the great extent of viral invasion into the genomes of numerous vertebrate species, including humans. ERVs are found at many loci in host DNA and also in the genomes of large DNA viruses, such as herpesviruses and poxviruses. The evolution of xenotropism and cross-species infection is discussed in the light of the dynamic relationship between exogenous and endogenous retroviruses.  相似文献   

11.
Retroviruses have been infecting mammals for at least 100 million years, leaving descendants in host genomes known as endogenous retroviruses (ERVs). The abundance of ERVs is partly determined by their mode of replication, but it has also been suggested that host life history traits could enhance or suppress their activity. We show that larger bodied species have lower levels of ERV activity by reconstructing the rate of ERV integration across 38 mammalian species. Body size explains 37% of the variance in ERV integration rate over the last 10 million years, controlling for the effect of confounding due to other life history traits. Furthermore, 68% of the variance in the mean age of ERVs per genome can also be explained by body size. These results indicate that body size limits the number of recently replicating ERVs due to their detrimental effects on their host. To comprehend the possible mechanistic links between body size and ERV integration we built a mathematical model, which shows that ERV abundance is favored by lower body size and higher horizontal transmission rates. We argue that because retroviral integration is tumorigenic, the negative correlation between body size and ERV numbers results from the necessity to reduce the risk of cancer, under the assumption that this risk scales positively with body size. Our model also fits the empirical observation that the lifetime risk of cancer is relatively invariant among mammals regardless of their body size, known as Peto''s paradox, and indicates that larger bodied mammals may have evolved mechanisms to limit ERV activity.  相似文献   

12.
13.
14.
Endogenous retroviruses (ERVs) result from germ line infections by exogenous retroviruses. They can proliferate within the genome of their host species until they are either inactivated by mutation or removed by recombinational deletion. ERVs belong to a diverse group of mobile genetic elements collectively termed transposable elements (TEs). Numerous studies have attempted to elucidate the factors determining the genomic distribution and persistence of TEs. Here we show that, within humans, gene density and not recombination rate correlates with fixation of endogenous retroviruses, whereas the local recombination rate determines their persistence in a full-length state. Recombination does not appear to influence fixation either via the ectopic exchange model or by indirect models based on the efficacy of selection. We propose a model linking rates of meiotic recombination to the probability of recombinational deletion to explain the effect of recombination rate on persistence. Chromosomes 19 and Y are exceptions, possessing more elements than other regions, and we suggest this is due to low gene density and elevated rates of human ERV integration in males for chromosome Y and segmental duplication for chromosome 19.  相似文献   

15.
16.
Endogenous retroviruses (ERVs) arise from retroviruses chromosomally integrated in the host germline. ERVs are common in vertebrate genomes and provide a valuable fossil record of past retroviral infections to investigate the biology and evolution of retroviruses over a deep time scale, including cross-species transmission events. Here we took advantage of a catalog of ERVs we recently produced for the bat Myotis lucifugus to seek evidence for infiltration of these retroviruses in other mammalian species (>100) currently represented in the genome sequence database. We provide multiple lines of evidence for the cross-ordinal transmission of a gammaretrovirus endogenized independently in the lineages of vespertilionid bats, felid cats and pangolin ~13–25 million years ago. Following its initial introduction, the ERV amplified extensively in parallel in both bat and cat lineages, generating hundreds of species-specific insertions throughout evolution. However, despite being derived from the same viral species, phylogenetic and selection analyses suggest that the ERV experienced different amplification dynamics in the two mammalian lineages. In the cat lineage, the ERV appears to have expanded primarily by retrotransposition of a single proviral progenitor that lost infectious capacity shortly after endogenization. In the bat lineage, the ERV followed a more complex path of germline invasion characterized by both retrotransposition and multiple infection events. The results also suggest that some of the bat ERVs have maintained infectious capacity for extended period of time and may be still infectious today. This study provides one of the most rigorously documented cases of cross-ordinal transmission of a mammalian retrovirus. It also illustrates how the same retrovirus species has transitioned multiple times from an infectious pathogen to a genomic parasite (i.e. retrotransposon), yet experiencing different invasion dynamics in different mammalian hosts.  相似文献   

17.
18.
All vertebrate genomes have been colonized by retroviruses along their evolutionary trajectory. Although endogenous retroviruses (ERVs) can contribute important physiological functions to contemporary hosts, such benefits are attributed to long-term coevolution of ERV and host because germline infections are rare and expansion is slow, and because the host effectively silences them. The genomes of several outbred species including mule deer (Odocoileus hemionus) are currently being colonized by ERVs, which provides an opportunity to study ERV dynamics at a time when few are fixed. We previously established the locus-specific distribution of cervid ERV (CrERV) in populations of mule deer. In this study, we determine the molecular evolutionary processes acting on CrERV at each locus in the context of phylogenetic origin, genome location, and population prevalence. A mule deer genome was de novo assembled from short- and long-insert mate pair reads and CrERV sequence generated at each locus. We report that CrERV composition and diversity have recently measurably increased by horizontal acquisition of a new retrovirus lineage. This new lineage has further expanded CrERV burden and CrERV genomic diversity by activating and recombining with existing CrERV. Resulting interlineage recombinants then endogenize and subsequently expand. CrERV loci are significantly closer to genes than expected if integration were random and gene proximity might explain the recent expansion of one recombinant CrERV lineage. Thus, in mule deer, retroviral colonization is a dynamic period in the molecular evolution of CrERV that also provides a burst of genomic diversity to the host population.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号