共查询到20条相似文献,搜索用时 10 毫秒
1.
A simple and distinctive method for the ultrasensitive detection of Cu(2+) and Hg(2+) based on surface-enhanced Raman scattering (SERS) using cysteine-functionalized silver nanoparticles (AgNPs) attached with Raman-labeling molecules was developed. The glycine residue in a silver nanoparticle-bound cysteine can selectively bind with Cu(2+) and Hg(2+) and form a stable inner complex. Silver nanoparticles co-functionalized with cysteine and 3,5-Dimethoxy-4-(6'-azobenzotriazolyl)phenol (AgNP conjugates) can be used to detect Cu(2+) and Hg(2+) based on aggregation-induced SERS of the Raman tags. The addition of SCN(-) to the analyte can successfully mask Hg(2+) and allow for the selective detection of Cu(2+). This SERS-based assay showed an unprecedented limit of detection (LOD) of 10pM for Cu(2+) and 1pM for Hg(2+); these LODs are a few orders of magnitude more sensitive than the typical colorimetric approach based on the aggregation of noble nanoparticles. The analysis of real water samples diluted with pure water was performed and verified this conclusion. We envisage that this SERS-based assay may provide a general and simple approach for the detection of other metal ions of interest, which can be adopted from their corresponding colorimetric assays that have already been developed with significantly improved sensitivity and thus have wide-range applications in many areas. 相似文献
2.
3.
Biosorption of nickel(II) ions by baker's yeast: kinetic, thermodynamic and desorption studies 总被引:3,自引:0,他引:3
Padmavathy V 《Bioresource technology》2008,99(8):3100-3109
In this study, the biosorption of nickel(II) ion on deactivated protonated yeast was investigated as a function of temperature at different initial metal ion concentrations. The effect of temperature on the sorption was more significant at lower nickel(II) ion concentrations compared to higher concentrations. The protonated yeast biomass exhibited the highest nickel(II) ion uptake capacity at 27 degrees C at an initial nickel(II) ion concentration of 400mg/l and an initial pH of 6.75. The biosorption capacity decreased from 9.8 to 9.3mg/g at an initial nickel(II) ion concentration of 400mg/l, while at a lower initial concentration of 100mg/l, it decreased from 8.2 to 4.9 mg/g, as the temperature was increased from 27 degrees C to 60 degrees C. The equilibrium data fit better to the Freundlich and Redlich-Peterson isotherm models compared to the Langmuir model in the concentration range studied (10-400mg/l). Kinetic models applied to the sorption data at different temperatures showed that nickel(II) ion uptake process followed the pseudo-second order rate model and the adsorption rate constants decreased with increasing temperature. The activation energy of biosorption (Ea) was determined to be -13.3 kJ/mol using the pseudo-second order rate constants. The results indicated that the biosorption of nickel(II) ion on to baker's yeast was spontaneous and exothermic in nature. Desorption studies revealed that the protonated yeast biomass can be regenerated using 0.1N HCl and reused. 相似文献
4.
Veit Márcia Teresinha da Silva Edson Antonio Tavares Célia Regina Granhen Fagundes-Klen Márcia Regina da Cunha Gonçalves Gilberto Seolatto Araceli Aparecida de Lima Vaz Luiz Gustavo 《World journal of microbiology & biotechnology》2009,25(10):1849-1856
The application of fixed bed adsorption is an important separation technique used for heavy metals in environmental pollution
control. To design a fixed bed column, it is necessary to find dynamics data in the breakthrough curve form. The objective
of this study was to model the biosorption process of nickel by using biomass of Sargassum filipendula in a fixed bed column. Experimental data were generated at 30°C, pH 3, flow rate of 6 ml/min and feed concentrations of 1,
1.5, 2, 3, 5 and 6 mequiv/l. Langmuir isotherm was used to represent the equilibrium data in the column (q
max = 2.496 mequiv/g, b = 0.456 l/mequiv) and in a batch operation of the system (q
max = 1.577 mequiv/g, b = 0.269 l/mequiv). These Langmuir parameters were used to simulate the continuous adsorption process of nickel. The partial
differential equations model has taken into consideration the mass transfer resistance in the biosorbent as the key controlling
phenomenon, which adequately represented the dynamic biosorption process of nickel. 相似文献
5.
6.
Reaction of Ni(OAc)2 with the symmetric `end-off' compartmental proligand 2,6-[N,N′-bis(2-hydroxy-phenylmethyl)-N,N′-bis(2-pyridylmethyl)aminomethyl]-4-methylphenol (H3L) in the presence of NaPF6 has been found to generate a homotetranuclear nickel(II) complex [(Ni4HL)(L)(OAc)2(H2O)2(HOAc)2]PF6. The crystal structure of the complex reveals that the complex is donor asymmetric and that the extended supra-ligand periphery is maintained by a tight hydrogen-bond between two pendant phenol/phenoxy groups of adjacent ligands and by further tight hydrogen-bonds between coordinated acetic acid molecules and the remaining pendant phenols of the ligand, generating a double acid salt of the type [CH3COO?H?LH?L?H?OOCCH3]5−. Reaction of H3L with Ni(OAc)2 and NaClO4 in methanol gave the complex [Ni2(HL)(OAc)2(OH2)2][ClO4]. The structure was determined by X-ray diffraction and showed that the complex exists as a dimer promoted by intermolecular hydrogen-bonding. 相似文献
7.
Biosorption of lead(II), cadmium(II), copper(II) and nickel(II) by anaerobic granular biomass 总被引:1,自引:0,他引:1
Biosorption is potentially an attractive technology for treatment of wastewater for retaining heavy metals from dilute solutions. This study investigated the feasibility of anaerobic granules as a novel type of biosorbent, for lead, copper, cadmium, and nickel removal from aqueous solutions. Anaerobic sludge supplied from a wastewater treatment plant in the province of Quebec was used. Anaerobic granules are microbial aggregates with a strong, compact and porous structure and excellent settling ability. After treatment of the biomass with Ca ions, the cation exchange capacity of the biomass was approximately 111 meq/100 g of biomass dry weight which is comparable to the metal binding capacities of commercial ion exchange resins. This work investigated the equilibrium, batch dynamics for the biosorption process. Binding capacity experiments using viable biomass revealed a higher value than those for nonviable biomass. Binding capacity experiments using non-viable biomass treated with Ca revealed a high value of metals uptake. The solution initial pH value affected metal sorption. Over the pH range of 4.0-5.5, pH-related effects were not significant. Meanwhile, at lower pH values the uptake capacity decreased. Time dependency experiments for the metal ions uptake showed that adsorption equilibrium was reached almost 30 min after metal addition. It was found that the q(max) for Pb2+, Cd2+, Cu2+, and Ni2+ ions, were 255, 60, 55, and 26 mg/g respectively (1.23, 0.53, 0.87, and 0.44 mmol/g respectively). The data pertaining to the sorption dependence upon metal ion concentration could be fitted to a Langmiur isotherm model. Based on the results, the anaerobic granules treated with Ca appear to be a promising biosorbent for removal of heavy metals from wastewater due to its optimal uptake of heavy metals, its particulate shape, compact porous structure, excellent settling ability, and its high mechanical strength. 相似文献
8.
A dinickel(II) complex [Ni2(sym-hmp)2](BPh4)2·3.5DMF·0.5(2-PrOH) (1) was synthesized with a dinucleating ligand, 2,6-bis[(2-hydroxyethyl)methylaminomethyl]-4-methyl-phenol [H(sym-hmp)]. The complex 1 (C90H118.50B2N7.50Ni2O10) crystallized in the triclinic space group with dimensions a = 14.7446(4) Å, b = 15.4244(4) Å, c = 18.7385(6) Å, α = 86.9495(9)°, β = 76.7263(10)°, γ = 86.5370(8)°, and V = 4136.8(2) Å3 and with Z = 2; this is isomorphous to a previous cobalt(II) complex [Co2(sym-hmp)2](BPh4)2. Single-crystal X-ray analysis revealed a bis(μ-phenoxo)dinickel(II) core structure containing two distorted octahedral nickel(II) ions of C2 symmetry. The order of the coordination bond lengths is Ni-O(phenoxo) < Ni-O(hydroxy) < Ni-N. The electronic spectrum of 1 was typical for the octahedral nickel(II) complexes, but the axial elongation and the C2-twist of the equatorial plane were found after a detailed analysis. The bond angles obtained by the electronic spectrum agreed with the crystallographically obtained bond angles within 2.3°. The order of the AOM parameters was eσ,O(phenoxo) > eσ,O(hydroxy) > eσ,N, which was consistent with the order of the coordination bond lengths. Magnetic susceptibility data for 1 were fitted well with the parameters 2J = −69.7 cm−1, D = 0.00 cm−1, g = 2.17, and TIP = 265 × 10−6 cm3 mol−1. The result indicates significant antiferromagnetic exchange interaction and negligible zero-field splitting, while the isostructural cobalt(II) complex showed an anisotropic behavior. 相似文献
9.
M H Lebrun P Duvert F Gaudemer A Gaudemer C Deballon P Boucly 《Journal of inorganic biochemistry》1985,24(3):167-181
Tenuazonic acid (TA) is a phytotoxin produced by a fungal pathogen of rice, Pyricularia oryzae. We have synthesized and characterized the metal complexes of TA with copper (II), iron (III), nickel (II), and magnesium (II). The stoichiometry of the complexes determined by microanalysis and mass spectroscopy (D/CI) are Cu(II)TA2, Fe(III)TA3, Ni(II)TA2, and Mg(TA)2. Voltammograms of Fe(III)TA3, and Cu(II)TA2 in methanolic solutions confirmed this stoichiometry. Ni(II)TA2 paramagnetism and visible absorption data suggest an octahedral geometry. Fe(III)TA3 showed a characteristic visible absorption at 450 nm. Addition of Fe(III)Cl3 and Mg(II)Cl2 did not reverse the toxicity of NaTA to rice and bacterial cells, showing that this toxicity is not due to the privation of the cells of these metals essential for cell growth. 相似文献
10.
The uptake of nickel ions by the cyanobacterium Anabaena cylindrica was studied. Nickel transport was dependent on the membrane potential of the cells and the rate of uptake was decreased in the dark or by the addition of inhibitors, including uncouplers and electron transport inhibitors, which decreased or abolished the membrane potential of cells. The transport process obeyed hyperbolic kinetics, with a high affinity (apparent Km = 17 +/- 11 (SEM) nM) and low turnover number (maximum velocity = 22.3 +/- 5.4 (SEM) pmol h-1 mg dry wt-1 of cells or flux rate of 3.1 nmol h-1 m-2 of plasma membrane surface area). The process was also apparently specific for Ni2+, the rate being unaffected by the presence of a range of other metal ions in large excess. Equilibrium experiments showed that, over a range of nickel ion concentrations, the cells concentrated Ni2+ by a factor of 2700 +/- 240 (SEM)-fold, corresponding to a chemical diffusion potential for Ni2+ of 101 mV. It was concluded that the cells transport nickel ions by a carrier-facilitated transport process with the concentration factor for the ions being determined by the cell membrane potential according to the Nernst equation. 相似文献
11.
《Inorganica chimica acta》1987,128(1):81-85
Bis (difluoroboron - α - furilglyoximato) nickel (II), C20H12O8N4B2F4Ni, was prepared by cyclization of its hydrogen-bonded precursor with BF3·OEt2. The compound crystallizes in the space group P21/c with a = 11.162(2), b = 5.569(2), c = 19.527(3) Å, β = 100.08(1)°, U = 1195.1(3) Å3, and Z = 2. The structure was refined to an R value of 0.033 using 2371 unique reflections collected with a CAD4-SDP diffractometer system. Unlike the corresponding planar macrocyclic as well as hydrogen-bonded dimethylglyoximates, the title compound neither dimerizes not exhibits columnar stacked structure. The 14-member macrocycle is planar except the B atoms, and no metal-metal interactions are observed in this compound. The complexation and cyclization reactions were investigated using spectral data. The structure is compared with other macrocyclic complexes. 相似文献
12.
Dithiocarbamate-mediated nickel(II) uptake by human peripheral mononuclear leukocytes (mostly lymphocytes) was examined. The lipophilic ligands diethyldithiocarbamate (DDC) and ammonium pyrrolidinedithiocarbamate (APDC) enhanced the cellular association of nickel(II), while ammonium dithiocarbamate (AD) had no effect. Sequential incubations (ligand first followed by nickel(II)) and concurrent experiments (simultaneous exposure) yielded similar results. Cell fractionation studies showed that DDC promoted cytosolic accumulation of nickel(II), rather than in the residual cell pellet. The observations reported are interpreted in terms of the "Equilibrium" model of metal-ion uptake by cells proposed by Professor Williams. Although nickel(II) transformed lymphocytes in vitro from an individual with dermal manifestation of nickel sensitivity to lymphoblasts, there was no apparent difference in nickel(II) uptake capacity over lymphocytes from nonsensitized controls. 相似文献
13.
In Drosophila, protein kinase CK2 regulates a diverse array of developmental processes. One of these is cell-fate specification (neurogenesis) wherein CK2 regulates basic-helix-loop-helix (bHLH) repressors encoded by the Enhancer of Split Complex (E(spl)C). Specifically, CK2 phosphorylates and activates repressor functions of E(spl)M8 during eye development. In this study we describe the interaction of CK2 with an E(spl)-related bHLH repressor, Deadpan (Dpn). Unlike E(spl)-repressors which are expressed in cells destined for a non-neural cell fate, Dpn is expressed in the neuronal cells and is thought to control the activity of proneural genes. Dpn also regulates sex-determination by repressing sxl, the primary gene involved in sex differentiation. We demonstrate that Dpn is weakly phosphorylated by monomeric CK2α, whereas it is robustly phosphorylated by the embryo-holoenzyme, suggesting a positive role for CK2β. The weak phosphorylation by CK2α is markedly stimulated by the activator polylysine to levels comparable to those with the holoenzyme. In addition, pull down assays indicate a direct interaction between Dpn and CK2. This is the first demonstration that Dpn is a partner and target of CK2, and raises the possibility that its repressor functions might also be regulated by phosphorylation. 相似文献
14.
Burda K Kruk J Strzalka K Schmid GH 《Zeitschrift für Naturforschung. C, Journal of biosciences》2002,57(9-10):853-857
We have found that copper(II) ions at about equimolar Cu2+/photosystem II (PS II) reaction center proportions stimulate oxygen evolution nearly twofold. This high affinity Cu-binding site is different from the binding sites of Mn and Ca ions. The analysis of the Cu2+ content in PS II preparations isolated from wild-type tobacco and a tobacco mutant deficient in light-harvesting complex suggests that Cu2+ may be a native component of PS II and may take part in the oxygen evolution process. At higher concentrations, Cu2+ ions inhibit oxygen evolution and quench fluorescence. 相似文献
15.
Yan Hu Nai Shan Wang Xu Jun Hu Xian Yong Lin Ying Feng Chong Wei Jin 《Plant and Soil》2013,371(1-2):105-115
Background and aims
Nickel (Ni) has become a major heavy metal contaminant. The form of nitrogen nutrition remarkably affects IRT1 expression in roots. IRT1 has an activity of transporting Ni2+ into root cells. Therefore, nitrogen-form may affect Ni accumulation and toxicity in plants. The assumption was investigated in this study.Methods
The Arabidopsis plants were treated in Ni-contained growth solutions with either nitrate (NO3 ?) or ammonium (NH4 +) as the sole N source. After 7-day treatments, Ni concentration, IRT1 expression, Ni-induced toxic symptoms and oxidative stress in plants were analyzed.Results
The NO3 ?-fed plants contained a higher Ni concentration, had a greater IRT1 expression in roots, and developed more severe toxic symptoms in the youngest fully expanded leaves, compared with the NH4 +-fed plants. The Ni-induced growth inhibition was also more significant in NO3 ?-fed plants. Interestingly, Ni exposure resulted in greater hydrogen peroxide (H2O2) and superoxide radical (O2 . ?) accumulations, more severe lipid peroxidation and more cell death in NO3 ?-fed plants, whereas the opposite was true for NH4 +-fed plants. Furthermore, the Ni-enhanced peroxidase (POD) and superoxide dismutase (SOD) activities were greater in NO3 ?-fed plantsConclusion
NO3 ? nutrition promotes Ni uptake, and enhances Ni-induced growth inhibition and oxidative stress in plants compared with NH4 + nutrition. 相似文献16.
Adewuyi S Kareem KT Atayese AO Amolegbe SA Akinremi CA 《International journal of biological macromolecules》2011,48(2):301-303
Antibacterial behavior of chitosan-bivalent metal chelates (Co and Ni) was investigated in vitro against standard bacteria, Staphylococcus aureus ATCC 4533, S. faecalis ATCC 8043 and Escherichia coli ATCC 25923. The chitosan-metal chelates were prepared by varying the molar ratio of metal ions to a fixed amount of chitosan. The metal ion contents, structural properties and morphology of the chelates were respectively determined using ICP-OES, FT-IR and SEM. All the chitosan-metal chelates showed wide spectrum of effective antibacterial activities better than free chitosan and the individual metal ions. The results indicated that inhibitory effects of the chelates were dependent not only on the property of the coordinated metal ion, but also on the molar ratio of the metal ion. Consequently, the ideal inhibitory effects could be obtained with metal ion of high charge intensity and when the molar ratio of chitosan to metal was above 1:1. These chelates are promising materials for novel antibacterial agents. 相似文献
17.
Marita M. King Charles Y. Huang 《Biochemical and biophysical research communications》1983,114(3):955-961
Calcineurin, a Ca2+- and calmodulin-dependent phosphoprotein phosphatase, was dramatically activated by Ni2+ ions. Activation by Ni2+ was independent of calmodulin and was not reversed by high concentrations of chelators. With histone H1 as substrate, the Km's obtained with Ca2+ and Ni2+ were 2.2 and 4.2 μM, and the kcat's were 0.5 and 24.3 min?1, respectively. Similar to the Ca2+- and Mn2+- supported reactions, the presence of calmodulin caused a 20-fold activation of the Ni2+-activated calcineurin over the basal rate. Incubation of calcineurin with Ni2+ resulted in 30% quenching of its Trp-fluorescence. This effect also was independent of calmodulin and not reversed by chelators. The results suggest that the Ni2+ ions are tightly bound to calcineurin and the effects may be physiologically relevant. 相似文献
18.
Disease-related prion protein, PrPSc, can be distinguished from its normal cellular precursor, PrPC, by its detergent insolubility and partial resistance to proteolysis. Several studies have suggested that copper(II) ions can convert PrPC to a proteinase K-resistant conformation; however, interpretation of these studies is complicated by potential inhibition of proteinase K (PK) by copper(II) ions. Here we have examined directly the kinetic and equilibrium effects of copper(II) ions on PK activity using a simple synthetic substrate, p-nitrophenyl acetate. We show that at equilibrium two to three copper(II) ions bind stoichiometrically to PK and destroy its activity (Kd < 1 microM). This inhibition has two components, an initial reversible and weak binding phase and a slower, irreversible abolition of activity with a half-time of 6 min at saturating copper(II) ion concentrations. Copper(II) ions produce a similar biphasic inhibition of PK activity in the presence of brain homogenate but only when the copper(II) ion concentration exceeds that of the chelating components present in brain tissue. Under these conditions, the apparent resistance of PrPC to proteolysis by PK appears to be directly attributable to the inhibition of PK activity by copper(II) ions. 相似文献
19.
Stellacyanin, the single blue copper protein from , is reduced stoichiometrically by Cr(II)aq ions yielding a 1:1 adduct between the Cr(III) produced and the reduced protein. This Cr(III)-labeled stellacyanin is substitution inert and no significant loss of the label occurs during extensive dialysis for more than a week. Oxidation by O2 of the Cr(III)-labeled Cu(I) stellacyanin does not cause the loss of Cr(III) either. Furthermore, reduction of the Cr(III)-labeled stellacyanin Cu(II) by a second equivalent of Cr(II) may be attained without any further labeling. Thus, the one mole of Cr ions binds to stellacyanin during the first reduction step and is most probably coordinated at a specific locus on that protein. 相似文献
20.
A new rhodamine derivative, rhodamine B 4‐N,N‐dimethylaminobenzaldehyde hydrazone (1), was designed for ratiometric sensing of Cu(II) selectively. A red‐shift from 515 to 585 nm was observed in the fluorescence spectrum when Cu(II) was added to 1 in acetonitrile. Other metal ions of interest showed no ratiometric response. The interaction between Cu(II) and 1 was found to be the Cu(II)‐induced oxidation of 1. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献