首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stereoscopic depth perception requires considerable neural computation, including the initial correspondence of the two retinal images, comparison across the local regions of the visual field and integration with other cues to depth. The most common cause for loss of stereoscopic vision is amblyopia, in which one eye has failed to form an adequate input to the visual cortex, usually due to strabismus (deviating eye) or anisometropia. However, the significant cortical processing required to produce the percept of depth means that, even when the retinal input is intact from both eyes, brain damage or dysfunction can interfere with stereoscopic vision. In this review, I examine the evidence for impairment of binocular vision and depth perception that can result from insults to the brain, including both discrete damage, temporal lobectomy and more systemic diseases such as posterior cortical atrophy.This article is part of the themed issue ‘Vision in our three-dimensional world’.  相似文献   

2.
Binocular depth perception and the cerebral cortex   总被引:1,自引:0,他引:1  
Our ability to coordinate the use of our left and right eyes and to make use of subtle differences between the images received by each eye allows us to perceive stereoscopic depth, which is important for the visual perception of three-dimensional space. Binocular neurons in the visual cortex combine signals from the left and right eyes. Probing the roles of binocular neurons in different perceptual tasks has advanced our understanding of the stages within the visual cortex that lead to binocular depth perception.  相似文献   

3.
双眼倾斜效应中频率和相对距离乘积的恒常性   总被引:1,自引:1,他引:0  
双眼协同的功能不仅是扩大视野,而且更为重要的是人和动物获得对环境特有的立体感觉。但立体视觉信息处理机制至今尚不清楚,有待深入研究。 本文利用自己研制的一种多功能立体图形发生器产生的亮度以正弦波调制的光栅条纹作为刺激图形,设计并做了一系列有关频差倾斜现象;其次,分别对不同中心频率和不同观察距离下,左、右刺激器处于与被试者不同距离下频差倾斜观象中的频差与倾斜度的关系进行了研究。结果表明,对于频率差分析存在着频率和相对远近乘积的恒常性,这是判断物体精细凸凹的一种global stereopsis性质的心理规律。  相似文献   

4.
Three-dimensional displays and stereo vision   总被引:1,自引:0,他引:1  
Procedures for three-dimensional image reconstruction that are based on the optical and neural apparatus of human stereoscopic vision have to be designed to work in conjunction with it. The principal methods of implementing stereo displays are described. Properties of the human visual system are outlined as they relate to depth discrimination capabilities and achieving optimal performance in stereo tasks. The concept of depth rendition is introduced to define the change in the parameters of three-dimensional configurations for cases in which the physical disposition of the stereo camera with respect to the viewed object differs from that of the observer's eyes.  相似文献   

5.
We present a simple model which can account for the stereoscopic sensitivity of praying mantis predatory strikes. The model consists of a single “disparity sensor”: a binocular neuron sensitive to stereoscopic disparity and thus to distance from the animal. The model is based closely on the known behavioural and neurophysiological properties of mantis stereopsis. The monocular inputs to the neuron reflect temporal change and are insensitive to contrast sign, making the sensor insensitive to interocular correlation. The monocular receptive fields have a excitatory centre and inhibitory surround, making them tuned to size. The disparity sensor combines inputs from the two eyes linearly, applies a threshold and then an exponent output nonlinearity. The activity of the sensor represents the model mantis’s instantaneous probability of striking. We integrate this over the stimulus duration to obtain the expected number of strikes in response to moving targets with different stereoscopic disparity, size and vertical disparity. We optimised the parameters of the model so as to bring its predictions into agreement with our empirical data on mean strike rate as a function of stimulus size and disparity. The model proves capable of reproducing the relatively broad tuning to size and narrow tuning to stereoscopic disparity seen in mantis striking behaviour. Although the model has only a single centre-surround receptive field in each eye, it displays qualitatively the same interaction between size and disparity as we observed in real mantids: the preferred size increases as simulated prey distance increases beyond the preferred distance. We show that this occurs because of a stereoscopic “false match” between the leading edge of the stimulus in one eye and its trailing edge in the other; further work will be required to find whether such false matches occur in real mantises. Importantly, the model also displays realistic responses to stimuli with vertical disparity and to pairs of identical stimuli offering a “ghost match”, despite not being fitted to these data. This is the first image-computable model of insect stereopsis, and reproduces key features of both neurophysiology and striking behaviour.  相似文献   

6.
Binocular vision is obviously useful for depth perception, but it might also enhance other components of visual processing, such as image segmentation. We used naturalistic images to determine whether giving an object a stereoscopic offset of 15-120 arcmin of crossed disparity relative to its background would make the object easier to recognize in briefly presented (33-133 ms), temporally masked displays. Disparity had a beneficial effect across a wide range of disparities and display durations. Most of this benefit occurred whether or not the stereoscopic contour agreed with the object’s luminance contour. We attribute this benefit to an orienting of spatial attention that selected the object and its local background for enhanced 2D pattern processing. At longer display durations, contour agreement provided an additional benefit, and a separate experiment using random-dot stimuli confirmed that stereoscopic contours plausibly contributed to recognition at the longer display durations in our experiment. We conclude that in real-world situations binocular vision confers an advantage not only for depth perception, but also for recognizing objects from their luminance patterns and bounding contours.  相似文献   

7.
Vision is important for postural control as is shown by the Romberg quotient (RQ): with eyes closed, postural instability increases relative to eyes open (RQ = 2). Yet while fixating at far distance, postural stability is similar with eyes open and eyes closed (RQ = 1). Postural stability can be better with both eyes viewing than one eye, but such effect is not consistent among healthy subjects. The first goal of the study is to test the RQ as a function of distance for children with convergent versus divergent strabismus. The second goal is to test whether vision from two eyes relative to vision from one eye provides better postural stability. Thirteen children with divergent strabismus and eleven with convergent strabismus participated in this study. Posturtography was done with the Techno concept device. Experiment 1, four conditions: fixation at 40 cm and at 200 cm both with eyes open and eyes covered (evaluation of RQ). Experiment 2, six conditions: fixation at 40 cm and at 200 cm, with both eyes viewing or under monocular vision (dominant and non-dominant eye). For convergent strabismus, the groups mean value of RQ was 1.3 at near and 0.94 at far distance; for divergent, it was 1.06 at near and 1.68 at far. For all children, the surface of body sway was significantly smaller under both eyes viewing than monocular viewing (either eye). Increased RQ value at near for convergent and at far for divergent strabismus is attributed to the influence of the default strabismus angle and to better use of ocular motor signals. Vision with the two eyes improves postural control for both viewing distances and for both types of strabismus. Such benefit can be due to complementary mechanisms: larger visual field, better quality of fixation and vergence angle due to the use of visual inputs from both eyes.  相似文献   

8.
This study presents three findings concerning the mechanisms of depth perception. First, the shape of the three-dimensional percept evoked by two-frame motion is defined solely by the rotation component around an axis in the frontoparallel plane; the visual system assigns a default value to this rotation component to arrive at a unique solution. Second, when the visual axes of two eyes are almost parallel, the visual system uses a default vergence value to reconstruct stereoscopic depth. Third, the default vergence and default rotation angles are highly correlated across subjects. This correlation implies that the two modalities share a common scaling default at an internal level.  相似文献   

9.
利用微机化的伪随机点立体图对发生器进行双眼体视的心理物理实验,研究交替呈现的随机点体图对(RDS)在达到双眼融合形成立体感知时信息输入的时间特性.实验结果表明,当RDS的交变频率达到4.8Hz以上时就能达到双眼的信息融合产生立体感知,但当交变频率低于62.5Hz时有图形的闪烁感.当交变频率等于62.5Hz时则产生稳定而清晰的立体感知.一幅RDS图对中的L(左)和R(右)图的呈现时间及其之间的交变时间的长短均对双眼的融合和立体感的形成有影响.L和R图的呈现时间和交变时间还存在一定的关系,以立体感形成为条件,如增大一定值的L和R图的呈现时间,则它们之间的交变时间必须相应减小,反之亦然.实验结果提示,双眼立体感知的形成不涉及单眼图象的长时记忆和短时记忆,仅有瞬时的视觉存储.  相似文献   

10.
We examine depth perception in images of real scenes with naturalistic variation in pictorial depth cues, simulated dioptric blur and binocular disparity. Light field photographs of natural scenes were taken with a Lytro plenoptic camera that simultaneously captures images at up to 12 focal planes. When accommodation at any given plane was simulated, the corresponding defocus blur at other depth planes was extracted from the stack of focal plane images. Depth information from pictorial cues, relative blur and stereoscopic disparity was separately introduced into the images. In 2AFC tasks, observers were required to indicate which of two patches extracted from these images was farther. Depth discrimination sensitivity was highest when geometric and stereoscopic disparity cues were both present. Blur cues impaired sensitivity by reducing the contrast of geometric information at high spatial frequencies. While simulated generic blur may not assist depth perception, it remains possible that dioptric blur from the optics of an observer’s own eyes may be used to recover depth information on an individual basis. The implications of our findings for virtual reality rendering technology are discussed.  相似文献   

11.

Purpose

To assess the impact of VA loss on patient reported utilities taking both eyes into account compared to taking only the better or the worse eye into account.

Methods

In this cross-sectional study 1085 patients and 254 controls rated preferences with the generic health-related (EQ-5D; n = 868) and vision-specific (Vision and Quality of Life Index (VisQoL); n = 837) multi-attribute utility instruments (MAUIs). Utilities were calculated for three levels of VA in the better and worse eyes, as well as for 6 different vision states based on combinations of the better and worse eye VA.

Results

Using the VisQoL, utility scores decreased significantly with deteriorating vision in both the better and worse eyes when analysed separately. When stratified by the 6 vision states, VisQoL utilities decreased as VA declined in the worse eye despite stable VA in the better eye. Differences in VisQoL scores were statistically significant for cases where the better eye had no vision impairment and the worse seeing fellow eye had mild, moderate or severe vision impairment. In contrast, the EQ-5D failed to capture changes in better or worse eye VA, or any of the six vision states.

Conclusions

Calculating utilities based only on better eye VA or using a generic MAUI is likely to underestimate the impact of vision impairment, particularly when the better eye has no or little VA loss and the worse eye is moderately to severely visually impaired. These findings have considerable implications for the assessment of overall visual impairment as well as economic evaluations within eye health.  相似文献   

12.
The “four-eyed” fish Anableps anableps has numerous morphological adaptations that enable above and below-water vision. Here, as the first step in our efforts to identify molecular adaptations for aerial and aquatic vision in this species, we describe the A. anableps visual opsin repertoire. We used PCR, cloning, and sequencing to survey cDNA using unique primers designed to amplify eight sequences from five visual opsin gene subfamilies, SWS1, SWS2, RH1, RH2, and LWS. We also used Southern blotting to count opsin loci in genomic DNA digested with EcoR1 and BamH1. Phylogenetic analyses confirmed the identity of all opsin sequences and allowed us to map gene duplication and divergence events onto a tree of teleost fish. Each of the gene-specific primer sets produced an amplicon from cDNA, indicating that A. anableps possessed and expressed at least eight opsin genes. A second PCR-based survey of genomic and cDNA uncovered two additional LWS genes. Thus, A. anableps has at least ten visual opsins and all but one were expressed in the eyes of the single adult surveyed. Among these ten visual opsins, two have key site haplotypes not found in other fish. Of particular interest is the A. anableps-specific opsin in the LWS subfamily, S180γ, with a SHYAA five key site haplotype. Although A. anableps has a visual opsin gene repertoire similar to that found in other fishes in the suborder Cyprinodontoidei, the LWS opsin subfamily has two loci not found in close relatives, including one with a key site haplotype not found in any other fish species. A. anableps opsin sequence data will be used to design in situ probes allowing us to test the hypothesis that opsin gene expression differs in the distinct ventral and dorsal retinas found in this species.  相似文献   

13.
Janssen P  Vogels R  Liu Y  Orban GA 《Neuron》2003,37(4):693-701
Stereoscopic vision requires the correspondence problem to be solved, i.e., discarding "false" matches between images of the two eyes, while keeping correct ones. To advance our understanding of the underlying neuronal mechanisms, we compared single neuron responses to correlated and anticorrelated random dot stereograms (RDSs). Inferior temporal neurons, which respond selectively to disparity-defined three-dimensional shapes, showed robust selectivity for correlated RDSs portraying concave or convex surfaces, but unlike neurons in areas V1, MT/V5, and MST, were not selective for anticorrelated RDSs. These results show that the correspondence problem is solved at least in far extrastriate cortex, as it is in the monkey's perception.  相似文献   

14.
Vision not only provides us with detailed knowledge of the world beyond our bodies, but it also guides our actions with respect to objects and events in that world. The computations required for vision-for-perception are quite different from those required for vision-for-action. The former uses relational metrics and scene-based frames of reference while the latter uses absolute metrics and effector-based frames of reference. These competing demands on vision have shaped the organization of the visual pathways in the primate brain, particularly within the visual areas of the cerebral cortex. The ventral ‘perceptual’ stream, projecting from early visual areas to inferior temporal cortex, helps to construct the rich and detailed visual representations of the world that allow us to identify objects and events, attach meaning and significance to them and establish their causal relations. By contrast, the dorsal ‘action’ stream, projecting from early visual areas to the posterior parietal cortex, plays a critical role in the real-time control of action, transforming information about the location and disposition of goal objects into the coordinate frames of the effectors being used to perform the action. The idea of two visual systems in a single brain might seem initially counterintuitive. Our visual experience of the world is so compelling that it is hard to believe that some other quite independent visual signal—one that we are unaware of—is guiding our movements. But evidence from a broad range of studies from neuropsychology to neuroimaging has shown that the visual signals that give us our experience of objects and events in the world are not the same ones that control our actions.  相似文献   

15.
Despite notable efforts and significant therapeutical advances, age‐related macular degeneration remains the single most common reason for vision loss. Retinal progenitor cells (RPCs) are considered promising candidates for cellular treatments that repair and restore vision. In this allogenic study, the phenotypic profile of pig and human RPCs derived using similar manufacturing processes is compared. The long‐term (12‐week) survival of green fluorescent protein‐pig retinal progenitor cells GFP‐pRPC after subretinal transplantation into normal miniature pig (mini‐pig) retina is investigated. Human eyes are both anatomically and physiologically mimicked by pig eyes, so the pig is an ideal model to show an equivalent way of delivering cells, immunological response and dosage. The phenotypic equivalency of porcine and clinically intended human RPCs was established. Thirty‐nine mini‐pigs are used in this study, and vehicle‐injected eyes and non‐injected eyes serve as controls. Six groups are given different dosages of pRPCs, and the cells are found to survive well in all groups. At 12 weeks, strong evidence of integration is indicated by the location of the grafted cells within the neuro‐retina, extension of processes to the plexiform layers and expression of key retinal markers such as recoverin, rhodopsin and synaptophysin. No immunosuppression is used, and no immune response is found in any of the groups. No pRPC‐related histopathology findings are reported in the major organs investigated. An initial dose of 250 k cells in 100 µl of buffer is established as an appropriate initial dose for future human clinical trials.  相似文献   

16.
We developed a new field method for reconstructing the three-dimensional positions of swarming mosquitoes. This method overcame certain inherent difficulties accompanied by conventional stereoscopic methods and is applicable to three-dimensional measurements of other insect species. Firstly, we constructed a probabilistic model for stereoscopy; if mosquitoes and six reference points with known coordinates were photographed simultaneously from two or more perspectives, then from the positions of images of mosquitoes and the reference points on the photographs, 1) the position of each camera with respect to the reference points is estimated; 2) stereo images which correspond to an identical real mosquito are matched; and 3) the spatial positions of the mosquitoes are determined. We automated the processes 1), 2) and 3), developing computer programs based on our model. We then constructed a portable system for three-dimensional measurements of swarming mosquitoes in the field. Initial data that illustrate the application of our method to studying mosquito swarming were presented.  相似文献   

17.
Most known starfish species possess a compound eye at the tip of each arm, which, except for the lack of true optics, resembles an arthropod compound eye. Although these compound eyes have been known for about two centuries, no visually guided behaviour has ever been directly associated with their presence. There are indications that they are involved in negative phototaxis but this may also be governed by extraocular photoreceptors. Here, we show that the eyes of the coral-reef-associated starfish Linckia laevigata are slow and colour blind. The eyes are capable of true image formation although with low spatial resolution. Further, our behavioural experiments reveal that only specimens with intact eyes can navigate back to their reef habitat when displaced, demonstrating that this is a visually guided behaviour. This is, to our knowledge, the first report of a function of starfish compound eyes. We also show that the spectral sensitivity optimizes the contrast between the reef and the open ocean. Our results provide an example of an eye supporting only low-resolution vision, which is believed to be an essential stage in eye evolution, preceding the high-resolution vision required for detecting prey, predators and conspecifics.  相似文献   

18.
The UV visual world of fishes: a review   总被引:4,自引:0,他引:4  
Ultraviolet-A radiation (320–400 nm) is scattered rapidly in water. Despite this fact, UV is present in biologically useful amounts to at least 100 m deep in clear aquatic environments. Discovery of UV visual pigments with peak absorption at around 360 nm in teleost cone photoreceptors indicates that many teleost fishes may be adapted for vision in the UV range. Considering the characteristic absorption curve for visual pigments, about 18% of the downwelling light that illuminates objects at 30-m depth would be available to UV-sensitive cones. Strong scattering of UV radiation should produce unique imaging conditions as a very bright UV background in the horizontal view and a marked veiling effect that, with distance, obscures an image. Many teleosts have three, or even four, classes of cone cells mediating colour vision in their retina and one can be sensitive to UV. These UV-sensitive cones contain a visual pigment based on a unique opsin which is highly conserved between fish species. Several powerful methods exist for demonstration of UV vision, but all are rather demanding in terms of technique and equipment. Demonstration that the eye lacks UV-blocking compounds that are present in many fish eyes is a simpler method that can indicate the possibility of UV vision. The only experimental evidence for the use of UV vision by fishes is connected to planktivory: detection of UV-opaque objects at close range against a bright UV background is enhanced by the physical properties of UV light. Once present, perhaps for the function of detecting food, UV vision may well be co-opted through natural selection for other functions. Recent discovery that UV vision is critically important for mate choice in some birds and lizards is a strong object lesson for fish ecologists and behaviourists. Other possible functions amount to far more than merely adding a fourth dimension to the visible spectrum. Since UV is scattered so effectively in water, it may be useful for social signalling at short range and reduce the possibility of detection by other, illegitimate, receivers. Since humans are blind to UV light, we may be significantly in error, in many cases, in our attempts to understand and evaluate visual aspects of fish behaviour. A survey of the reflectance properties of skin pigments in fishes reveals a rich array of pigments with reflectance peaks in the UV. For example, the same yellow to our eyes may comprise two perceptually different colours to fish, yellow and UV-yellow. It is clearly necessary for us to anticipate that many fishes may have some form of UV vision.  相似文献   

19.
Cambrian view     
The analysis of visual systems is a valuable method of assessing phylogenetic processes. As in the present animal world, we find simple and complex systems in the Lower Cambrian. One may detect “simple eyes” for example with an advanced design in lobopodians, while the existence of even more simple “simple eyes” is very probable but still to be proved. More complex systems are to be found. In Leanchoilia illecebrosa Hou, 1987 and Leanchoilia superlata Walcott, 1912 there are probable dorsal median eyes and a pair of fine, stalked ventral eyes. Both systems may contribute to phylogenetic and systematic discussions. These presumably movable stalked eyes may be regarded as an adaptation to a mobile lifestyle. They suggest that the physiologic principle of nystagmus to stabilise the visual world of an animal in motion was already realised in Leanchoilia, perhaps for the first time. To analyse the surface of the early eyes from the Lower Cambrian – not only of Leanchoilia, but of any other forms as well – the number, shape and other parameters of the lenses could lead to further knowledge regarding vision in early invertebrates.  相似文献   

20.
Stereo or ‘3D’ vision is an important but costly process seen in several evolutionarily distinct lineages including primates, birds and insects. Many selective advantages could have led to the evolution of stereo vision, including range finding, camouflage breaking and estimation of object size. In this paper, we investigate the possibility that stereo vision enables praying mantises to estimate the size of prey by using a combination of disparity cues and angular size cues. We used a recently developed insect 3D cinema paradigm to present mantises with virtual prey having differing disparity and angular size cues. We predicted that if they were able to use these cues to gauge the absolute size of objects, we should see evidence for size constancy where they would strike preferentially at prey of a particular physical size, across a range of simulated distances. We found that mantises struck most often when disparity cues implied a prey distance of 2.5 cm; increasing the implied distance caused a significant reduction in the number of strikes. We, however, found no evidence for size constancy. There was a significant interaction effect of the simulated distance and angular size on the number of strikes made by the mantis but this was not in the direction predicted by size constancy. This indicates that mantises do not use their stereo vision to estimate object size. We conclude that other selective advantages, not size constancy, have driven the evolution of stereo vision in the praying mantis.This article is part of the themed issue ‘Vision in our three-dimensional world’.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号