首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Sortase cysteine transpeptidases covalently attach proteins to the bacterial cell wall or assemble fiber-like pili that promote bacterial adhesion. Members of this enzyme superfamily are widely distributed in Gram-positive bacteria that frequently utilize multiple sortases to elaborate their peptidoglycan. Sortases catalyze transpeptidation using a conserved active site His-Cys-Arg triad that joins a sorting signal located at the C terminus of their protein substrate to an amino nucleophile located on the cell surface. However, despite extensive study, the catalytic mechanism and molecular basis of substrate recognition remains poorly understood. Here we report the crystal structure of the Staphylococcus aureus sortase B enzyme in a covalent complex with an analog of its NPQTN sorting signal substrate, revealing the structural basis through which it displays the IsdC protein involved in heme-iron scavenging from human hemoglobin. The results of computational modeling, molecular dynamics simulations, and targeted amino acid mutagenesis indicate that the backbone amide of Glu224 and the side chain of Arg233 form an oxyanion hole in sortase B that stabilizes high energy tetrahedral catalytic intermediates. Surprisingly, a highly conserved threonine residue within the bound sorting signal substrate facilitates construction of the oxyanion hole by stabilizing the position of the active site arginine residue via hydrogen bonding. Molecular dynamics simulations and primary sequence conservation suggest that the sorting signal-stabilized oxyanion hole is a universal feature of enzymes within the sortase superfamily.  相似文献   

4.
In Escherichia coli cell division is driven by the tubulin-like GTPase, FtsZ, which forms the cytokinetic Z-ring. The Z-ring serves as a dynamic platform for the assembly of the multiprotein divisome, which catalyzes membrane cleavage to create equal daughter cells. Several proteins effect FtsZ assembly, thereby providing spatiotemporal control over cell division. One important class of FtsZ interacting/regulatory proteins is the Z-ring-associated proteins, Zaps, which typically modulate Z-ring formation by increasing lateral interactions between FtsZ protofilaments. Strikingly, these Zap proteins show no discernable sequence similarity, suggesting that they likely harbor distinct structures and mechanisms. The 19.8-kDa ZapC in particular shows no homology to any known protein. To gain insight into ZapC function, we determined its structure to 2.15 Å and performed genetic and biochemical studies. ZapC is a monomer composed of two domains, an N-terminal α/β region and a C-terminal twisted β barrel-like domain. The structure contains two pockets, one on each domain. The N-domain pocket is lined with residues previously implicated to be important for ZapC function as an FtsZ bundler. The adjacent C-domain pocket contains a hydrophobic center surrounded by conserved basic residues. Mutagenesis analyses indicate that this pocket is critical for FtsZ binding. An extensive FtsZ binding surface is consistent with the fact that, unlike many FtsZ regulators, ZapC binds the large FtsZ globular core rather than C-terminal tail, and the presence of two adjacent pockets suggests possible mechanisms for ZapC-mediated FtsZ bundling.  相似文献   

5.
Flavin monooxygenases(FMOs) play critical roles in plant growth and development by synthesizing auxin and other signaling molecules.However,the structure and function relationship within plant FMOs is not understood.Here we defined the important residues and domains of the Arabidopsis YUC1 FMO,a key enzyme in auxin biosynthesis.We previously showed that simultaneous inactivation of YUC1 and its homologue YUC4 caused severe defects in vascular and floral development.We mutagenized the yuc4 mutant and screene...  相似文献   

6.
7.
Velkov  V. V. 《Molecular Biology》2002,36(2):209-215
The mechanisms of stress-induced mutagenesis in prokaryotes and realization of reserved (preaccumulated) genetic variation in eukaryotes are considered. In prokaryotes, replication becomes error-prone in stress because of the induction of the SOS response and the inactivation of the mismatch repair system; stress also increases the transposition rate and the efficiency of interspecific gene transfer. In eukaryotes, chaperone HSP90, which restores the native folding of mutant proteins (e.g., signal transduction and morphogenetic proteins) in normal conditions, fails to do so in stress, which leads to abrupt expression of multiple mutations earlier reserved in the corresponding genes. The role of these mechanisms in the evolution of prokaryotes and eukaryotes is discussed.  相似文献   

8.
9.
ObjectiveCardiovascular disease is the number one cause of death. Achieving American Heart Association low-density lipoprotein (LDL) cholesterol treatment goals is very difficult for many patients. The importance of a low cholesterol diet is controversial and not emphasized by most physicians. Of critical importance is determining whether each individual is a “hyper- or hypo-absorber” of dietary cholesterol. Furthermore, the quantity of each individual’s baseline daily dietary cholesterol and saturated fat intake is important in assessing the effect of added egg yolk cholesterol and saturated fat on blood LDL cholesterol.MethodsGut cholesterol is absorbed via a specific enteric receptor (the Niemann- Pick-like receptor). Dietary cholesterol contributes one fourth of the absorbed cholesterol, while the remaining gut cholesterol is derived from secreted bile cholesterol. This dietary quantity of cholesterol is significant when other determinants are constant. For some individuals, dietary cholesterol has no adverse effects and in others, a significant elevation in blood LDL cholesterol may occur.ResultsThere are no readily available blood tests to determine the effect of egg yolk cholesterol and saturated fat on an individual’s plasma LDL cholesterol. However, a one month trial of a low cholesterol and saturated fat diet will provide the needed information to make clinical decisions.ConclusionThis article delineates the mechanisms that are altered by genetic and environmental factors that determine the net effects of dietary cholesterol and saturated fat on circulating LDL cholesterol. It then makes a practical clinical recommendation based on these mechanisms.  相似文献   

10.
2,4-Diacetylphloroglucinol hydrolase PhlG from Pseudomonas fluorescens catalyzes hydrolytic carbon-carbon (C–C) bond cleavage of the antibiotic 2,4-diacetylphloroglucinol to form monoacetylphloroglucinol, a rare class of reactions in chemistry and biochemistry. To investigate the catalytic mechanism of this enzyme, we determined the three-dimensional structure of PhlG at 2.0 Å resolution using x-ray crystallography and MAD methods. The overall structure includes a small N-terminal domain mainly involved in dimerization and a C-terminal domain of Bet v1-like fold, which distinguishes PhlG from the classical α/β-fold hydrolases. A dumbbell-shaped substrate access tunnel was identified to connect a narrow interior amphiphilic pocket to the exterior solvent. The tunnel is likely to undergo a significant conformational change upon substrate binding to the active site. Structural analysis coupled with computational docking studies, site-directed mutagenesis, and enzyme activity analysis revealed that cleavage of the 2,4-diacetylphloroglucinol C–C bond proceeds via nucleophilic attack by a water molecule, which is coordinated by a zinc ion. In addition, residues Tyr121, Tyr229, and Asn132, which are predicted to be hydrogen-bonded to the hydroxyl groups and unhydrolyzed acetyl group, can finely tune and position the bound substrate in a reactive orientation. Taken together, these results revealed the active sites and zinc-dependent hydrolytic mechanism of PhlG and explained its substrate specificity as well.  相似文献   

11.
Drag-reducing polymers (DRPs) significantly increase blood flow, tissue perfusion, and tissue oxygenation in various animal models. In rectangular channel microfluidic systems, DRPs were found to significantly reduce the near-wall cell-free layer (CFL) as well as modify traffic of red blood cells (RBC) into microchannel branches. In the current study we further investigated the mechanism by which DRP enhances microvascular perfusion. We studied the effect of various concentrations of DRP on RBC distribution in more relevant round microchannels and the effect of DRP on CFL in the rat cremaster muscle in vivo. In round microchannels hematocrit was measured in parent and daughter branch at baseline and after addition of DRP. At DRP concentrations of 5 and 10 ppm, the plasma skimming effect in the daughter branch was eliminated, as parent and daughter branch hematocrit were equivalent, compared to a significantly lowered hematocrit in the daughter branch without DRPs. In anesthetized rats (N=11) CFL was measured in the cremaster muscle tissue in arterioles with a diameter of 32.6 ± 1.7 µm. In the control group (saline, N=6) there was a significant increase in CFL in time compared to corresponding baseline. Addition of DRP at 1 ppm (N=5) reduced CFL significantly compared to corresponding baseline and the control group. After DRP administration the CFL reduced to about 85% of baseline at 5, 15, 25 and 35 minutes after DRP infusion was complete. These in vivo and in vitro findings demonstrate that DRPs induce a reduction in CFL width and plasma skimming in the microvasculature. This may lead to an increase of RBC flux into the capillary bed, and thus explain previous observations of a DRP mediated enhancement of capillary perfusion.  相似文献   

12.
CIN85 is a multifunctional protein that plays key roles in endocytic down-regulation of receptor tyrosine kinases, apoptosis, cell adhesion, and cytoskeleton rearrangement. Its three SH3 domains (CIN85A, CIN85B, and CIN85C) allow it to recruit multiple binding partners. To understand the manifold interactions of CIN85, we present a detailed high-resolution solution structural study of CIN85A and CIN85B binding to proline-arginine peptides derived from the cognate ligands Cbl and Cbl-b. We report the structure of CIN85B and provide evidence that both CIN85A and CIN85B, in isolation or when linked, form heterodimeric complexes with the peptides. We report unusual curved chemical shift changes for several residues of CIN85A when titrated with Cbl-b peptide, indicating the existence of more than one complex form. Here we demonstrate that CIN85A and CIN85B use different mechanisms for peptide binding.  相似文献   

13.
Three different approaches to improve tertiary fold prediction using the genetic algorithm are discussed: (i) Refinement of the search strategy, (ii) combination of prediction and experiment and (iii) inclusion of experimental data as selection criteria into the genetic algorithm. Examples from our current work are presented for refined strategies against crowding in solution space, definition of domain boundaries and secondary structure in combination with experiment, and direct incorporation of experimentally known distance constraints into the fitness function.Electronic Supplementary Material available.  相似文献   

14.
The C-type lectin DC-SIGNR (dendritic cell-specific ICAM-3-grabbing non-integrin-related; also known as L-SIGN or CD299) is a promising drug target due to its ability to promote infection and/or within-host survival of several dangerous pathogens (e.g. HIV and severe acute respiratory syndrome coronavirus (SARS)) via interactions with their surface glycans. Crystallography has provided excellent insight into the mechanism by which DC-SIGNR interacts with small glycans, such as (GlcNAc)2Man3; however, direct observation of complexes with larger, physiological oligosaccharides, such as Man9GlcNAc2, remains elusive. We have utilized solution-state nuclear magnetic resonance spectroscopy to investigate DC-SIGNR binding and herein report the first backbone assignment of its active, calcium-bound carbohydrate recognition domain. Direct interactions with the small sugar fragments Man3, Man5, and (GlcNAc)2Man3 were investigated alongside Man9GlcNAc derived from recombinant gp120 (present on the HIV viral envelope), providing the first structural data for DC-SIGNR in complex with a virus-associated ligand, and unique binding modes were observed for each glycan. In particular, our data show that DC-SIGNR has a different binding mode for glycans on the HIV viral envelope compared with the smaller glycans previously observed in the crystalline state. This suggests that using the binding mode of Man9GlcNAc, instead of those of small glycans, may provide a platform for the design of DC-SIGNR inhibitors selective for high mannose glycans (like those on HIV). 15N relaxation measurements provided the first information on the dynamics of the carbohydrate recognition domain, demonstrating that it is a highly flexible domain that undergoes ligand-induced conformational and dynamic changes that may explain the ability of DC-SIGNR to accommodate a range of glycans on viral surfaces.  相似文献   

15.
Iron scarcity is one of the nutrition limitations that the Gram-positive infectious pathogens Streptococcus pneumoniae encounter in the human host. To guarantee sufficient iron supply, the ATP binding cassette (ABC) transporter Pia is employed to uptake iron chelated by hydroxamate siderophore, via the membrane-anchored substrate-binding protein PiaA. The high affinity towards ferrichrome enables PiaA to capture iron at a very low concentration in the host. We presented here the crystal structures of PiaA in both apo and ferrichrome-complexed forms at 2.7 and 2.1 Å resolution, respectively. Similar to other class III substrate binding proteins, PiaA is composed of an N-terminal and a C-terminal domain bridged by an α-helix. At the inter-domain cleft, a molecule of ferrichrome is stabilized by a number of highly conserved residues. Upon ferrichrome binding, two highly flexible segments at the entrance of the cleft undergo significant conformational changes, indicating their contribution to the binding and/or release of ferrichrome. Superposition to the structure of Escherichia coli ABC transporter BtuF enabled us to define two conserved residues: Glu119 and Glu262, which were proposed to form salt bridges with two arginines of the permease subunits. Further structure-based sequence alignment revealed that the ferrichrome binding pattern is highly conserved in a series of PiaA homologs encoded by both Gram-positive and negative bacteria, which were predicted to be sensitive to albomycin, a sideromycin antibiotic derived from ferrichrome.  相似文献   

16.
17.
18.
The Toll/IL-1 receptor (TIR) domains are crucial innate immune signaling modules. Microbial TIR domain-containing proteins inhibit Toll-like receptor (TLR) signaling through molecular mimicry. The TIR domain-containing protein TcpB from Brucella inhibits TLR signaling through interaction with host adaptor proteins TIRAP/Mal and MyD88. To characterize the microbial mimicry of host proteins, we have determined the X-ray crystal structures of the TIR domains from the Brucella protein TcpB and the host adaptor protein TIRAP. We have further characterized homotypic interactions of TcpB using hydrogen/deuterium exchange mass spectrometry and heterotypic TcpB and TIRAP interaction by co-immunoprecipitation and NF-κB reporter assays. The crystal structure of the TcpB TIR domain reveals the microtubule-binding site encompassing the BB loop as well as a symmetrical dimer mediated by the DD and EE loops. This dimerization interface is validated by peptide mapping through hydrogen/deuterium exchange mass spectrometry. The human TIRAP TIR domain crystal structure reveals a unique N-terminal TIR domain fold containing a disulfide bond formed by Cys89 and Cys134. A comparison between the TcpB and TIRAP crystal structures reveals substantial conformational differences in the region that encompasses the BB loop. These findings underscore the similarities and differences in the molecular features found in the microbial and host TIR domains, which suggests mechanisms of bacterial mimicry of host signaling adaptor proteins, such as TIRAP.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号