首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The presence of both Urocortin 1 (Ucn1) and corticotropin-releasing factor 2 receptors (CRF2R) in the hypothalamic supraoptic nucleus (SON) suggests that endogenous Ucn1 released within this brain area acts as a local signal that might be involved in the regulation of not only endocrine but also behavioural stress responses. To test this hypothesis, we monitored the effects induced by the administration of a range of doses of synthetic Ucn1 (0.001–1.0 μg) bilaterally into the SON of rats in the open field test (OFT). Ucn1 administration produced an inverted U-shaped dose–response curve on OFT behaviour, in particular the dose of 0.01 μg of Ucn1 significantly increased the number of rearing and grooming episodes without affecting locomotion. In addition, this dosage augmented also the latency to visit the centre of the open field. Pre-treatment with the CRF2R antagonist, astressin-2B (0.1 μg) normalized Ucn1 treatment-induced effects. These results suggest that Ucn1 released within the SON area interacts with CRF2R to control the state of arousal.  相似文献   

2.
3.
Central administration of neuropeptide Y (NPY) increases food intake in laboratory rats and mice, as well as food foraging and hoarding in Siberian hamsters. The NPY-Y1 and Y5 receptors (Rs) within the hypothalamus appear sufficient to account for these increases in ingestive behaviors. Stimulation of NPY-Y2Rs in the Arcuate nucleus (Arc) has an anorexigenic effect as shown by central or peripheral administration of its natural ligand peptide YY (3-36) and pharmacological NPY-Y2R antagonism by BIIE0246 increases food intake. Both effects on food intake by NPY-Y2R agonism and antagonism are relatively short-lived lasting ∼4 h. The role of NPY-Y2Rs in appetitive ingestive behaviors (food foraging/hoarding) is untested, however. Therefore, Siberians hamsters, a natural food hoarder, were housed in a semi-natural burrow/foraging system that had (a) foraging requirement (10 revolutions/pellet), no free food (true foraging group), (b) no running wheel access, free food (general malaise control) or (c) running wheel access, free food (exercise control). We microinjected BIIE0246 (antagonist) and PYY(3-36) (agonist) into the Arc to test the role of NPY-Y2Rs there on ingestive behaviors. Food foraging, hoarding, and intake were not affected by Arc BIIE0246 microinjection in fed hamsters 1, 2, 4, and 24 h post injection. Stimulation of NPY-Y2Rs by PYY(3-36) inhibited food intake at 0–1 and 1–2 h and food hoarding at 1–2 h without causing general malaise or affecting foraging. Collectively, these results implicate a sufficiency, but not necessity, of the Arc NPY-Y2R in the inhibition of food intake and food hoarding by Siberian hamsters.  相似文献   

4.
Chen X  Dong J  Jiang ZY 《Regulatory peptides》2012,173(1-3):21-26
Nesfatin-1 is a recently discovered neuropeptide that has been shown to decrease food intake after lateral, third, or fourth brain ventricle, cisterna magna administration, or PVN injection in ad libitum fed rats. With regards to the understanding of nesfatin-1 brain sites of action, additional microinjection studies will be necessary to define specific nuclei, in addition to the PVN, responsive to nesfatin-1 to get insight into the differential effects on food intake. In the present study, we evaluated nesfatin-1 action to modulate food intake response upon injection into the specific hypothalamic nuclei (PVN, LHA and VMN) in freely fed rats during the dark phase. We extend previous observations by showing that the nesfatin-1 (50 pmol) injected before the onset of the dark period significantly reduced the 1 to 5 h cumulative food intake in rats cannulated into the PVN, LHA, but not in rats cannulated into the VMN. Glucosensing neurons located in the hypothalamus are involved in glucoprivic feeding and homeostatic control of blood glucose. In order to shed light on the mechanisms by which nesfatin-1 exerts its satiety-promoting actions, we examined the effect of nesfatin-1 on the excitability of hypothalamic glucosensing neurons. Nesfatin-1 excited most of the glucose-inhibited (GI) neurons and inhibited most of the glucose-excited (GE) neurons in the PVN. Of 34 GI neurons in the LHA tested, inhibitory effects were seen in 70.6% (24/34) of GI neurons. The main effects were excitatory after intra-VMN administration of nesfatin-1 in GE neurons (27/35, 77.1%). Thus, our data clearly demonstrate that nesfatin-1 may exert at least a part of its physiological actions on the control of food intake as a direct result of its role in modulating the excitability of glucosensing neurons in the PVN, LHA and VMN.  相似文献   

5.
The involvement of opioid peptides in the regulation of food intake has been postulated. However, it is not known how they are involved in this regulation and which brain region is responsible for the mediation of their effects. We studied the effect of a microinjection of opioid agonists and antagonists into the nucleus accumbens septi (NAS) on the food intake in rats, as this area is known to be important for motivation. Male Wistar rats were implanted stereotaxically with guide cannulae. Rats were not allowed food prior to drug treatment and solutions (1 microliter) were microinjected bilaterally. Food intake was measured throughout a 2 hr period after the drug injection. Infusions into the NAS of 2, 5 and 10 nmol of morphine, D-ala2, D-Leu5-enkephalin (DADLE), and beta-endorphin (beta E), or of 5 and 10 nmol of alpha-neoendorphin (ANEO) induced a dose-dependent increase in the food intake. Dynorphin (DYN) also increased the food intake, but only at a 10 nmol dose. The new, highly selective delta agonist D-Pen2,5-enkephalin (DPDPE) induced a dose-dependent increase in the food intake. Naloxone in doses of 2 and 10 nmol antagonized the increased food intake induced by morphine, beta E, ANEO and DYN in a dose-dependent manner, but only partly antagonized the effect of DADLE on the food intake. The selective mu-receptor antagonist beta-funaltrexamine (beta-FNA), in a dose of 5 nmol completely blocked the increase in the food intake induced by morphine but not by DADLE.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
7.
The effects of subiculum stimulation were investigated in 80 antidromically identified hypothalamic supraoptic neurons in lactating rats. Inhibition manifesting as suppression of antidromic action potentials (or of their somatodendritic component) was revealed in 26% of cells, induced by applying conditioned and test stimuli to the subiculum and neurohypophysial stalk. In some instances inhibition arose following a latency of 5–25 msec after each subicular stimulus and lasted only briefly; it set in gradually in other cases, leading to stable long-term changes in the excitability of neurosecretory cells. No activation was produced by this stimulation. It is deduced that subicular inhibitory inputs follow different patterns, thus reflecting morphological organizational aspects of synaptic inhibitory inputs to neurosecretory cells.A. A. Ukhtomskii, Institute of Physiology, A. A. Zhdanov State University, Leningrad. Translated from Neirofiziologiya, Vol. 20, No. 4, pp. 431–437, July–August, 1988.  相似文献   

8.
A role for beta-EP in the regulation of food intake has been suggested as a contributory factor in the obesity of some genetically obese animal models. Studies undertaken to determine whether continuous administration of beta-EP could alter food intake in normal rats are described. The present studies demonstrated that continuous subcutaneous infusion with beta-EP was ineffective in modulating food intake, but that acute intraperitoneal or intracerebroventricular administration stimulated food intake in previously food deprived or satiated animals, respectively. These results suggest that beta-EP is not involved in the long-term regulation of food intake, but under certain conditions it may play some role in the regulation of individual meals. It is speculated that the latter activity may result from the action of other appetitive regulatory hormones.  相似文献   

9.
10.
11.
The ultrastructural organization of neurosecretory cells (NSC) belonging to the hypothalamic supraoptic nucleus was investigated in young rats following periods of painful stress differing in duration (of 2 and 20 min). Intact young rats of similar age and others at late stages of development (24–27 months old) served as controls. Short- and longer-acting painful stress was found to intensify and inhibit the functional activity of NSC respectively. Complex ultrastructural changes in the NSC of young rats following protracted painful stress is compared with the ultrastructural organizational pattern in several NSC of aging rats. Findings would imply that aging occurs in rats following prolonged painful stress, resulting from functional hypersecretion and depletion.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 3, pp. 389–395, May–June, 1989.  相似文献   

12.
Yang J  Yang Y  Chen JM  Liu WY  Lin BC 《Life sciences》2008,82(3-4):166-173
We investigated the role of the hypothalamic supraoptic nucleus (SON) in nociception in the rat. Electrical stimulation of the SON or microinjection of a small dose of L-glutamate sodium into the SON elevated the nociceptive threshold in a dose-dependent manner, while cauterization of the SON decreased the nociceptive threshold. Pituitary removal did not influence the antinociceptive effect of L-glutamate sodium in the SON. The data suggested that the neurons and not the nervous fibers in the SON played an important role in antinociception.  相似文献   

13.
Although it is known that urocortin 1 (UCN) acts on both corticotropin-releasing factor receptors (CRF(1) and CRF(2)), the mechanisms underlying UCN-induced anorexia remain unclear. In contrast, ghrelin, the endogenous ligand for the growth hormone secretagogue receptor, stimulates food intake. In the present study, we examined the effects of CRF(1) and CRF(2) receptor antagonists (CRF(1)a and CRF(2)a) on ghrelin secretion and synthesis, c-fos mRNA expression in the caudal brain stem, and food intake following intracerebroventricular administration of UCN. Eight-week-old, male Sprague-Dawley rats were used after 24-h food deprivation. Acylated and des-acylated ghrelin levels were measured by enzyme-linked immunosorbent assay. The mRNA expressions of preproghrelin and c-fos were measured by real-time RT-PCR. The present study provided the following important insights into the mechanisms underlying the anorectic effects of UCN: 1) UCN increased acylated and des-acylated ghrelin levels in the gastric body and decreased their levels in the plasma; 2) UCN decreased preproghrelin mRNA levels in the gastric body; 3) UCN-induced reduction of plasma ghrelin and food intake were restored by CRF(2)a but not CRF(1)a; 4) UCN-induced increase of c-fos mRNA levels in the caudal brain stem containing the nucleus of the solitary tract (NTS) was inhibited by CRF(2)a; and 5) UCN-induced reduction of food intake was restored by exogenous ghrelin and rikkunshito, an endogenous ghrelin secretion regulator. Thus, UCN increases neuronal activation in the caudal brain stem containing NTS via CRF(2) receptors, which may be related to UCN-induced inhibition of both ghrelin secretion and food intake.  相似文献   

14.
Intracerebroventricular administration of oxytocin (OT) and an OT agonist significantly decreased food intake in a dose-related manner in fasted rats. Central administration of an OT antagonist by itself (up to doses of 8 nmol) did not potentiate deprivation-induced food intake, but pretreatment with the OT receptor antagonist prevented the expected inhibition of food intake produced by OT and the OT agonist. Once-daily ICV injections of OT led to the development of tolerance to the inhibitory effects on food intake by the third day of treatment, but daily pretreatment with the OT antagonist prevented the development of this tolerance. In addition to causing decreased food intake, ICV administration of OT significantly increased grooming behavior but produced no dyskinesias. The inhibitory effect of OT on food intake was characterized by decreased amounts of food intake but a normal pattern of ingestion. The anorexia produced was central in nature and was not associated with altered plasma levels of hormones involved in caloric homeostasis or with changes in blood glucose. The OT agonist had relatively little effect on water intake when given in doses that significantly inhibited food intake. These results support the hypothesis that specific OT receptors within the central nervous system participate in the inhibition of feeding under certain conditions in rats.  相似文献   

15.
Angiotensin II (AII) and vasopressin (VP) play important roles in cardiovascular function. Using 125I-[Sar1,Ile8]-angiotensin II (125I-SI-AII), a potent AII antagonist, AII receptor binding sites were autoradiographically localized in three VP-producing areas of the hypothalamus and compared in hypertensive and normotensive rats. Within three major VP-producing areas, AII receptor binding was highest in the paraventricular hypothalamic nucleus and lowest in the supraoptic nucleus, suggesting that a differential AII regulation of separate VP systems exists in the brainstem. No statistical difference in 125I-SI-AII receptor binding was found between WKY and SHR rats in each of the three major VP-producing nuclei studied. These results are consistent with a role of AII receptors in a subtle and complicated regulation of VP in cardiovascular function.  相似文献   

16.
We analyzed background impulse activity of neurons of the supraoptic nucleus of the rat hypothalamus in the course of 15-day-long isolated action of generalized vibrational stimulation and combination of such stimulation with irradiation of the animal’s head with low-intensity extrahigh-frequency (EHF, millimeter-range) electromagmetic waves. The distributions of the neurons by the level of regularity and dynamics of spike trains, separate frequency ranges of impulsation, and pattern of interspike interval (ISI) histograms were estimated. We also calculated the mean frequency of discharges and coefficient of variation of ISIs. A trend toward decreases in the deviations of some parameters of neuronal spike activity generated by supraoptic neurons, which were evident within early time intervals of isolated action of vibration (5 to 10 days), was observed under the influence of EHF electromagnetic irradiation; thus, the latter factor probably exerts a sedative effect. Neirofiziologiya/Neurophysiology, Vol. 39, No. 6, pp. 433–442, November–December, 2007.  相似文献   

17.
QRFP 43 is a RFamide peptide present in the ventromedial nucleus (VMN) and lateral hypothalamus. It stimulates food intake in mice and its chronic infusion induces hyperphagia, reduced thermogenesis, and obesity. In this experiment, we measured it in the VMN and lateral hypothalamus of Long-Evans rats fed either a high-fat (HF), control, or low-fat (LF) diet in parallel with plasma leptin, adiposity, and energy intake. After 8 weeks of ad libitum diet intake, energy intake of HF rats was similar to that of control rats. In the VMN, QRFP 43 was completely undetectable in HF rats and its tissue concentration in control rats was significantly lower than in LF rats (p < 0.03). HF rats had higher levels of leptin than control rats (+24%; p < 0.03) and than LF rats (+42%; p < 0.002). The QRFP 43 concentration in the VMN was inversely correlated with plasma leptin (r = −0.34; P < 0.04) and with the adipogenic index of the diet (p < 0.02) but not with insulin. We conclude that the decrease of the orexigenic drive mediated by QRFP 43 could contribute to the normalization of caloric intake in HF diet fed rats. QRFP 43 might play a role downstream of leptin in the regulation of feeding behavior.  相似文献   

18.
In this study we try to simultaneously investigate the response of neurons and astrocytes of rats following hyperosmotic stimulation and test the possibility that the reciprocal pathways between medullary visceral zone (MVZ) and hypothalamic paraventricular nucleus (PVN) or supraoptic nucleus (SON). Hyperosmotic pressure animal model was established by administering 3% sodium chloride as drinking water to rats. The distribution and expression of the HRP retrogradely labeled neurons, Fos, tyrosine hydroxylase (TH) or vasopressin (VP) positive neuron and glial fibrillary acidic protein (GFAP) positive astrocytes in the MVZ, SON and PVN were observed by quadruplicate-labeling methods of WGA-HRP retrograde tracing combined with anti-Fos, TH (or VP) and GFAP immunohistochemical technique. Fos positive neurons within the MVZ, PVN and SON increased markedly. There were also a large number of GFAP positive structures in the brain and their distribution pattern was fundamentally similar or analogous to Fos positive neurons in the above-mentioned areas. The augmented GFAP reactivities took on hypertrophic cell bodies, thicker and longer processes. Quadruplicate immunohistochemical staining showed that a neuron could be closely surrounded by many astrocytes and they formed neuron-astrocytic complex (N-ASC). Fos+/TH+/HRP+/GFAP+ and Fos+/VP+/HRP+/GFAP+ quadruplicate labeled N-ASC could be found in the MVZ, PVN and SON, respectively. The present results indicated that the neurons and astrocytes might be very active following hyperosmotic pressure and N-ASC as a functional unit might serve to modulate osmotic pressure. There were reciprocal osmoregulation pathways between the MVZ and SON or PVN in the brain.  相似文献   

19.
In humans, nonexercise activity thermogenesis (NEAT) increases with positive energy balance. The mediator of the interaction between positive energy balance and physical activity is unknown. In this study, we address the hypothesis that orexin A acts in the hypothalamic paraventricular nucleus (PVN) to increase nonfeeding-associated physical activity. PVN-cannulated rats were injected with either orexin A or vehicle during the light and dark cycle. Spontaneous physical activity (SPA) was measured using arrays of infrared activity sensors and night vision videotaped recording (VTR). O(2) consumption and CO(2) production were measured by indirect calorimetry. Feeding behavior was assessed by VTR. Regardless of the time point of injection, orexin A (1 nmol) was associated with dramatic increases in SPA for 2 h after injection (orexin A: 6.27 +/- 1.95 x 10(3) beam break count, n = 24; vehicle: 1.85 +/- 1.13 x 10(3), n = 38). This increase in SPA was accompanied by compatible increase in O(2) consumption. Duration of feeding was increased only when orexin A was injected in the early light phase and accounted for only 3.5 +/- 2.5% of the increased physical activity. In a dose-response experiment, increases in SPA were correlated with dose of orexin A linearly up to 2 nmol. PVN injections of orexin receptor antagonist SB-334867 were associated with decreases in SPA and attenuated the effects of PVN-injected orexin A. Thus orexin A can act in PVN to increase nonfeeding-associated physical activity, suggesting that this neuropeptide might be a mediator of NEAT.  相似文献   

20.
We analyzed the background impulse activity (BIA) generated by neurons of the rat hypothalamic supraoptic nucleus in the norm and under conditions of long-lasting vibrational stimulation (exposure 5, 10, or 15 days). Distributions of neurons by the level of regularity, dynamics of discharge trains, form of histograms of interspike intervals (ISIs), as well as distributions of neurons by the BIA frequency ranges, were studied. We also calculated the mean frequency of impulsation of the neurons under study and the coefficient of variation of ISIs. After vibrational influences, we found modifications of both the internal structure of the recorded spike trains and the mean frequency of impulsation within the entire studied group and different frequency subgroups. Neirofiziologiya/Neurophysiology, Vol. 38, No. 3, pp. 224–230, May–June, 2006.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号