首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The inducible expression of the 70-kDa heat shock proteins (HSP70) is associated with homeostatically stressful situations. Stresses involving sympathetic nervous system (SNS) activation, including α1-adrenergic agonists and physical exercise, are capable of inducing HSP70 expression and release of the HSP70 inducible form, HSP72. However, whether hypoglycaemia is capable of influencing HSP70 status under a stressful situation such as insulin-induced hypoglycaemia (IIH), which also involves SNS activation, is unsettled. Hence, we decided to investigate whether the predominant signal for HSP70 expression and delivery into the blood comes from either low glucose, high insulin, or both during short-term IIH (STIIH) and long-term IIH (LTIIH). Our data indicated that low glucose level (up to 1.56 ± 0.14 mM), but not insulin, is the triggering factor responsible for a dramatic rise in HSP72 plasma concentrations (from 0.15 ± 0.01 in fed state to 0.77 ± 0.13 ng/mL during hypoglycaemic episodes). This was observed in parallel with up to 7-fold increases in interleukin-6 (IL–6) but not interleukin-10 (IL–10) or tumour necrosis factor-α (TNF–α) at STIIH. Together, the observations may suggest that HSP72 is released under hypoglycaemic conditions as a part of the homeostatic stress response, whereas at long-term, both hypoglycaemia and insulin may influence HSP72 expression in the liver, but not in kidneys. Secreted extracellular HSP72 (eHSP72) may be purely a danger signal to all the tissues of the body for the enhancement of immune and metabolic surveillance state or actively participates in glycaemic control under stressful situations.  相似文献   

2.
Oils, carbohydrates, and fats generated by microalgae are being refined in an effort to produce biofuels. The research presented here examines two marine microalgae, Nannochloropsis salina (green alga) and Phaeodactylum tricornutum (diatom), when grown with 0 (no addition), 0.5, 1.0, 2.0, and 5.0 g L?1 NaHCO3 added to an f/2 medium during the growth phase (GP) and a nutrient induced (nitrate limitation) lipid formation phase (LP). We hypothesize that the addition of NaHCO3 is a sustainable and practical strategy to increase cellular density and concentrations of lipids in microalgae as well as the rate of lipid accumulation. In N. salina, final cell densities were significantly (p?<?0.05) higher in the NaHCO3-treated cells than the control while in P. tricornutum the cell densities were higher with >[NaHCO3] during the GP. During the LP, cell densities were generally higher in the NaHCO3-treated cells compared with controls. F V/F M (efficiency of photosystem II) patterns paralleled those for cell density with generally higher values with higher concentrations of NaHCO3 and significantly different values between controls and 5.0 g L?1 NaHCO3 at the end of the GP (p?<?0.05). F V/F M was variable between treatments in P. tricornutum (0.3–0.65) but less so in N. salina for (0.5–0.7) regardless of [NaHCO3]. The lipid index (measured with Nile red), used as a proxy for triacylglycerides (TAGs), was 10.2?±?6.5 and 4.4?±?2.9 (fluorescence units/OD cells ×1000) for N. salina and P. tricornutum, respectively, at the end of the GP. At the end of the LP, the lipid index was eight and four times higher than during the GP in the corresponding 5.0 g L?1 NaHCO3 treatments, revealing that N. salina was accumulating more lipid than P. tricornutum. Dry weights essentially doubled during LP compared with GP for N. salina; this was not the case for P. tricornutum. In general, the percentage of ash in dry weights was significantly higher in the LP relative to the corresponding GP treatments for P. tricornutum; this was not the case for N. salina. During the LP, there was also less soluble protein in N. salina compared to GP; differences were not significant in cells growing with 2.0 or 5.0 g L?1 NaHCO3. In P. tricornutum, faster growing cells had more soluble protein during the GP and LP; differences between treatments were significant. P. tricornutum generally accumulated significantly more crude protein than N. salina at higher [NaHCO3]; there was three times more crude protein in the highest NaHCO3 (5.0 g L?1) treatment compared with the controls. C:N ratios (mol:mol) were similar across treatments during GP: 7.03?±?0.12 and 10.16?±?0.41 for N. salina and P. tricornutum, respectively. Further, C:N ratios increased with increasing [NaHCO3] during LP. Species-specific fatty acid methyl ester (FAMEs) profiles were observed. While C16:0 was lower in P. tricornutum compared to N. salina, the diatom produced more C16:1 and C14 but not C18:3. Monounsaturated fatty acids (MUFA) significantly increased in N. salina in the LP compared to GP and in response to increasing [NaHCO3] (t tests; p?<?0.05). Saturated fatty acids (SFA) responded similarly but to a lesser degree. There were more polyunsaturated fatty acids (PUFA) in N. salina than MUFAs or SFAs. In P. tricornutum, there were generally more SFAs, MUFAs and PUFAs in P. tricornutum during LP than GP in the corresponding NaHCO3 treatments. These findings reveal the importance of considering NaHCO3 as a supplemental carbon source in the culturing marine phytoplankton in large-scale production for biofuels.  相似文献   

3.
4.
Defatting is an important procedure for the preparation of bone grafts because lipids in bone grafts strongly influence the osteointegration. Lipases have been widely used in different fields. However, study on the application to defatting process for bone grafts preparation has never been found so far. In this study, bone samples were treated respectively by lipase, NaHCO3/Na2CO3, acetone and deionized water. The lipids content of processed bone grafts was calculated in Soxhlet extractor method. Surface morphology of the bone grafts was observed under scanning electron microscope (SEM). DNA content of processed bone grafts was measured. Cytocompatibility was evaluated by co-culturing mouse preosteoblasts (MC3T3-E1) on defatted bone cubes. Proliferation rates of MC3T3-E1 were examined by cell counting kit-8 (CCK-8) assay. No statistically significant difference was found between lipids amount of bone processed by lipase (0.46 ± 0.16 %) and acetone (1.11 ± 0.13 %) (P > 0.05). Both of them were significantly lower than that in groups processed by Na2CO3/NaHCO3 (3.46 ± 0.69 %) and deionized water (8.88 ± 0.18 %) (P = 0.000). Only cell debris were discovered over the surface of bone processed by lipase or acetone, while lipid droplets were observed on bone processed by Na2CO3/NaHCO3 or water by SEM. The difference of DNA concentration between the bone processed by lipase (3.16 ± 0.81 ng/μl) and acetone (4.14 ± 0.40 ng/μl) is not statistically significant (P > 0.05). Both of them are significantly lower than that groups processed by Na2CO3/NaHCO3 (5.22 ± 0.38 ng/μl) and water (7.88 ± 0.55 ng/μl) (P < 0.05). MC3T3-E1 cells maintained their characteristic spreading on the trabecular surfaces of bone processed by lipase. There were no statistically significant differences among absorbance of lipase, acetone groups in CCK-8 assay. The application of lipase to bone tissue defatting appears to be a very promising technique for bone grafts preparation.  相似文献   

5.
We investigated the effect of exercise in the heat on both intracellular and extracellular Hsp72 in athletes with a prior history of exertional heat illness (EHI). Two groups of runners, one consisting of athletes who had a previous history of EHI, and a control group (CON) of similar age (29.7 ± 1.2 and 29.1 ± 2 years CON vs. EHI) and fitness [maximal oxygen consumption $(\dot V{{\text{O}}_2}\hbox{max} )$ 65.7 ± 2 and 64.5 ± 3 ml kg?1 min?1 CON vs. EHI] were recruited. Seven subjects in each group ran on a treadmill for 1 h at 72 % $\dot V{{\text{O}}_2}\hbox{max}$ in warm conditions (30 °C, 40 % RH) reaching rectal temperatures of ~39.3 (CON) and ~39.2 °C (EHI). Blood was collected every 10 min during exercise and plasma was analysed for extracellular Hsp72. Intracellular Hsp72 levels were measured in both monocytes and lymphocytes before and immediately after the 60-min run, and then after 1 h recovery at an ambient temperature of 24 °C. Plasma Hsp72 increased from 1.18 ± 0.14 and 0.86 ± 0.08 ng/ml (CON vs. EHI) at rest to 4.56 ± 0.63 and 4.04 ± 0.45 ng/ml (CON vs. EHI, respectively) at the end of exercise (p < 0.001), with no difference between groups. Lymphocyte Hsp72 was lower in the EHI group at 60 min of exercise (p < 0.05), while monocyte Hsp72 was not different between groups. The results of the present study suggest that the plasma Hsp72 response to exercise in athletes with a prior history of EHI remained similar to that of the CON group, while the lymphocyte Hsp72 response was reduced.  相似文献   

6.
The effect of variable temperatures (10–50 °C) on photosynthesis and chlorophyll fluorescence in Conocarpus lancifolius was evaluated. Additionally, the ability of the species to synthesize heat-shock proteins (HSPs) to protect against high temperatures, and malondialdehyde (MDA) as a by-product of lipid peroxidation was investigated. Plants at 10 °C showed virtually no measurable growth, leaf discoloration and a few brown lesions, while high temperatures (40 and 50 °C) promoted growth and lateral branch development. Chlorophyll content index, photochemical efficiency (F v/F m) of PS II, electron transport rate and photosynthetic rate declined with decreasing temperature but increased significantly at higher temperatures. Heat-shock protein (HSP 70 kDa) was produced at temperatures 30–50 °C and an additional 90 kDa protein was also produced at 50 °C. Increase in the efficiency of excitation energy captured by the open PS II reaction centers (F v/F m) increased linearly (P ≤ 0.05) with the accumulation of HSP 70 at higher temperatures. However, at low temperatures the concentration of MDA increased significantly, indicating lipid peroxidation due to oxidative stress. The production and accumulation of HSP 70 and 90 kDa coupled with increased electron transport rate and photochemical efficiency can be used to assess survival, growth capacity and to some extent the tolerance of C. lancifolius to elevated temperatures.  相似文献   

7.
A gram-positive bacterium Citricoccus nitrophenolicus (strain PNP1T, DSM 23311T, CCUG 59571T) isolated from a waste water treatment plant was capable of effectively degrading p-nitrophenol (pNP) as a source of carbon, nitrogen and energy for growth. Degradation of pNP required oxygen and resulted in the stoichiometric release of nitrite. Strain PNP1T also degraded 4-chlorophenol, phenol and salicylate. pNP was degraded at pH values between 6.8 and 10.0 and at temperatures between 15–32 °C. pNP at concentrations up to 150 mg L?1 were degraded during growth in media at pH ≤ 10, whereas 200 mg L?1 was completely inhibitory to growth. When incubated in an NH4Cl-free medium (pH 10) containing both pNP and acetate, pNP is degraded with concomitant release of nitrite which was subsequently assimilated during acetate degradation. Intact cells of strain PNP1T suspended in NaHCO3/Na2CO3 buffer were able to continuously degrade 200 mg L?1 pNP over a 40 day period at pH 10.  相似文献   

8.
A novel Gram-stain positive, aerobic, short rod-shaped, non-motile bacterium, designated strain CHO1T, was isolated from rhizosphere soil from a ginseng agriculture field. Strain CHO1T was observed to form yellow colonies on R2A agar medium. The cell wall peptidoglycan was found to contain alanine, glycine, glutamic acid, d-ornithine and serine. The cell wall sugars were identified as galactose, mannose, rhamnose and ribose. Strain CHO1T was found to contain MK-11, MK-12, MK-13 as the predominant menaquinones and anteiso-C15:0, iso-C16:0, and anteiso-C17:0 as the major fatty acids. Diphosphatidylglycerol, phosphatidylglycerol, phosphoglycolipid, an unidentified phospholipid and three unidentified glycolipids were found to be present in strain CHO1T. Based on 16S rRNA gene sequence analysis, strain CHO1T was found to be closely related to Microbacterium mangrovi DSM 28240T (97.81 % similarity), Microbacterium immunditiarum JCM 14034T (97.45 %), Microbacterium oryzae JCM 16837T (97.33 %) and Microbacterium ulmi KCTC 19363T (97.10 %) and to other species of the genus Microbacterium. The DNA G+C content of CHO1T was determined to be 70.1 mol %. The DNA–DNA hybridization values of CHO1T with M. mangrovi DSM 28240T, M. immunditiarum JCM 14034T, M. oryzae JCM 16837T and M. ulmi KCTC 19363T were 46.7 ± 2, 32.4 ± 2, 32.0 ± 2 and 29.2 ± 2 %, respectively. On the basis of genotypic, phenotypic and phylogenetic properties, it is concluded that strain CHO1T represents a novel species within the genus Microbacterium, for which the name Microbacterium rhizosphaerae sp. nov. is proposed. The type strain of M. rhizosphaerae is CHO1T (= KEMB 7306-513T = JCM 31396T).  相似文献   

9.
A rhizobox experiment was conducted to examine the P acquisition characteristics of cotton (Gossypium hirsutum L.), wheat (Triticum aestivum L.) and white lupin (Lupinus albus L.) under P-deficient conditions. We aimed to identify whether cotton is physiologically efficient at acquiring P through release of protons, phosphatases or carboxylates. Plants were pre-grown in the upper compartment of rhizoboxes filled with a sand and soil mixture to create a dense root mat against a 53 μm polyester mesh. For each species, two P treatments (0 and 20 mg P kg?1) were applied to the upper compartment in order to create P-deficient and P-sufficient plants. At harvest, the upper compartment with intact plants was used for collection of root exudates while the lower soil compartment was sliced into thin layers (1 mm) parallel to the rhizoplane. Noticeable carboxylates release was only detected for white lupin. All P-deficient plants showed a capacity to acidify their rhizosphere soil to a distance of 3 mm. The activity of acid phosphatase was significantly enhanced in the soil-root interfaces of P-stressed cotton and wheat. Under P-deficient conditions, the P depletion zone of cotton from the lower soil compartment was narrowest (<2 mm) among the species. Phosphorus fractionation of the rhizosphere soil showed that P utilized by cotton mainly come from NaHCO3–Pi and NaOH–Po pools while wheat and white lupin markedly depleted NaHCO3–Pi and HCl–P pools, and the depletion zone extended to 3 mm. Wheat also depleted NaOH–Po to a significant level irrespective of P supply. The study suggests that acquisition of soil P is enhanced through P mobilization by root exudates for white lupin, and possibly proton release and extensive roots for wheat under P deficiency. In contrast, the P acquisition of cotton was associated with increased activity of phosphatases in rhizosphere soil.  相似文献   

10.
Neotropical Heliconius and Laparus butterflies actively collect pollen onto the proboscis and extract nutrients from it. This study investigates the impact of the processing behaviour on the condition of the pollen grains. Pollen samples (n = 72) were collected from proboscides of various Heliconius species and Laparus doris in surrounding habitats of the Tropical Research Station La Gamba (Costa Rica). Examination using a light microscope revealed that pollen loads contained 74.88 ± 53.67% of damaged Psychotria pollen, 72.04 ± 23.4% of damaged Psiguria/Gurania pollen, and 21.35 ± 14.5% of damaged Lantana pollen (numbers represent median ± first quartile). Damaged pollen grains showed deformed contours, inhomogeneous and/or leaking contents, or they were empty. Experiments with Heliconius and Laparus doris from a natural population in Costa Rica demonstrated that 200 min of pollen processing behaviour significantly increased the percentage of damaged pollen of Psychotria compared to pollen from anthers (P = 0.015, Z = ?2.44, Mann–Whitney U-test). Examination of pollen loads from green house reared Heliconius butterflies resulted in significantly greater amounts of damaged Psiguria pollen after 200 min of processing behaviour compared to pollen from flowers (P < 0.001, Z = ?4.583, Mann–Whitney U-test). These results indicate that pollen processing functions as extra oral digestion whereby pollen grains are ruptured to make the content available for ingestion.  相似文献   

11.

Aims

The efficient management of phosphorus (P) in cropping systems remains a challenge due to climate change. We tested how plant species access P pools in soils of varying P status (Olsen-P 3.2–17.6 mg?kg?1), under elevated atmosphere CO2 (eCO2).

Methods

Chickpea (Cicer arietinum L.) and wheat (Triticum aestivum L.) plants were grown in rhizo-boxes containing Vertosol or Calcarosol soil, with two contrasting P fertilizer histories for each soil, and exposed to ambient (380 ppm) or eCO2 (700 ppm) for 6 weeks.

Results

The NaHCO3-extractable inorganic P (Pi) in the rhizosphere was depleted by both wheat and chickpea in all soils, but was not significantly affected by CO2 treatment. However, NaHCO3-extractable organic P (Po) accumulated, especially under eCO2 in soils with high P status. The NaOH-extractable Po under eCO2 accumulated only in the Vertosol with high P status. Crop species did not exhibit different eCO2-triggered capabilities to access any P pool in either soil, though wheat depleted NaHCO3-Pi and NaOH-Pi in the rhizosphere more than chickpea. Elevated CO2 increased microbial biomass C in the rhizosphere by an average of 21 %. Moreover, the size in Po fractions correlated with microbial C but not with rhizosphere pH or phosphatase activity.

Conclusion

Elevated CO2 increased microbial biomass in the rhizosphere which in turn temporally immobilized P. This P immobilization was greater in soils with high than low P availability.  相似文献   

12.
Physiological responses of tomato roots to NaCl and NaHCO3 stresses were investigated in a hydroponic setting. The relative growth rate of tomato plants was significantly reduced in both NaCl and NaHCO3 treatments, especially under NaHCO3 stress. Tomato root respiration increased under low concentrations of NaCl and NaHCO3 stresses. However, high concentrations of both NaCl and NaHCO3 significantly inhibited respiration, especially in the NaHCO3 treatment. With increasing concentration of NaCl and NaHCO3 treatment, root Na accumulation increased, while accumulation of N, P, K, Fe, and Mg was significantly lower. Compared to NaCl, NaHCO3 treatment resulted in more dramatic changes in these nutrients. All organic acids investigated were increased by NaHCO3 after 5 days of treatment, but only oxalate, tartrate and malate were induced by NaCl. This implies that global regulation of organic acids might play an important role in tomato’s alkali stress tolerance. Compared to NaCl treatments, NaHCO3 treatments induced much higher levels of reactive oxygen species (ROS) and lipid peroxidation after 5 days of treatment, which was accompanied by higher activities of antioxidant enzymes and higher concentrations of ascorbate–glutathione. However, after 10 days of treatment, 100 mM NaHCO3 stress led to lower accumulation of ROS, antioxidant enzyme activities, and ascorbate–glutathione content. This may have been because root metabolism had almost completely stopped, as indicated by lower root respiration and activity.  相似文献   

13.
HSP72 is rapidly expressed in response to a variety of stressors in vitro and in vivo (including hypoxia). This project sought a hypoxic stimulus to elicit increases in HSP72 and HSP32 in attempts to confer protection to the sub-maximal aerobic exercise-induced disturbances to redox balance. Eight healthy recreationally active male subjects were exposed to five consecutive days of once-daily hypoxia (2,980?m, 75?min). Seven days prior to the hypoxic acclimation period, subjects performed 60?min of cycling on a cycle ergometer (exercise bout 1—EXB1), and this exercise bout was repeated 1?day post-cessation of the hypoxic period (exercise bout 2—EXB2). Blood samples were taken immediately pre- and post-exercise and 1, 4 and 8?h post-exercise for HSP72 and immediately pre, post and 1?h post-exercise for HSP32, TBARS and glutathione [reduced (GSH), oxidised (GSSG) and total (TGSH)], with additional blood samples obtained immediately pre-day 1 and post-day 5 of the hypoxic acclimation period for the same indices. Monocyte-expressed HSP32 and HSP72 were analysed by flow cytometry, with measures of oxidative stress accessed by commercially available kits. There were significant increases in HSP72 (P?<?0.001), HSP32 (P?=?0.03), GSSG (t?=?9.5, P?<?0.001) and TBARS (t?=?5.6, P?=?0.001) in response to the 5-day hypoxic intervention, whereas no significant changes were observed for GSH (P?=?0.22) and TGSH (P?=?0.25). Exercise-induced significant increases in HSP72 (P?<?0.001) and HSP32 (P?=?0.003) post-exercise in EXB1; this response was absent for HSP72 (P?≥?0.79) and HSP32 (P?≥?0.99) post-EXB2. The hypoxia-mediated increased bio-available HSP32 and HSP72 and favourable alterations in glutathione redox, prior to exercise commencing in EXB2 compared to EXB1, may acquiesce the disturbances to redox balance encountered during the second physiologically identical exercise bout.  相似文献   

14.
With the growing microbial resistance to conventional antimicrobial agents, the development of novel and alternative therapeutic strategies are vital. During recent years novel peptide antibiotics with broad spectrum activity against many Gram-positive and Gram-negative bacteria have been developed. In this study, antibacterial activity of CM11 peptide (WKLFKKILKVL-NH2), a short cecropin–melittin hybrid peptide, is evaluated against antibiotic-resistant strains of Klebsiella pneumoniae and Salmonella typhimurium as two important pathogenic bacteria. To appraise the antibacterial activity, minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC) and bactericidal killing assay were utilized with different concentrations (2–128 mg/L) of peptide. To evaluate cytotoxic effect of peptide, viability of RAJI, Hela, SP2/0, CHO, LNCAP cell lines and primary murine macrophage cells were also investigated with MTT assay in different concentrations (3–24 and 0.5–16 mg/L, respectively). MICs of K. pneumoniae and S. typhimurium isolates were in range of 8–16 and 4–16 mg/L, respectively. In bactericidal killing assay no colonies were observed at 2X MIC for K. pneumoniae and S. typhimurium isolates after 80–90 min, respectively. Despite the fact that CM11 reveals no significant cytotoxicity on RAJI, Hela, SP2/0, and CHO cell lines beneath 6 mg/L at first 24 and 48 h, the viability of LNCAP cells are about 50 % at 3 mg/L, which indicates strong cytotoxicity of the peptide. In addition, macrophage toxicity by MTT assay showed that LD50 of CM11 peptide is 12 μM (16 mg/L) after 48 h while in this concentration after 24 h macrophage viability was about 70 %.  相似文献   

15.
Tetralogy of Fallot (TOF) is a congenital heart condition in which the right ventricle is exposed to cyanosis and pressure overload. Patients have an increased risk of right ventricle dysfunction following corrective surgery. Whether the cyanotic myocardium is less tolerant of injury compared to non-cyanotic is unclear. Heat shock proteins (HSPs) protect against cellular stresses. The aim of this study was to examine HSP 27 expression in the right ventricle resected from TOF patients and determine its relationship with right ventricle function and clinical outcome. Ten cyanotic and ten non-cyanotic patients were studied. Western blotting was used to quantify HSP 27 in resected myocardium at (1) baseline (first 15 min of aortic cross clamp and closest representation of pre-operative status) and (2) after 15 min during ischemia until surgery was complete. The cyanotic group had significantly increased haematocrit, lower O2 saturation, thicker interventricular septal wall thickness and released more troponin-I on post-operative day 1 (p?<?0.05). HSP 27 expression was significantly increased in the <15 min cyanotic compared to the <15 min non-cyanotic group (p?=?0.03). In the cyanotic group, baseline HSP 27 expression also significantly correlated with oxygen extraction ratio (p?=?0.028), post-operative basal septal velocity (p?=?0.036) and mixed venous oxygen saturation (p?=?0.02), markers of improved cardiac output/contraction. Increased HSP 27 expression and associated improved right ventricle function and systemic perfusion supports a cardio-protective effect of HSP 27 in cyanotic TOF.  相似文献   

16.
Reproductive characteristics of tigers (Panthera tigris) are important to understand population viability. We studied the reproductive parameters of female Bengal tigers (P. t. tigris) in a dry, tropical, deciduous habitat in Ranthambhore Tiger Reserve (RTR), western India, from April 2005 to March 2010. We monitored tigers by direct observation and with cameras placed throughout their habitat. The potential breeding population included 13 adult females. The average age at first reproduction was 3.3 years; 34 cubs were born during the study period (6.2?±?0.82 per year). Sixty-six percent of the births occurred between October and December. Mean litter size was 2.26?±?0.52 (n?=?13, range?=?1–3). The sex ratio of 32 cubs was 1.29 M:1.00 F. The survival rate of cubs (<12 months) was 85 % (95 % CI?=?0.68–0.94), whereas that of juveniles (12–24 months), and subadults (24–36 months) was 79 % (95 % CI?=?0.61–0.91). All breeding females were >3 years old. Only 2 of the 13 females reproduced twice during the 5 years of the study. The birth interval was 33.4?±?3.7 months (range 24–65 months). The mean reproductive rate was 0.59?±?0.23 cubs/female/year. Our study indicates that tiger populations can grow rapidly if the habitat provides adequate protection, an adequate population of prey, and minimal to no poaching.  相似文献   

17.
Dogs of the soft-coated wheaten terrier breed (SCWT) are predisposed to adult-onset, genetically complex, protein-losing nephropathy (average onset age = 6.3 ± 2.0 years). A genome-wide association study using 62 dogs revealed a chromosomal region containing three statistically significant SNPs (p raw ≤ 4.13 × 10?8; p genome ≤ 0.005) when comparing DNA samples from affected and geriatric (≥14 years) unaffected SCWTs. Sequencing of candidate genes in the region revealed single nucleotide changes in each of two closely linked genes, NPHS1 and KIRREL2, which encode the slit diaphragm proteins nephrin and Neph3/filtrin, respectively. In humans, mutations in nephrin and decreased expression of Neph3 are associated with podocytopathy and protein-losing nephropathy. The base substitutions change a glycine to arginine in the fibronectin type 3 domain of nephrin and a proline to arginine in a conserved proline-rich region in Neph3. These novel mutations are not described in other species, nor were they found in 550 dogs of 105 other breeds, except in 3 dogs, including an affected Airedale terrier, homozygous for both substitutions. Risk for nephropathy is highest in dogs homozygous for the mutations (OR = 9.06; 95 % CI = 4.24–19.35). This is the first molecular characterization of an inherited podocytopathy in dogs and may serve as a model for continued studies of complex genetic and environmental interactions in glomerular disease.  相似文献   

18.
Cytochrome P450 (CYP) 2C19 is essential for the metabolism of clinically used drugs including omeprazole, proguanil, and S-mephenytoin. This hepatic enzyme exhibits genetic polymorphism with inter-individual variability in catalytic activity. This study aimed to characterise the functional consequences of CYP2C19*23 (271 G>C, 991 A>G) and CYP2C19*24 (991 A>G, 1004 G>A) in vitro. Mutations in CYP2C19 cDNA were introduced by site-directed mutagenesis, and the CYP2C19 wild type (WT) as well as variants proteins were subsequently expressed using Escherichia coli cells. Catalytic activities of CYP2C19 WT and those of variants were determined by high performance liquid chromatography-based essay employing S-mephenytoin and omeprazole as probe substrates. Results showed that the level of S-mephenytoin 4′-hydroxylation activity of CYP2C19*23 (V max 111.5 ± 16.0 pmol/min/mg, K m 158.3 ± 88.0 μM) protein relative to CYP2C19 WT (V max 101.6 + 12.4 pmol/min/mg, K m 123.0 ± 19.2 μM) protein had no significant difference. In contrast, the K m of CYP2C19*24 (270.1 ± 57.2 μM) increased significantly as compared to CYP2C19 WT (123.0 ± 19.2 μM) and V max of CYP2C19*24 (23.6 ± 2.6 pmol/min/mg) protein was significantly lower than that of the WT protein (101.6 ± 12.4 pmol/min/mg). In vitro intrinsic clearance (CLint = V max/K m) for CYP2C19*23 protein was 85.4 % of that of CYP2C19 WT protein. The corresponding CLint value for CYP2C19*24 protein reduced to 11.0 % of that of WT protein. These findings suggested that catalytic activity of CYP2C19 was not affected by the corresponding amino acid substitutions in CYP2C19*23 protein; and the reverse was true for CYP2C19*24 protein. When omeprazole was employed as the substrate, K m of CYP2C19*23 (1911 ± 244.73 μM) was at least 100 times higher than that of CYP2C19 WT (18.37 ± 1.64 μM) and V max of CYP2C19*23 (3.87 ± 0.74 pmol/min/mg) dropped to 13.4 % of the CYP2C19 WT (28.84 ± 0.61 pmol/min/mg) level. Derived from V max/K m, the CLint value of CYP2C19 WT was 785 folds of CYP2C19*23. K m and V max values could not be determined for CYP2C19*24 due to its low catalytic activity towards omeprazole 5′-hydroxylation. Therefore, both CYP2C19*23 and CYP2C19*24 showed marked reduced activities of metabolising omeprazole to 5-hydroxyomeprazole. Hence, carriers of CYP2C19*23 and CYP2C19*24 allele are potentially poor metabolisers of CYP2C19-mediated substrates.  相似文献   

19.
This study aimed at investigating the effects of a commercially available energy drink on shooting precision, jump performance and endurance capacity in young basketball players. Sixteen young basketball players (first division of a junior national league; 14.9 ± 0.8 years; 73.4 ± 12.4 kg; 182.3 ± 6.5 cm) volunteered to participate in the research. They ingested either (a) an energy drink that contained 3 mg of caffeine per kg of body weight or (b) a placebo energy drink with the same appearance and taste. After 60 min for caffeine absorption, they performed free throw shooting and three-point shooting tests. After that, participants performed a maximal countermovement jump (CMJ), a repeated maximal jumps test for 15 s (RJ-15), and the Yo–Yo intermittent recovery test level 1 (Yo–Yo IR1). Urine samples were obtained before and 30 min after testing. In comparison to the placebo, the ingestion of the caffeinated energy drink did not affect precision during the free throws (Caffeine = 70.7 ± 11.8 % vs placebo = 70.3 ± 11.0 %; P = 0.45), the three-point shooting test (39.9 ± 11.8 vs 38.1 ± 12.8 %; P = 0.33) or the distance covered in the Yo–Yo IR1 (2,000 ± 706 vs 1,925 ± 702 m; P = 0.19). However, the energy drink significantly increased jump height during the CMJ (38.3 ± 4.4 vs 37.5 ± 4.4 cm; P < 0.05) mean jump height during the RJ-15 (30.2 ± 3.6 vs 28.8 ± 3.4 cm; P < 0.05) and the excretion of urinary caffeine (1.2 ± 0.7 vs 0.1 ± 0.1 μg/mL; P < 0.05). The intake of a caffeine-containing energy drink (3 mg/kg body weight) increased jump performance although it did not affect basketball shooting precision.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号