首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been demonstrated that precooling with ice slurry ingestion enhances endurance exercise capacity in the heat. However, no studies have yet evaluated the optimal timing of ice slurry ingestion for precooling. This study aimed to investigate the effects of varying the timing of ice slurry ingestion for precooling on endurance exercise capacity in a warm environment. Ten active male participants completed 3 experimental cycling trials to exhaustion at 55% peak power output (PPO) after 15 min of warm-up at 30% PPO at 30 °C and 80% relative humidity. Three experimental conditions were set: no ice slurry ingestion (CON), pre-warm-up ice slurry ingestion (−1 °C; 7.5 g kg−1) (PRE), and post-warm-up ice slurry ingestion (POST). Rectal and mean skin temperatures at the beginning of exercise in the POST condition (37.1±0.2 °C, 33.8±0.9 °C, respectively) were lower than those in the CON (37.5±0.3 °C; P<0.001, 34.8±0.8 °C; P<0.01, respectively) and PRE (37.4±0.2 °C; P<0.01, 34.6±0.7 °C; P<0.01, respectively) conditions. These reductions increased heat storage capacity and resulted in improved exercise capacity in the POST condition (60.2±8.7 min) compared to that in the CON (52.0±11.9 min; effect size [ES]=0.78) and PRE (56.9±10.4 min; ES=0.34) conditions. Ice slurry ingestion after warm-up effectively reduced both rectal and skin temperatures and increased cycling time to exhaustion in a warm environment. Timing ice slurry ingestion to occur after warm-up may be effective for precooling in a warm environment.  相似文献   

2.
Body cooling before exercise (i.e. pre-cooling) reduces physiological strain in humans during endurance exercise in temperate and warm environments, usually improving performance. This study examined the effectiveness of pre-cooling humans by ice-vest and cold (3 degrees C) air, with (LC) and without (LW) leg cooling, in reducing heat strain and improving endurance performance in the heat (35 degrees C, 60% RH). Nine habitually-active males completed three trials, involving pre-cooling (LC and LW) or no pre-cooling (CON: 34 degrees C air) before 35-min cycle exercise: 20 min at approximately 65% VO2peak then a 15-min work-performance trial. At exercise onset, mean core (Tc, from oesophagus and rectum) and skin temperatures, forearm blood flow (FBF), heart rate (HR), and ratings of exertion, body temperature and thermal discomfort were lower in LW and LC than CON (P<0.05). They remained lower at 20 min [e.g. Tc: CON 38.4+/-0.2 (+/-S.E.), LW 37.9+/-0.1, and LC 37.8+/-0.1 degrees C; HR: 177+/-3, 163+/-3 and 167+/-3 b.p.m.), except that FBF was equivalent (P=0.10) between CON (15.5+/-1.6) and LW (13.6+/-1.0 ml.100 ml tissue(-1) x min(-1)). Subsequent power output was higher in LW (2.95+/-0.24) and LC (2.91+/-0.25) than in CON (2.52+/-0.28 W kg(-1), P=0.00, N=8), yet final Tc remained lower. Pre-cooling by ice-vest and cold air effectively reduced physiological and psychophysical strain and improved endurance performance in the heat, irrespective of whether thighs were warmed or cooled.  相似文献   

3.
Active individuals often perform exercises in the heat following heat stress exposure (HSE) regardless of the time-of-day and its variation in body temperature. However, there is no information concerning the diurnal effects of a rise in body temperature after HSE on subsequent exercise performance in a hot environnment. This study therefore investigated the diurnal effects of prior HSE on both sprint and endurance exercise capacity in the heat. Eight male volunteers completed four trials which included sprint and endurance cycling tests at 30 °C and 50% relative humidity. At first, volunteers completed a 30-min pre-exercise routine (30-PR): a seated rest in a temperate environment in AM (AmR) or PM (PmR) (Rest trials); and a warm water immersion at 40 °C to induce a 1 °C increase in core temperature in AM (AmW) or PM (PmW) (HSE trials). Volunteers subsequently commenced exercise at 0800 h in AmR/AmW and at 1700 h in PmR/PmW. The sprint test determined a 10-sec maximal sprint power at 5 kp. Then, the endurance test was conducted to measure time to exhaustion at 60% peak oxygen uptake. Maximal sprint power was similar between trials (= 0.787). Time to exhaustion in AmW (mean±SD; 15 ± 8 min) was less than AmR (38 ± 16 min; < 0.01) and PmR (43 ± 24 min; < 0.01) but similar with PmW (24 ± 9 min). Core temperature was higher from post 30-PR to 6 min into the endurance test in AmW and PmW than AmR and PmR (< 0.05) and at post 30-PR and the start of the endurance test in PmR than AmR (< 0.05). The rate of rise in core temperature during the endurance test was greater in AmR than AmW and PmW (< 0.05). Mean skin temperature was higher from post 30-PR to 6 min into the endurance test in HSE trials than Rest trials (< 0.05). Mean body temperature was higher from post 30-PR to 6 min into the endurance test in AmW and PmW than AmR and PmR (< 0.05) and the start to 6 min into the endurance test in PmR than AmR (< 0.05). Convective, radiant, dry and evaporative heat losses were greater on HSE trials than on Rest trials (< 0.001). Heart rate and cutaneous vascular conductance were higher at post 30-PR in HSE trials than Rest trials (< 0.05). Thermal sensation was higher from post 30-PR to the start of the endurance test in AmW and PmW than AmR and PmR (< 0.05). Perceived exertion from the start to 6 min into the endurance test was higher in HSE trials than Rest trials (< 0.05). This study demonstrates that an approximately 1 °C increase in core temperature by prior HSE has the diurnal effects on endurance exercise capacity but not on sprint exercise capacity in the heat. Moreover, prior HSE reduces endurance exercise capacity in AM, but not in PM. This reduction is associated with a large difference in pre-exercise core temperature between AM trials which is caused by a relatively lower body temperature in the morning due to the time-of-day variation and contributes to lengthening the attainment of high core temperature during exercise in AmR.  相似文献   

4.
We investigated the effect of exercise in the heat on both intracellular and extracellular Hsp72 in athletes with a prior history of exertional heat illness (EHI). Two groups of runners, one consisting of athletes who had a previous history of EHI, and a control group (CON) of similar age (29.7 ± 1.2 and 29.1 ± 2 years CON vs. EHI) and fitness [maximal oxygen consumption $(\dot V{{\text{O}}_2}\hbox{max} )$ 65.7 ± 2 and 64.5 ± 3 ml kg?1 min?1 CON vs. EHI] were recruited. Seven subjects in each group ran on a treadmill for 1 h at 72 % $\dot V{{\text{O}}_2}\hbox{max}$ in warm conditions (30 °C, 40 % RH) reaching rectal temperatures of ~39.3 (CON) and ~39.2 °C (EHI). Blood was collected every 10 min during exercise and plasma was analysed for extracellular Hsp72. Intracellular Hsp72 levels were measured in both monocytes and lymphocytes before and immediately after the 60-min run, and then after 1 h recovery at an ambient temperature of 24 °C. Plasma Hsp72 increased from 1.18 ± 0.14 and 0.86 ± 0.08 ng/ml (CON vs. EHI) at rest to 4.56 ± 0.63 and 4.04 ± 0.45 ng/ml (CON vs. EHI, respectively) at the end of exercise (p < 0.001), with no difference between groups. Lymphocyte Hsp72 was lower in the EHI group at 60 min of exercise (p < 0.05), while monocyte Hsp72 was not different between groups. The results of the present study suggest that the plasma Hsp72 response to exercise in athletes with a prior history of EHI remained similar to that of the CON group, while the lymphocyte Hsp72 response was reduced.  相似文献   

5.
This study determined changes in plasma amino acid concentration in late-gestating (beginning 58 ± 1.02 days prior to calving), primiparous, winter-grazing range heifers receiving wheat middling-based supplement without (CON) or with rumen-protected methionine (MET) to provide 15 g dl-MET each day. Plasma was collected on days ?2 and 0 (start of MET supplementation just prior to individually receiving supplement at 0700 hours). Plasma was sampled again on days 40, 42 and 44 prior to supplementation at 0700 and 1100 hours (4 h after receiving daily supplement). Data were analyzed with cow as the experimental unit. Continuous variables were analyzed by the main effects of treatment, date, or time and their interaction when appropriate. Comparable BW (P = 0.32) and BCS (P = 0.83) over the 44-day metabolism trial were found between both CON- and MET-fed heifers. MET-supplemented heifers had greater (P < 0.01) plasma concentrations of methionine indicating that the rumen-protection technology successfully delivered methionine to the small intestine. Supplementation with rumen-protected dl-MET caused a significant supplement × date interaction for glutamine (P = 0.03), glycine (P = 0.02), methionine (P < 0.01), and serine (P = 0.05). In addition, trends for supplement × date interactions were detected for leucine (P = 0.07), threonine (P = 0.09), valine (P = 0.08), total amino acids (TAA; P = 0.08), non essential amino acids (NEAA; P = 0.08), branched chain amino acids (BCAA; P = 0.08), and glucogenic amino acids (GLUCO; P = 0.08). These results suggest that the BCAA (leucine and valine) were utilized more efficiently with MET supplemented heifers compared to CON supplemented heifers. Plasma AA concentrations for glutamic acid (P < 0.01), histidine (P = 0.01), tyrosine (P < 0.01), and EAA (P < 0.01), all decreased throughout the study. These results further confirm methionine is a limiting amino acid in forage fed late-gestating heifers and further suggests the limitation when grazing dormant range forages as shown by improved utilization of other plasma amino acids when supplemental methionine was provided.  相似文献   

6.
This study aimed at investigating the effects of a commercially available energy drink on shooting precision, jump performance and endurance capacity in young basketball players. Sixteen young basketball players (first division of a junior national league; 14.9 ± 0.8 years; 73.4 ± 12.4 kg; 182.3 ± 6.5 cm) volunteered to participate in the research. They ingested either (a) an energy drink that contained 3 mg of caffeine per kg of body weight or (b) a placebo energy drink with the same appearance and taste. After 60 min for caffeine absorption, they performed free throw shooting and three-point shooting tests. After that, participants performed a maximal countermovement jump (CMJ), a repeated maximal jumps test for 15 s (RJ-15), and the Yo–Yo intermittent recovery test level 1 (Yo–Yo IR1). Urine samples were obtained before and 30 min after testing. In comparison to the placebo, the ingestion of the caffeinated energy drink did not affect precision during the free throws (Caffeine = 70.7 ± 11.8 % vs placebo = 70.3 ± 11.0 %; P = 0.45), the three-point shooting test (39.9 ± 11.8 vs 38.1 ± 12.8 %; P = 0.33) or the distance covered in the Yo–Yo IR1 (2,000 ± 706 vs 1,925 ± 702 m; P = 0.19). However, the energy drink significantly increased jump height during the CMJ (38.3 ± 4.4 vs 37.5 ± 4.4 cm; P < 0.05) mean jump height during the RJ-15 (30.2 ± 3.6 vs 28.8 ± 3.4 cm; P < 0.05) and the excretion of urinary caffeine (1.2 ± 0.7 vs 0.1 ± 0.1 μg/mL; P < 0.05). The intake of a caffeine-containing energy drink (3 mg/kg body weight) increased jump performance although it did not affect basketball shooting precision.  相似文献   

7.
Effect of tryptophan and of glucose on exercise capacity of horses   总被引:1,自引:0,他引:1  
We hypothesized that central fatigue may have a role in limitingthe endurance capacity of horses. Therefore, we tested the effect ofinfusing tryptophan and/or glucose on endurance time and plasmaconcentrations of free tryptophan and other substrates thought toaffect tryptophan uptake into the brain of seven mares (3-4 yr ofage, 353-435 kg) that ran on a treadmill at 50% of maximalO2 consumption to fatigue. Withuse of a counterbalanced crossover design, the horses were infused withtryptophan (100 mg/kg in saline solution) or a similar volume of salinesolution (placebo) before exercise. During exercise, horses receivedinfusions of glucose (2 g/min, 50% wt/vol) or a similar volume ofsaline. Thus the treatments were 1)tryptophan and glucose (T & G), 2) tryptophan and placebo (T & P), 3)placebo and glucose (P & G), and 4)placebo and placebo (P & P). Mean heart rate, hematocrit, andconcentration of plasma total solids before and during exercise weresimilar for all trials. Mean time to exhaustion was reduced (P < 0.05) for T & P and T & Gcompared with P & P [86.1 ± 6.9 and 87.1 ± 6.8 vs. 102.3 ± 10.3 (SE) min], whereas endurance for P & G(122.4 ± 11.9 min) was greater than for all other trials (P < 0.05). Compared withnontryptophan trials, during the tryptophan trials plasma prolactinincreased (P < 0.05) nearlythreefold before exercise and almost twofold early in exercise. Muscleglycogen concentrations were reduced(P < 0.05) below preexercise values in the P & G and P & P trials only. However, glucose infusions (P & G)did not affect (P > 0.05)concentrations of plasma free fatty acids or ratios of branched-chainamino acids to free tryptophan. In conclusion, tryptophan infusionreduced endurance time, which was consistent with the central fatiguehypothesis. The failure of glucose infusion to alleviate the effects oftryptophan and the absence of significant muscle glycogen reduction inthe tryptophan trials suggest that the early onset of fatigue in thetryptophan trials is not due to a lack of readily available substrate.

  相似文献   

8.
Endurance performance is a complex phenotype subject to the influence of both environmental and genetic factors. Although the last decade has seen a variety of specific genetic factors proposed, many in metabolic pathways, each is likely to make a limited contribution to an ‘elite’ phenotype: it seems more likely that such status depends on the simultaneous presence of multiple such variants. The aim of the study was to investigate individually and in combination the association of common metabolic gene polymorphisms with endurance athlete status, the proportion of slow-twitch muscle fibers and maximal oxygen consumption. A total of 1,423 Russian athletes and 1,132 controls were genotyped for 15 gene polymorphisms, of which most were previously reported to be associated with athlete status or related intermediate phenotypes. Muscle fiber composition of m. vastus lateralis in 45 healthy men was determined by immunohistochemistry. Maximal oxygen consumption of 50 male rowers of national competitive standard was determined during an incremental test to exhaustion on a rowing ergometer. Ten ‘endurance alleles’ (NFATC4 Gly160, PPARA rs4253778 G, PPARD rs2016520 C, PPARGC1A Gly482, PPARGC1B 203Pro, PPP3R1 promoter 5I, TFAM 12Thr, UCP2 55Val, UCP3 rs1800849 T and VEGFA rs2010963 C) were first identified showing discrete associations with elite endurance athlete status. Next, to assess the combined impact of all 10 gene polymorphisms, all athletes were classified according to the number of ‘endurance’ alleles they possessed. The proportion of subjects with a high (≥9) number of ‘endurance’ alleles was greater in the best endurance athletes compared with controls (85.7 vs. 37.8%, P = 7.6 × 10?6). The number of ‘endurance’ alleles was shown to be positively correlated (r = 0.50; P = 4.0 × 10?4) with the proportion of fatigue-resistant slow-twitch fibers, and with maximal oxygen consumption (r = 0.46; P = 7.0 × 10?4). These data suggest that the likelihood of becoming an elite endurance athlete depends on the carriage of a high number of endurance-related alleles.  相似文献   

9.
A double-blind study of the effects of supplementing with selenium vs. placebo on the physiological responses to acute and chronic exercise was conducted in 24 healthy, nonsmoking males, mean age 22.9±2.1 yr, randomly divided into two groups of 12 (Pla/Sel). After a controlled period in the absence of training, all subjects were put on an individualized endurance training program with the same rules of progression and overload (3 sessions/wk×10 wk). Supplementation, either real (240 μg of organic selenium/d in Sel group) or imaginary (Pla group) was administered during the same period. In each of the conditions Pre- and Post- (training ± sel supplementation), muscle, plasma, and systemic parameters were determined before (BF) and after (AF) acute exercise, involving the repetition of muscle work cycles separated by 5-min recovery periods, combining 20 min at 65% and a maximal duration of 100% VO2 max of running on a treadmill, leading the subjects to exhaustion between 2 h 40 min and 3 h 30 min. Changes in parameters as a function of three independent variables:
  1. Acute exercise (E);
  2. Chronic exercise (T); and
  3. Selenium supplementing (S)
were tested with ANOVA and the Student\rsst-test on paired series. Among the variables examined, muscle glutathione peroxidase (GPx) presented a remarkable behavior. Enzymatic activity:
  1. Decreased significantly (p<0.05,n=24) between the beginning and the end of acute exercise: 29.6±12 vs. 20.8±8.1 IU·g protein?1 in Pre conditions;
  2. Remained at the same level in resting conditions between the beginning and end of training (from Pre to Post) regardless of the group: 33.5±10.8 vs. 32.3±19.8 and 25.7±12.4 vs. 23.5±10.2 IU·g protein?1 in Pla and Sel subjects, respectively; and
  3. Increased from 23.5±10.2 to 37.3±28.5 (P=0.057) during acute exercise in Post-conditions (after training) in supplemented subjects (Sel group).
The situation was as if acute exercise played the role of allosteric stimulator of the GPx reaction in muscle.  相似文献   

10.
This study examined the response in terms of heart rate (HR), respiratory rate (RR), haematocrit (Htc), rectal temperature (RT), and some plasma variables in Icelandic horses of different sexes and ages performing the riding assessment in a breed evaluation field test (BEFT). The study was conducted in Iceland on 266 horses (180 mares and 86 stallions, divided into four age groups; 4, 5, 6 and ⩾7 years old). RT and RR were recorded and blood samples were taken before the warm-up and after the riding assessment. Horse HR, velocity and distance were recorded during the warm-up, the riding assessment and a 5-min recovery period. The distance covered in the BEFT was 2.9±0.4 km (range: 1.8 to 3.8 km, n=248), the duration was 9:37±1:22 min:s (range: 5:07 to 15:32 min:s, n=260) and the average speed was 17.8±1.4 km/h (range: 13.2 to 21.3 km/h, n=248). Average HR was 184±13 b.p.m. (range: 138 to 210 b.p.m., n=102) and peak HR 224±9 b.p.m. (range: 195 to 238 b.p.m., n=102), and 36% of the BEFT was performed at HR ⩾200 b.p.m. Post-exercise plasma lactate concentration (Lac) was 18.0±6.5 mmol/l (range: 2.1 to 34.4 mmol/l, n=266), and there was an increase in total plasma protein, plasma creatine kinase and aspartate amino transferase concentration, as well as RR, RT and Htc. Stallions covered a longer total distance (in the warm-up and BEFT) (P<0.05), at a faster speed during BEFT (P<0.001) than mares and had higher Htc and lower HR and post-exercise Lac values. There were few effects of age, but the 4- and 5-year-old horses had lower Htc than older horses and 4-year-old horses had higher post-exercise RR than older horses, although they were ridden for a shorter distance, shorter duration and at lower peak velocity (P<0.1). The results showed that the riding assessment in the BEFT is a high-intensity exercise. The results also showed that aerobic fitness was higher in stallions and that age had a limited effect on the physiological response. It is suggested that these results should be used as a guide for the development of training programmes and fitness tests in Icelandic horses that would improve both performance and welfare of the horse.  相似文献   

11.
《Journal of thermal biology》2001,26(4-5):365-370
(1) This study describes the performance and the acute physiological responses of heat acclimatised cyclists during three sets of 5×20 s sprints followed by a final sprint to exhaustion in temperate (mean±standard deviation 20.2±0.4°C; 46±2% humidity, 108.5±1.4 kPa water vapour pressure) and in warm conditions (30.5±0.4°C; 47±10% humidity, 206.8±6.4 kPa water vapour pressure). (2) Oxygen consumption was greater in the warm condition and there was no evidence of an increased reliance on anaerobic metabolism as has been reported for submaximal exercise in the heat. (3) Subjects lost 2.1±0.2% of body mass in 53.8±0.2 min during the warm condition. While the duration of the time to exhaustion final sprint was 50±13 s during the warm condition it was 60±7 s for the temperate condition (p=0.020).  相似文献   

12.
Limited research examining the effect of taurine (TA) ingestion on human exercise performance exists. The aim of this study was to investigate the effect of acute ingestion of 1,000 mg of TA on maximal 3-km time trial (3KTT) performance in trained middle-distance runners (MDR). Eight male MDR (mean ± SD: age 19.9 ± 1.2 years, body mass 69.4 ± 6.6 kg, height 180.5 ± 7.5 cm, 800 m personal best time 121.0 ± 5.3 s) completed TA and placebo (PL) trials 1 week apart in a double-blind, randomised, crossover designed study. Participants consumed TA or PL in capsule form on arrival at the laboratory followed by a 2-h ingestion period. At the end of the ingestion period, participants commenced a maximal simulated 3KTT on a treadmill. Capillary blood lactate was measured pre- and post-3KTT. Expired gas, heart rate (HR), ratings of perceived exertion (RPE), and split times were measured at 500-m intervals during the 3KTT. Ingestion of TA significantly improved 3KTT performance (TA 646.6 ± 52.8 s and PL 658.5 ± 58.2 s) (p = 0.013) equating to a 1.7 % improvement (range 0.34–4.24 %). Relative oxygen uptake, HR, RPE and blood lactate did not differ between conditions (p = 0.803, 0.364, 0.760 and 0.302, respectively). Magnitude-based inference results assessing the likeliness of a beneficial influence of TA were 99.3 %. However, the mechanism responsible for this improved performance is unclear. TA’s potential influence on exercise metabolism may involve interaction with the muscle membrane, the coordination or the force production capability of involved muscles. Further research employing more invasive techniques may elucidate TA’s role in improving maximal endurance performance.  相似文献   

13.
Anti-convulsant effects of physical exercise and lipoic acid (LA), also referred to as thioctic acid with antioxidant activity, were investigated using chemical induced seizure model. We investigated the synergic effect of physical exercise and LA on kainic acid-induced seizure activity caused by oxidative stress. After 8 weeks of swimming training, body weight decreased and endurance capacity increased significantly compared to sedentary mice. Kainic acid (30 mg/kg, i.p.) evoked seizure activity 5 min after injection, and seizure activity peaked approximately 80 min after kainic acid treatment. Median seizure activity score in KA only treated group was 4.55 (range 0.5–5), 3.45 for “LA + KA” group (range 0.5–4.3), 3.12 for “EX + KA” group (range 0.05–3.4, p < 0.05 vs. “KA only” group), 2.13 for “EX + LA + KA” group (range 0.5–3.0, p < 0.05 vs. “EX + KA” group). Also, there was a synergic cooperation of exercise and LA in lowering the mortality in kainic acid treated mice (χ2 = 5.45, p = 0.031; “EX + KA” group vs. “LA + EX + KA” group). In addition, the synergic effect of exercise and LA was found in PGx activity compared to separated treatment (“LA + EX + KA”: 37.3 ± 1.36; p < 0.05 vs. “LA + KA” and “EX + KA” group). These results indicate that physical exercise along with LA could be a more efficient method for modulating seizure activity and oxidative stress.  相似文献   

14.
15.
The aim of this study was to determine the effectiveness of a 7-day oral supplementation with branched-chain amino acids (BCAA) to prevent muscle damage during a marathon. Forty-six experienced runners were randomly divided into two groups, one with BCAA supplementation (n = 25, supplemented with 5 g day?1 of powdered 1:0.5:0.5 leucine:isoleucine:valine, during the 7 days prior to the competition) and the other as a control group (n = 21, supplemented with an isocaloric placebo). Before the marathon race and within 3 min of finishing, leg muscle power was measured with a maximal countermovement jump and a urine sample was obtained. During the race, running pace was measured by means of a time-chip. Myoglobin concentration was determined in the urine samples as an indirect marker of muscle damage. A visual analog scale (0–10 points) was used to assess leg muscle pain during the race. In the BCAA group, the mean running pace during the marathon was similar to the control group (3.3 ± 0.4 vs. 3.3 ± 0.5 m s?1, respectively, 0.98). The pre- to post-race reduction in muscle power was similar in both BCAA and control groups (?23.0 ± 16.1 vs. ?17.3 ± 13.8 %, P = 0.13). Post-race urine myoglobin concentration was similar in both BCAA and control groups (5.4 ± 7.5 vs. 4.5 ± 8.6 μg mL?1, P = 0.70). Finally, there were no differences between groups in the perceived muscle pain during the race (6 ± 1 vs. 5 ± 1 points, P = 0.80). A 7-day supplementation of BCAA (5 g day?1) did not increase the running performance during a marathon. Furthermore, BCAA supplementation was ineffective to prevent muscle power loss, muscle damage or perceived muscle pain during a marathon race.  相似文献   

16.
The objective of this investigation was to achieve an understanding about the relationship between heat stress and performance limitation when wearing a two-layerfire-resistant light-weight workwear (full-clothed ensemble) compared to an one-layer short sports gear (semi-clothed ensemble) in an exhaustive, stressful situation under moderate thermal condition (25 °C). Ten well trained male subjects performed a strenuous walking protocol with both clothing ensembles until exhaustion occurred in a climatic chamber. Wearing workwear reduced the endurance performance by 10% (p=0.007) and the evaporation by 21% (p=0.003), caused a more pronounced rise in core temperature during submaximal walking (0.7±0.3 vs. 1.2±0.4 °C; p≤0.001) and from start till exhaustion (1.4±0.3 vs. 1.8±0.5 °C; p=0.008), accelerated sweat loss (13±2 vs. 15±3 g min−1; p=0.007), and led to a significant higher heart rate at the end of cool down (103±6 vs. 111±7 bpm; p=0.004). Correlation analysis revealed that core temperature development during submaximal walking and evaporation may play important roles for endurance performance. However, a critical core temperature of 40 °C, which is stated to be a crucial factor for central fatigue and performance limitation, was not reached either with the semi-clothed or the full-clothed ensemble (38.3±0.4 vs. 38.4±0.5 °C). Additionally, perceived exertion did not increase to a higher extent parallel with the rising core temperature with workwear which would substantiate the critical core temperature theory. In conclusion, increased heat stress led to cardiovascular exercise limitation rather than central fatigue.  相似文献   

17.
The aim of this study was to observe the intracellular heat shock protein 72 (HSP72) and heme oxygenase-1 (HSP32) response to prolonged interval cycling following the ingestion of carbohydrates (CHO) and sodium bicarbonate (NaHCO3). Six recreationally active males (mean ± SD; age 23.2 ± 2.9 years, height 179.5 ± 5.5 cm, body mass 76.5 ± 6.8 kg, and peak power output 315 ± 36 W) volunteered to complete a 90 min interval cycling exercise on four occasions. The trials were completed in a random and blinded manner following ingestion of either: placebo and an artificial sweetener (P–P), NaHCO3 and sweetener (B–P), placebo and CHO (P–CHO), and NaHCO3 and CHO (B–CHO). Both HSP72 and HSP32 were significantly increased in monocytes and lymphocytes from 45 min post-exercise (p ≤ 0.039), with strong relationships between both cell types (HSP72, r = 0.83; HSP32, r = 0.89). Exogenous CHO had no influence on either HSP72 or HSP32, but the ingestion of NaHCO3 significantly attenuated HSP32 in monocytes and lymphocytes (p ≤ 0.042). In conclusion, the intracellular stress protein response to 90 min interval exercise is closely related in monocytes and lymphocytes, and HSP32 appears to be attenuated with a pre-exercise alkalosis.  相似文献   

18.
Objectives were to determine the effects of advancing gestation, maternal nutrient restriction during early and mid-gestation, and realimentation on fetal liver and jejunal mass and energy use in both dams and fetuses. On day 30 of pregnancy, multiparous, non-lactating beef cows (initial BW=621±11.3 kg and body condition score=5.1±0.1) were assigned to one of the two dietary treatments: control (CON; 100% requirements; n=18) and restricted (R; 60% requirements; n=28). On day 85, cows were slaughtered (CON, n=6; R, n=6), and remaining cows continued on control (CC; n=12) and restricted (RR; n=12) diets, or were realimented to the control diet (RC; n=11). On day 140, cows were slaughtered (CC, n=6; RR, n=6; RC, n=5), remaining cows continued on the control diet (CCC, n=6; RCC, n=5), or were realimented to the control diet (RRC, n=6). On day 254, all remaining cows were slaughtered. Maternal liver O2 consumption linearly increased (P⩽0.04) and jejunal weight (g/kg) linearly decreased (P=0.04) as gestation advanced in CON groups. Fetal BW, and hepatic and small intestinal absolute mass, protein content and O2 consumption linearly increased (P⩽0.04) as pregnancy advanced in CON groups. However, mass and O2 consumption relative to BW linearly decreased (P⩽0.001) in the fetal liver in CON groups. When analyzing the effects of dietary treatment, at day 85, fetal jejunal O2 consumption (mol/min per kg BW) was lower (P=0.02) in the R group when compared with the CON group. At day 140, maternal hepatic weight (g) was lower (P=0.02) in RC and RR cows when compared with CC, and fetal jejunual O2 consumption (mmol/min per mg tissue and mmol/min per g protein) was greater (P⩽0.02) in RC when compared with RR. At day 254, maternal hepatic O2 consumption (absolute and relative to BW) was lower (P⩽0.04) in the RCC cows when compared with RRC. Fetal hepatic weight was lower (P=0.05) in the CCC group when compared with RCC and RRC. The changes in response to nutrient restriction and realimentation in both the dam and fetus may indicate an adaptation to a lower amount of available nutrients by altering tissue mass and metabolism.  相似文献   

19.
The anion nitrate—abundant in our diet—has recently emerged as a major pool of nitric oxide (NO) synthase-independent NO production. Nitrate is reduced stepwise in vivo to nitrite and then NO and possibly other bioactive nitrogen oxides. This reductive pathway is enhanced during low oxygen tension and acidosis. A recent study shows a reduction in oxygen consumption during submaximal exercise attributable to dietary nitrate. We went on to study the effects of dietary nitrate on various physiological and biochemical parameters during maximal exercise. Nine healthy, nonsmoking volunteers (age 30 ± 2.3 years, VO2max 3.72 ± 0.33 L/min) participated in this study, which had a randomized, double-blind crossover design. Subjects received dietary supplementation with sodium nitrate (0.1 mmol/kg/day) or placebo (NaCl) for 2 days before the test. This dose corresponds to the amount found in 100–300 g of a nitrate-rich vegetable such as spinach or beetroot. The maximal exercise tests consisted of an incremental exercise to exhaustion with combined arm and leg cranking on two separate ergometers. Dietary nitrate reduced VO2max from 3.72 ± 0.33 to 3.62 ± 0.31 L/min, P < 0.05. Despite the reduction in VO2max the time to exhaustion trended to an increase after nitrate supplementation (524 ± 31 vs 563 ± 30 s, P = 0.13). There was a correlation between the change in time to exhaustion and the change in VO2max (R2 = 0.47, P = 0.04). A moderate dietary dose of nitrate significantly reduces VO2max during maximal exercise using a large active muscle mass. This reduction occurred with a trend toward increased time to exhaustion implying that two separate mechanisms are involved: one that reduces VO2max and another that improves the energetic function of the working muscles.  相似文献   

20.
Incidence of cardiovascular events follows a circadian rhythm with peak occurrence during morning. Disturbance of autonomic control caused by exercise had raised the question of the safety in morning exercise and its recovery. Furthermore, we sought to investigate whether light aerobic exercise performed at night would increase HR and decrease HRV during sleep. Therefore, the aim of this study was to test the hypothesis that morning exercise would delay HR and HRV recovery after light aerobic exercise, additionally, we tested the impact of late night light aerobic exercise on HR and HRV during sleep in sedentary subjects. Nine sedentary healthy men (age 24 ± 3 yr; height 180 ± 5 cm; weight 79 ± 8 kg; fat 12 ± 3%; mean±SD) performed 35 min of cycling exercise, at an intensity of first anaerobic threshold, at three times of day (7 a.m., 2 p.m. and 11 p.m.). R-R intervals were recorded during exercise and during short-time (60 min) and long-time recovery (24 hours) after cycling exercise. Exercise evoked increase in HR and decrease in HRV, and different times of day did not change the magnitude (p < 0.05 for time). Morning exercise did not delay exercise recovery, HR was similar to rest after 15 minutes recovery and HRV was similar to rest after 30 minutes recovery at morning, afternoon, and night. Low frequency power (LF) in normalized unites (n.u.) decreased during recovery when compared to exercise, but was still above resting values after 60 minutes of recovery. High frequency power (HF-n.u.) increased after exercise cessation (p < 0.05 for time) and was still below resting values after 60 minutes of recovery. The LF/HF ratio decreased after exercise cessation (p < 0.05 for time), but was still different to baseline levels after 60 minutes of recovery. In conclusion, morning exercise did not delay HR and HRV recovery after light aerobic cycling exercise in sedentary subjects. Additionally, exercise performed in the night did change autonomic control during the sleep. So, it seems that sedentary subjects can engage physical activity at any time of day without higher risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号