首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell surface movements and the intracellular spatial patterns and dynamics of actin filament (F-actin) were investigated in living and formalin-fixed cells of Dictyostelium discoideum by confocal microscopy. Excitation waves of F-actin assembly developed and propagated several micrometers at up to 26 microm/min in cells which had been intracellularly loaded with fluorescently labeled actin monomer. Wave propagation and extinction corresponded with the initiation and attenuation of pseudopodium extension and cell advance, respectively. The identification of chemical waves was supported by the ring, sphere, spiral and scroll wave patterns, which were observed in the extensions of fixed cells stained with phalloidin-rhodamine, and by the similar, asymmetrical [F-actin] distribution in wavefronts in living and fixed cells. These F-actin patterns and dynamics in Dictyostelium provide evidence for a new supramolecular state of actin, which propagates as a self-organized, reaction-diffusion wave of reversible F-actin assembly and affects pseudopodium extension. Actin's properties of oscillation and self-organization might also fundamentally determine the nature of the eukaryotic cell's reactions of adaptation, timing and signal response.  相似文献   

2.
The crawling locomotion and shape of eukaryotic cells have been associated with the stochastic molecular dynamics of actin and its protein regulators, chiefly Arp2/3 and Rho family GTPases, in making a cytoskeleton meshwork within cell extensions. However, the cell's actin-dependent oscillatory shape and extension dynamics may also yield insights into locomotory mechanisms. Confocal observations of live Dictyostelium cells, expressing a green fluorescent protein-actin fusion protein, demonstrate oscillating supramolecular patterns of filamentous actin throughout the cell, which generate pseudopodia at the cell edge. The distinctively dissipative spatio-temporal behavior of these structures provides strong evidence that reversible actin filament assembly propagates as a self-organized, chemical reaction-diffusion wave.  相似文献   

3.
Cell death in the stalk of Dictyostelium discoideum, a prototypic vacuolar cell death, can be studied in vitro using cells differentiating as a monolayer. To identify early events, we examined potentially dying cells at a time when the classical signs of Dictyostelium cell death, such as heavy vacuolization and membrane lesions, were not yet apparent. We observed that most cells proceeded through a stereotyped series of differentiation stages, including the emergence of "paddle" cells showing high motility and strikingly marked subcellular compartmentalization with actin segregation. Paddle cell emergence and subsequent demise with paddle-to-round cell transition may be critical to the cell death process, as they were contemporary with irreversibility assessed through time-lapse videos and clonogenicity tests. Paddle cell demise was not related to formation of the cellulose shell because cells where the cellulose-synthase gene had been inactivated underwent death indistinguishable from that of parental cells. A major subcellular alteration at the paddle-to-round cell transition was the disappearance of F-actin. The Dictyostelium vacuolar cell death pathway thus does not require cellulose synthesis and includes early actin rearrangements (F-actin segregation, then depolymerization), contemporary with irreversibility, corresponding to the emergence and demise of highly polarized paddle cells.  相似文献   

4.
Rac regulation of chemotaxis and morphogenesis in Dictyostelium   总被引:1,自引:0,他引:1       下载免费PDF全文
Park KC  Rivero F  Meili R  Lee S  Apone F  Firtel RA 《The EMBO journal》2004,23(21):4177-4189
Chemotaxis requires localized F-actin polymerization at the site of the plasma membrane closest to the chemoattractant source, a process controlled by Rac/Cdc42 GTPases. We identify Dictyostelium RacB as an essential mediator of this process. RacB is activated upon chemoattractant stimulation, exhibiting biphasic kinetics paralleling F-actin polymerization. racB null cells have strong chemotaxis and morphogenesis defects and a severely reduced chemoattractant-mediated F-actin polymerization and PAKc activation. RacB activation is partly controlled by the PI3K pathway. pi3k1/2 null cells and wild-type cells treated with LY294002 exhibit a significantly reduced second peak of RacB activation, which is linked to pseudopod extension, whereas a PTEN hypomorph exhibits elevated RacB activation. We identify a RacGEF, RacGEF1, which has specificity for RacB in vitro. racgef1 null cells exhibit reduced RacB activation and cells expressing mutant RacGEF1 proteins display chemotaxis and morphogenesis defects. RacGEF1 localizes to sites of F-actin polymerization. Inhibition of this localization reduces RacB activation, suggesting a feedback loop from RacB via F-actin polymerization to RacGEF1. Our findings provide a critical linkage between chemoattractant stimulation, F-actin polymerization, and chemotaxis in Dictyostelium.  相似文献   

5.
Studies in Dictyostelium discoideum have established that the cycle of myosin II bipolar filament assembly and disassembly controls the temporal and spatial localization of myosin II during critical cellular processes, such as cytokinesis and cell locomotion. Myosin heavy chain kinase A (MHCK A) is a key enzyme regulating myosin II filament disassembly through myosin heavy chain phosphorylation in Dictyostelium. Under various cellular conditions, MHCK A is recruited to actin-rich cortical sites and is preferentially enriched at sites of pseudopod formation, and thus MHCK A is proposed to play a role in regulating localized disassembly of myosin II filaments in the cell. MHCK A possesses an aminoterminal coiled-coil domain that participates in the oligomerization, cellular localization, and actin binding activities of the kinase. In the current study, we show that the interaction between the coiled-coil domain of MHCK A and filamentous actin leads to an approximately 40-fold increase in the initial rate of kinase catalytic activity. Actin-mediated activation of MHCK A involves increased rates of kinase autophosphorylation and requires the presence of the coiled-coil domain. Structure-function analyses revealed that the coiled-coil domain alone binds to actin filaments (apparent K(D) = 0.9 microm) and thus mediates the direct interaction with F-actin required for MHCK A activation. Collectively, these results indicate that MHCK A recruitment to actin-rich sites could lead to localized activation of the kinase via direct interaction with actin filaments, and thus this mode of kinase regulation may represent an important mechanism by which the cell achieves localized disassembly of myosin II filaments required for specific changes in cell shape.  相似文献   

6.
At the leading edge of a motile cell, actin polymerizes in close apposition to the plasma membrane. Here we ask how the machinery for force generation at a leading edge is established de novo after the global depolymerization of actin. The depolymerization is accomplished by latrunculin A, and the reorganization of actin upon removal of the drug is visualized in Dictyostelium cells by total internal reflection fluorescence microscopy. The actin filament system is reorganized in three steps. First, F-actin assembles into globular complexes that move along the bottom surface of the cells at velocities up to 10 microm/min. These clusters are transient structures that eventually disassemble, fuse, or divide. In a second step, clusters merge into a contiguous zone at the cell border that spreads and gives rise to actin waves traveling on a planar membrane. Finally, normal cell shape and motility are resumed. These data show that the initiation of actin polymerization is separated in Dictyostelium from front protrusion, and that the coupling of polymerization to protrusion is a later step in the reconstitution of a leading edge.  相似文献   

7.
The fission yeast Schizosaccharomyces pombe is a highly polarized unicellular eukaryote with two opposite growing poles in which F-actin cytoskeleton is focused. The KIN1/PAR-1/MARK protein family is composed of conserved eukaryotic serine/threonine kinases which are involved in cell polarity, microtubule stability or cell cycle regulation. Here, we investigate the function of the fission yeast KIN1/PAR-1/MARK member, kin1p. Using a deletion allele (kin1Delta), we show that kin1 mutation promotes a delay in septation. Kin1p regulates the structure of the new cell end after cytokinesis by modulating cell wall remodeling. Abnormal shaped interphase kin1Delta cells misplace F-actin patches and the premitotic nucleus. Thus, mitotic kin1Delta cells misposition the F-actin ring assembly site that is dependent on the position of the interphase nucleus. The resulting asymmetric cell division produces daughter cells with distinct shapes. Overexpressed kin1p accumulates asymmetrically at the cell cortex and affects cell shape, F-actin organization and microtubules. Our results suggest that correct dosage of kin1p at the cortex is required for spatial organization of the fission yeast cell.  相似文献   

8.
Aggregation-competent amoeboid cells of Dictyostelium discoideum are chemotactic toward cAMP. Video microscopy and scanning electron microscopy were used to quantitate changes in cell morphology and locomotion during uniform upshifts in the concentration of cAMP. These studies demonstrate that morphological and motile responses to cAMP are sufficiently synchronous within a cell population to allow relevant biochemical analyses to be performed on large numbers of cells. Changes in cell behavior were correlated with F-actin content by using an NBD-phallacidin binding assay. These studies demonstrate that actin polymerization occurs in two stages in response to stimulation of cells with extracellular cAMP and involves the addition of monomers to the cytochalasin D-sensitive (barbed) ends of actin filaments. The second stage of actin assembly, which peaks at 60 sec following an upshift in cAMP concentration, is temporally correlated with the growth of new pseudopods. The F-actin assembled by 60 sec is localized in these new pseudopods. These results indicate that actin polymerization may constitute one of the driving forces for pseudopod extension in amoeboid cells and that nucleation sites regulating polymerization are under the control of chemotaxis receptors.  相似文献   

9.
Mechanism of K+-induced actin assembly   总被引:14,自引:6,他引:8       下载免费PDF全文
The assembly of highly purified actin from Dictyostelium discoideum amoebae and rabbit skeletal muscle by physiological concentrations of KCI proceeds through successive stages of (a) rapid formation of a distinct monomeric species referred to as KCI-monomer, (b) incorporation of KCI-monomers into an ATP-containing filament, and (c) ATP hydrolysis that occurs significantly after the incorporation event. KCI-monomer has a conformation which is distinct from that of either conventional G- or F-actin, as judged by UV spectroscopy at 210-220 nm and by changes in ATP affinity. ATP is not hydrolyzed during conversion of G-actin to KCI-monomer. KCI-monomer formation precedes filament formation and may be necessary for the assembly event. Although incorporation of KCI-monomers into filaments demonstrates lagphase kinetics by viscometry, both continuous absorbance monitoring at 232 nm and rapid sedimentation of filaments demonstrate hyperbolic assembly curves. ATP hydrolysis significantly lags the formation of actin filaments. When half of the actin has assembled, only 0.1 to 0.2 mole of ATP are hydrolyzed per mole of actin present as filaments.  相似文献   

10.
In eukaryotic cells, actin filaments are involved in important processes such as motility, division, cell shape regulation, contractility, and mechanosensation. Actin filaments are polymerized chains of monomers, which themselves undergo a range of chemical events such as ATP hydrolysis, polymerization, and depolymerization. When forces are applied to F-actin, in addition to filament mechanical deformations, the applied force must also influence chemical events in the filament. We develop an intermediate-scale model of actin filaments that combines actin chemistry with filament-level deformations. The model is able to compute mechanical responses of F-actin during bending and stretching. The model also describes the interplay between ATP hydrolysis and filament deformations, including possible force-induced chemical state changes of actin monomers in the filament. The model can also be used to model the action of several actin-associated proteins, and for large-scale simulation of F-actin networks. All together, our model shows that mechanics and chemistry must be considered together to understand cytoskeletal dynamics in living cells.  相似文献   

11.
We have studied the effect of the Dictyostelium discoideum 30,000-D actin-bundling protein on the assembly and disassembly of pyrenyl-labeled actin in vitro. The results indicate that the protein is a potent inhibitor of the rate of actin depolymerization. The inhibition is rapid, dose dependent, and is observed at both ends of the filament. There is little effect of 30-kD protein on the initial rate of elongation from F-actin seeds or on the spontaneous nucleation of actin polymerization. We could detect little or no effect on the critical concentration. The novel feature of these results is that the filament ends are free for assembly but are significantly impaired in disassembly with little change in the critical concentration at steady state. The effects appear to be largely independent of the cross-linking of actin filaments by the 30-kD protein. Actin cross-linking proteins may not only cross-link actin filaments, but may also differentially protect filaments in cells from disassembly and promote the formation of localized filament arrays with enhanced stability.  相似文献   

12.
Aggregating Dictyostelium discoideum amoebae periodically emit and relay cAMP, which regulates their chemotaxis and morphogenesis into a multicellular, differentiated organism. Cyclic AMP also stimulates F-actin assembly and chemotactic pseudopodium extension. We used actin-GFP expression to visualise for the first time intracellular F-actin assembly as a spatio-temporal indicator of cell reactions to cAMP, and thus the kinematics of cell communication, in aggregating streams. Every natural cAMP signal pulse induces an autowave of F-actin disassembly, which propagates from each cell's leading end to its trailing end at a linear rate, much slower than the calculated and measured velocities of cAMP diffusion in aggregating Dictyostelium. A sequence of transient reactions follows behind the wave, including anterior F-actin assembly, chemotactic pseudopodium extension and cell advance at the cell front and, at the back, F-actin assembly, extension of a small retrograde pseudopodium (forcing a brief cell retreat) and chemotactic stimulation of the following cell, yielding a 20s cAMP relay delay. These dynamics indicate that stream cell behaviour is mediated by a dual signalling system: a short-range cAMP pulse directed from one cell tail to an immediately following cell front and a slower, long-range wave of intracellular F-actin disassembly, each inducing the other.  相似文献   

13.
Reflection interference contrast microscopy combined with digital image processing was applied to study the motion of Dictyostelium discoideum cells in their pre-aggregative state on substrata of different adhesiveness (glass, albumin-covered glass, and freshly cleaved mica). The temporal variations of the size and shape of the cell/substratum contact area and the time course of advancement of pseudopods protruding in contact with the substratum were analyzed. The major goal was to study differences between the locomotion of wild-type cells and strains of triple mutants deficient in two F-actin cross-linking proteins (alpha-actinin and the 120-kDa gelation factor) and one F-actin fragmenting protein (severin). The size of contact area, AC, of both wild-type and mutant cells fluctuates between minimum and maximum values on the order of minutes, pointing toward an intrinsic switching mechanism associated with the mechanochemical control system. The fluctuation amplitudes are much larger on freshly cleaved mica than on glass. Wild-type and mutant cells exhibit remarkable differences on mica but not on glass. These differences comprise the population median of AC and alterations in pseudopod protrusion. AC is smaller by a factor of two or more for all mutants. Pseudopods protrude slower and shorter in the mutants. It is concluded that cell shape and pseudopods are destabilized by defects in the actin-skeleton, which can be overcompensated by strongly adhesive substrata. Several features of amoeboid cell locomotion on substrata can be understood on the basis of the minimum bending energy concept of soft adhering shells and by assuming that adhesion induces local alterations of the composite membrane consisting of the protein/lipid bilayer on the cell surface and the underlying actin-cortex.  相似文献   

14.
Many developmental processes involve chemotactic cell movement up or down dynamic chemical gradients. Studies of the molecular mechanisms of chemotactic movement of Dictyostelium amoebae up cAMP gradients highlight the importance of PIP3 signaling in the control of cAMP-dependent actin polymerization, which drives the protrusion of lamellipodia and filopodia at the leading edge of the cell, but also emphasize the need for myosin thick filament assembly and motor activation for the contraction of the back of the cell. These process become even more important during the multicellular stages of development, when propagating waves of cAMP coordinate the chemotactic movement of tens of thousands of cells, resulting in multicellular morphogenesis. Recent experiments show that chemotaxis, especially in response to members of the FGF, PDGF and VEGF families of growth factors, plays a key role in the guidance of mesoderm cells during gastrulation in chick, mouse and frog embryos. The molecular mechanisms of signal detection and signaling to the actin-myosin cytoskeleton remain to be elucidated.  相似文献   

15.
Actin polymerization and pseudopod extension during amoeboid chemotaxis   总被引:13,自引:0,他引:13  
Amoebae of the cellular slime mold Dictyostelium discoideum are an excellent model system for the study of amoeboid chemotaxis. These cells can be studied as a homogeneous population whose response to chemotactic stimulation is sufficiently synchronous to permit the correlation of the changes in cell shape and biochemical events during chemotaxis. Having demonstrated this synchrony of response, we show that actin polymerization occurs in two stages during stimulation with chemoattractants. The assembly of F-actin that peaks between 40 and 60 sec after the onset of stimulation is temporally correlated with the growth of new pseudopods. F-actin, which is assembled by 60 sec after stimulation begins, is localized in the new pseudopods that are extended at this time. Both stages of actin polymerization during chemotactic stimulation involve polymerization at the barbed ends of actin filaments based on the cytochalasin sensitivity of this response. We present a hypothesis in which actin polymerization is one of the major driving forces for pseudopod extension during chemotaxis. The predictions of this model, that localized regulation of actin nucleation activity and actin filament cross-linking must occur, are discussed in the context of current models for signal transduction and of recent information regarding the types of actin-binding proteins that are present in the cell cortex.  相似文献   

16.
Formyl-met-leu-phe (fMLP) induces actin assembly in neutrophils; the resultant increase in F-actin content correlates with an increase in the rate of cellular locomotion at fMLP concentrations less than or equal to 10(-8) M (Howard, T.H., and W.H. Meyer, 1984, J. Cell Biol., 98:1265-1271). We studied the time course of change in F-actin content, F-actin distribution, and cell shape after fMLP stimulation. F-actin content was quantified by fluorescence activated cell sorter analysis of nitrobenzoxadiazole-phallacidin-stained cells (Howard, T.H., 1982, J. Cell Biol., 95(2, Pt. 2:327a). F-actin distribution and cell shape were determined by analysis of fluorescence photomicrographs of nitrobenzoxadiazole-phallacidin-stained cells. After fMLP stimulation at 25 degrees C, there is a rapid actin polymerization that is maximal (up to 2.0 times the control level) at 45 s; subsequently, the F-actin depolymerizes to an intermediate F-actin content 5-10 min after stimulation. The depolymerization of F-actin reflects a true decrease in F-actin content since the quantity of probe extractable from cells also decreases between 45 s and 10 min. The rate of actin polymerization (3.8 +/- 0.3-4.4 +/- 0.6% increase in F-actin/s) is the same for 10(-10) - 10(-6) M fMLP and the polymerization is inhibited by cytochalasin D. The initial rate of F-actin depolymerization (6.0 +/- 1.0-30 +/- 5% decrease in F-actin/min) is inversely proportional to fMLP dose. The F-actin content of stimulated cells at 45 s and 10 min is greater than control levels and varies directly with fMLP dose. F-actin distribution and cell shape also vary as a function of time after stimulation. 45 s after stimulation the cells are rounded and F-actin is diffusely distributed; 10 min after stimulation the cell is polarized and F-actin is focally distributed. These results indicate that actin polymerization and depolymerization follow fMLP stimulation in sequence, the rate of depolymerization and the maximum and steady state F-actin content but not the rate of polymerization are fMLP dose dependent, and concurrent with F-actin depolymerization, F-actin is redistributed and the cell changes shape.  相似文献   

17.
The rho family of small G proteins has been shown to be involved in controlling actin filament dynamics in cells. To evaluate the functional overlap between human and Dictyostelium G proteins, we conditionally expressed constitutively active human cdc42 (V12-cdc42) in Dictyostelium cells. Upon induction, cells adopted a unique morphology: a flattened shape with wrinkles running from the cell edge toward the center. The appearance of these wrinkles is highly dynamic so that the cells cycle between the wrinkled and relatively normal morphologies. Phalloidin staining indicates that the stellate wrinkles contain dense actin structures and also that numerous filopods project vertically from the center of these cells. Consistent with the hypothesis that cdc42 induces actin polymerization in vivo, cells expressing V12-cdc42 show an increase in the amount of F-actin associated with the cytoskeleton. This is accompanied by an increase in the association of the actin-binding proteins 34-kDa bundler, ABP-120 and alpha-actinin with the cytoskeleton. In conclusion, human cdc42 has various effects on the Dictyostelium actin cytoskeleton consistent with a conserved role of small GTPases in control of the cytoskeleton.  相似文献   

18.
Zhang F  Mönkkönen M  Roth S  Laiho M 《FEBS letters》2002,516(1-3):58-62
Myosin heavy chain kinase A (MHCK A) modulates myosin II filament assembly in the amoeba Dictyostelium discoideum. MHCK A localization in vivo is dynamically regulated during chemotaxis, phagocytosis, and other polarized cell motility events, with preferential recruitment into anterior filamentous actin (F-actin)-rich structures. The current work reveals that an amino-terminal segment of MHCK A, previously identified as forming a coiled-coil, mediates anterior localization. MHCK A co-sediments with F-actin, and deletion of the amino-terminal domain eliminated actin binding. These results indicate that the anterior localization of MHCK A is mediated via direct binding to F-actin, and reveal the presence of an actin-binding function not previously detected by primary sequence evaluation of the coiled-coil domain.  相似文献   

19.
In the simple amoeba Dictyostelium discoideum, myosin II filament assembly is regulated primarily by the action of a set of myosin heavy chain (MHC) kinases and by MHC phosphatase activity. Chemoattractant signals acting via G-protein coupled receptors lead to rapid recruitment of myosin II to the cell cortex, but the structural determinants on myosin necessary for translocation and the second messengers upstream of MHC kinases and phosphatases are not well understood. We report here the use of GFP-myosin II fusions to characterize the domains necessary for myosin II filament assembly and cytoskeletal recruitment during responses to global stimulation with the developmental chemoattractant cAMP. Analysis performed with GFP-myosin fusions, and with latrunculin A-treated cells, demonstrated that F-actin binding via the myosin motor domain together with concomitant filament assembly mediates the rapid cortical translocation observed in response to chemoattractant stimulation. A "headless" GFP-myosin construct lacking the motor domain was unable to translocate to the cell cortex in response to chemoattractant stimulation, suggesting that myosin motor-based motility may drive translocation. This lack of localization contrasts with previous work demonstrating accumulation of the same construct in the cleavage furrow of dividing cells, suggesting that recruitment signals and interactions during cytokinesis differ from those during chemoattractant responses. Evaluating upstream signaling, we find that iplA null mutants, devoid of regulated calcium fluxes during chemoattractant stimulation, display full normal chemoattractant-stimulated myosin assembly and translocation. These results indicate that calcium transients are not necessary for chemoattractant-regulated myosin II filament assembly and translocation.  相似文献   

20.
Cytoimmunofluorescent localization of severin in Dictyostelium amoebae   总被引:3,自引:0,他引:3  
Severin is a 40-kDa Ca2+-activated protein from Dictyostelium that rapidly fragments and disassembles actin filaments in vitro (S.S. Brown, K. Yamamoto, and J.A. Spudich, J. Cell Biol. 93, 205-210, 1982; and K. Yamamoto, J.D. Pardee, J. Reidler, L. Stryer, and J.A. Spudich. J. Cell Biol. 95, 711-719, 1982). To determine if severin is colocalized with actin filaments in vivo, we have used the agar-overlay technique of S. Yumura, H. Mori, and Y. Fukui (J. Cell Biol. 99, 894-899, 1984) to examine the intracellular locations of severin and F-actin in vegetative Dictyostelium amoebae. In rounded cells taken from suspension culture severin colocalized with F-actin at cortical edges while maintaining an endoplasmic presence. Both severin and F-actin were present throughout nascent pseudopods of motile cells, while severin appeared concentrated at the leading edge of fully developed pseudopods. Amoebae feeding on a bacterial lawn formed large phagocytic vesicles that were surrounded by an extensive cell cortex rich in severin. Streaming cells entering aggregates during the Dictyostelium developmental cycle showed severin staining throughout the cytoplasm with F-actin at the cortex. The preferential localization of severin in cytoplasmic regions of vegetative cells undergoing extensive actin cytoskeletal rearrangement prompts consideration of a role for severin-mediated disruption of actin filament networks during pseudopod extension and phagocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号