首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biodiversity indices are frequently used to provide a numerical value of the diversity of species within an ecological community. To study fungal biodiversity in the air, a 7-day recording Hirst-type spore trap was used. The daily concentration of 124 taxa was recorded in an Italian vineyard. The predominant fungi were: Cladosporium spp., unknown 3-septate fusiform spore, and Alternaria spp. Shannon’s and Simpson’s biodiversity indices and evenness were calculated first for air spora. Meteorological circumstances affected the biodiversity; positive correlations were found between Simpson’s biodiversity index and precipitation, but no significant correlations were found with Shannon’s diversity index and evenness. To predict Simpson’s index for airborne fungi, regression analysis was performed. It was shown that the best estimator, sun hours, negatively affected the index. The biodiversity of the dominant species was low on dry days, since Cladosporium alone had much higher abundance on such days than other species.  相似文献   

2.
Ganoderma sp. is an airborne fungal spore type known to trigger respiratory allergy symptoms in sensitive patients. Aiming to reduce the risk for allergic individuals, we analysed fungal spore circulation in Szczecin, Poland, and its dependence on meteorological conditions. Statistical models for the airborne spore concentrations of Ganoderma sp.—one of the most abundant fungal taxa in the area—were developed. Aerobiological sampling was conducted over 2004–2008 using a volumetric Lanzoni trap. Simultaneously, the following meteorological parameters were recorded: daily level of precipitation, maximum and average wind speed, relative humidity and maximum, minimum, average and dew point temperatures. These data were used as the explaining variables. Due to the non-linearity and non-normality of the data set, the applied modelling techniques were artificial neural networks (ANN) and mutlivariate regression trees (MRT). The obtained classification and MRT models predicted threshold conditions above which Ganoderma sp. appeared in the air. It turned out that dew point temperature was the main factor influencing the presence or absence of Ganoderma sp. spores. Further analysis of spore seasons revealed that the airborne fungal spore concentration depended only slightly on meteorological factors.  相似文献   

3.
Fungal spores are an important component of library air   总被引:4,自引:0,他引:4  
The airborne fungal spore types were studied in different libraries in Delhi, using an Andersen sampler and a Burkard personal sampler, for culturable and non-culturable fungi respectively. The concentration inside the libraries, before and after the agitation of books, were compared with outside air. The major contributors to the library air areCladosporium, aspergilli/penicillia, smuts andAlternaria, varying from 50 to 14%. Some fungi (Cladosporium, Alternaria, smut,Penicillium chrysogenum andnigricans) showed seasonal occurrence, corresponding to their occurrence in the extramural environment. Aspergilli/penicillia,Drechslera, Curvularia andAspergillus flavus had a significantly higher concentration (P<0.01) inside the library, and recorded a significant increase in concentration after agitation of books. Air-conditioned libraries have low fungal spore concentrations, as compared to naturally ventilated libraries.  相似文献   

4.
The Coriolis δ air sampler manufactured by Bertin Technologies (France) is a continuous air sampler, dedicated to outdoor monitoring of airborne spores and pollen grains. This high-volume sampler is based on patented Coriolis technology delivering a liquid sample. The air is drawn into a conical vial in a whirling type motion using suction; particles are pulled against the wall by centrifugal force. Airborne particles are separated from the air and collected in a liquid medium. This innovative solution allows rapid analysis by several techniques including PCR assay and serological assay in order to measure the antigenicity/allergenicity of pollen grains and fungal spores. Also, traditional counting of pollen grains or taxa identification by optical microscopy can be done. A study has been carried out by the Health Protection Agency (HPA), Porton Down, UK, to measure the physical efficiency of the Coriolis air sampler. The physical efficiency of the sampler for collection of micro-organism-laden particles of various sizes has been compared with that of membrane filter samplers using the techniques described by ISO 14698-1. The Coriolis was operated simultaneously with membrane filter samplers in a controlled room where they were challenged with uniform-sized particles of different diameters containing bacterial spores. For the larger particle sizes, it was found that the physical efficiency of the Coriolis was 92% for 10-μm particles. The biological performance of the Coriolis in the collection of airborne fungal spores and pollen grains was evaluated in comparison with a Hirst spore trap (one-week tape-on-drum type sampler) which is one of the most frequently used traps in the measurement of outdoor pollen grain concentrations. The advantages and limitations of both technologies are discussed. The Coriolis was operated simultaneously with a Hirst spore trap in the sampling station of Réseau National de Surveillance Aérobiologique, France (RNSA); the pollen grain and fungal spore counts were analysed by optical microscopy. The pollen grain count m−3 collected was compared for both devices. The dispersion values were obtained and statistical analysis was carried out. This study shows that the Coriolis air sampler provided equivalent recovery of pollen grain and fungal spores compared with the volumetric trap standard method (not significantly different, W test, α = 0.05). Nowadays, the French-led project, acronym MONALISA, with financial support from the European Commission––Life-Environment (LIFE05 ENV/F/000068), is testing this innovative air sampler in order to measure the antigenicity/allergenicity of the main aeroallergen particles, i.e. Betula (birch), Poaceae (grasses), Parietaria (pellitory), Olea spp (olive tree), and Artemisia (mugwort) pollen grains, and Alternaria (fungal spores) to validate a new approach of monitoring instead of quantifying pollen grains by their morphology. The robustness and efficiency of the MONALISA system is being demonstrated at a national level throughout Europe in eight different countries with different bio-climatic and topography characteristics: France, UK, Finland, Poland, Spain, Portugal, Switzerland, and Italy.  相似文献   

5.
The concentration of airborne Didymella spores has been investigated at two monitoring sites situated along the west–south transect in Poland (Szczecin, Kraków), i.e. from a height of 100 to 219 m, respectively, above sea level. The aerobiological monitoring of fungal spores was performed by means of two Lanzoni volumetric spore traps. The high Didymella spore numbers were observed at both cities in June, July and August. Statistically significant correlations have been found mainly between the Didymella spore concentrations in the air and the minimum air temperature and relative air humidity. The spore count of Didymella is determined by the diversity of local flora and weather conditions, especially by the relative air humidity. The identification of factors that influence and shape spore concentrations may significantly improve the current methods of allergy prevention.  相似文献   

6.
Summary The fungal airspora of a large hospital in Delhi Metropolis was studied from May 1989 – April 1991, using Andersen Six Stage Volumetric Sampler and Burkard Personal Slide Sampler. Simultaneously, samples were also collected from outside the hospital to act as a control. Samplers were operated for 10 min. each time, at 10 - day intervals. Additional samples were also collected from different sections of 3 other hospitals. Some of the dominant forms encountered wereCladosporium spp.,Aspergillus flavus, Smut,Fusarium spp.,Aspergillus niger, Alternaria spp.,Penicillium citrinum, Aspergillus versicolor, andPenicillium oxalicum. Aspergillus flavus showed significantly high concentration inside hospital (n=66, x=53 CFU m–3, p<0.05) as compared to outside air. The peak period for fungi was observed to be from June – September. The spore concentration was much lower in hospital units receiving filtered air as compared to control environment, but in naturally ventilated hospitals the concentration was similar to that of outside air.  相似文献   

7.
Spores of many fungal pathogens are dispersed by wind. Detection of these airborne inocula is important in forecasting both the onset and the risk of epiphytotics. Species-specific primers targeted at the internal transcribed spacer (ITS) region ofLeptosphaeria maculans andL. biglobosa — the causal organisms of phoma stem canker and stem lesions ofBrassica spp., including oilseed rape — were used to detect DNA extracted from particles deposited on tapes obtained from a spore trap operated in Rarwino (northwest Poland) from September to November in 2004 and 2006. The quantities of DNA assessed by traditional end-point PCR and quantitative real-time PCR were compared to microscopic counts of airborne ascospores. Results of this study showed that fluctuations in timing of ascospore release corresponded to the dynamics of combined concentrations of DNA fromL. maculans andL. biglobosa, with significant positive correlations between ascospore number and DNA yield. Thus the utilization of PCR-based molecular diagnostic techniques enabled the detection, identification, and accurate quantification of airborne inoculum at the species level. Moreover, real-time PCR was more sensitive than traditional PCR, especially in years with low ascospore numbers.  相似文献   

8.
To accurately quantify airborne Aspergillus fumigatus (A. fumigatus) spores in rabbit houses, the real-time polymerase chain reaction (real-time PCR) and culture-based counting method (CCM) were employed to determine the airborne A. fumigatus spore concentrations. The results showed that, of the three rabbit houses (A, B, and C), the average concentrations of airborne A. fumigatus spores determined by real-time PCR were 3.0 × 103, 3.3 × 103, and 1.5 × 103 spores/m3 air, respectively, while those determined by CCM were 2.5 × 102, 2.8 × 102, and 1.1 × 102 colony-forming unit/m3 air (CFU/m3 air), respectively, i.e., the former concentration was 12–14 times higher than the latter one. Therefore, the conventional CCM underestimated the concentrations of airborne fungal spores, and it is insufficient to determine the microbial aerosol concentration and evaluate the health risk only using CCM.  相似文献   

9.
The aim of this work was to identify the main allergy-related Ascomycetes fungal spores present in the atmosphere of Porto, using different and complementary techniques. The atmospheric sampling, performed in the atmosphere of Porto (Portugal) from August 2006 to July 2008, indicated Cladosporium, Penicillium, Aspergillus and Alternaria as the main fungal spore taxa. Alternaria and Cladosporium peaks were registered during summer. Aspergillus and Penicillium highest values were registered from late winter to early spring. Additionally, the Andersen sampler allowed the culture and isolation of the collected viable spores subsequently used for different identification approaches. The internal-transcribed spacer region of the nuclear ribosomal repeat unit sequences of airborne Ascomycetes fungi isolates revealed 11 taxonomically related fungal species. Among the identified taxa, Penicillum and Aspergillus presented the highest diversity, while only one species of Cladosporium and Alternaria, respectively, were identified. All selected fungal spore taxa possessed phosphatase, esterase, leucine arylamidase and β-glucosidase enzymatic activity, while none had lipase, cystine arylamidase, trypsin or β-glucuronidase activity. The association between the spore cell wall morphology, DNA-based techniques and enzymatic activity approaches allowed a more reliable identification procedure of the airborne Ascomycota fungal spores.  相似文献   

10.
Intramural aeromycological survey was performed at the Central Milk Dairy, Calcutta, covering eight locations within the Dairyusing Burkard personal volumetric air sampler. The locations were butter cold storage (−2 °C), cold store (8 °C), packaging section (23 °C), milk processing section (24 °C), reconstituent of skimmed milk (24 °C), quality control lab (25 °C), raw milk reception (28 °C) and loading dock (26 °C). A number of fungal spores, conidia and mycelia were recorded in different rooms: the highest spore quantity was recorded in the packaging section (23 °C) and the minimum at the butter cold store (−2 °C). The dominant spores consisted of Aspergillus niger, A flavus,Cladosporium sp., Fusarium sp., Curvularia sp.,Alternaria sp., Torula sp., Myrotheciumsp., Helminthosporium sp., Periconia sp.,Nigrospora sp. and Pithomyces sp. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Airborne Pollen grains and Spores of three different cities viz., Al-Khobar (1987–1988), Abha (1991–1992) and Hofuf (1992–1993) in Saudi Arabia were studied using Burkard Volumetric Seven-Day Spore Trap. The data were analyzed in relation to their allergenic capability and one-year pollen and spore calendars were designed to correlate the patients’ symptoms as well as for selection of appropriate allergen extracts for diagnosis and treatment of allergic diseases. Amongst pollen group, Amaranthus viridis, Plantago spp., Chenopodium album, Ricinus communis, Rumex vesicarius, Juniperus spp., Parkinsonia aculeata, Prosopis spp., and Phoenix dactylifera were some of the frequent types. Amongst the fungal spores group Cladosporium, Smuts spores, Colored basidiospores, Alternaria, Ulocladium and Drechslera were the dominant types.  相似文献   

12.
We used species‐specific spore traps to measure airborne dispersal of the wood decay fungus Phlebia centrifuga (spore size 6.5–9 × 2.5–3 μm) up to 1000 m distance from a point source. We fitted two simple dispersal models, an empirical power law model and a semi‐mechanistic diffusion model to the data using the Bayesian approach. The diffusion model provided a better fit than the power law model which underestimated deposition at 3–55 m and overestimated deposition at longer and shorter distances. Model fit improved by allowing overdispersion, suggesting that spores are not dispersed independently but wind can transport spores in groups inside discrete air packages up to considerable distances. Using the fitted diffusion model and available information on the establishment rates of wood‐decay fungi, we examine the distance up to which colonisation from a single fruit body is likely to occur. We conclude that the diluting effect of distance and low establishment success make the occurrence of P. centrifuga dispersal limited possibly already at the distance of tens of metres and very probably at a few hundred metres from the nearest fruit body, despite the fact that under favourable conditions a high proportion of the spores can disperse considerably further. This conclusion is likely to hold generally for those fungal species that inhabit fragmented landscapes, have specialised resource and habitat requirements, and have similar spore size and other dispersal traits as P. centrifuga.  相似文献   

13.
Nicoleta Ianovici 《Grana》2017,56(6):424-435
The present aeromycological investigation was undertaken to study atmospheric fungal spores in Timi?oara (western Romania). This study was carried out using a Hirst type volumetric sampler. The study revealed the existence of a rich airborne mycoflora. The atmospheric fungal spores were classified and evaluated into three groups (‘major’, ‘minor’ and ‘sporadic’) depending upon their catch percentage in the air. Cladosporium/Fusarium/Leptosphaeria-group, Alternaria, Helminthosporium airborne fungal spores and airborne fungal fragments regularly recorded (frequency 100% of days). Cladosporium accounted for 81.09% of the outdoor fungal spores. The airborne fungal fragments have been identified as abundant in our geographic area. Spearman’s correlations were applied to meteorological parameters and airborne fungal spore concentrations. In addition, correlations were calculated between the fungal spore concentrations and the meteorological variables from the previous day. A total of eleven weather factors were selected for this investigation. Following Spearman’s correlations, I identified two patterns of behaviour: most of the airborne fungal spores prefer cloudiness, lower near-surface soil temperature, lower atmospheric pressure, higher relative humidity and precipitation (pattern A) while other spore concentrations favour increased sunshine, higher near-surface soil temperature and dry conditions (pattern B). The behaviour of some fungal spores during the warm season has proven unclear (pattern C). This study demonstrates the need for investigations throughout the year and the evaluation with complementary statistical methods, regarding the correct interpretation of airborne mycoflora relationships with meteorological parameters.  相似文献   

14.
 The effect of an urban climate upon the spatial and temporal distribution of Deuteromycete spores was studied during 1991 using Burkard volumetric spore traps in two areas of Mexico City with different degrees of urbanization. Deuteromycete conidia formed the largest component of the total airborne fungal spore load in the atmosphere of Mexico City, contributing 52% of the spores trapped in an urban-residential area (southern area) and 65% of those in an urban-commercial area (central area). Among the most common spore types, Cladosporium and Alternaria showed a marked seasonal periodicity with significant differences in concentration (P<0.05) between the dry and wet seasons. Maximum conidial concentrations were found during the end of the wet season and the beginning of the cool, dry season (October–December). Daily mean concentrations of the predominant airborne spore types did not differ significantly between the southern and central areas. Daily mean spore concentrations were significantly correlated (P<0.05) in southern and central areas with maximum temperature (south, r = –0.35; central, r = –0.40) and relative humidity (south, r = 0.43; central, r = 0.29) from the previous day. Moreover, multiple regression analysis of spore concentrations with several meteorological factors showed significant interactions between fungal spores, relative humidity and maximum temperature in both areas. The diurnal periodicity of Cladosporium conidia characteristically showed two or three peaks in concentration during the day at 0200–0400, ∼ 1400 and 2000–2200 hours, while that of Alternaria showed only one peak (1200 to 2000 hours) in both areas. Maximum concentrations of these spores generally occurred 2–4 h earlier in the southern than in the central area. The lag in reaching maximum concentrations in the central area probably resulted from differences in the local conditions between the study areas, and from spores transported aerially into the city from distant sources. The analysis of maximum hourly concentrations of Cladosporium and Alternaria spores during 1 month of the dry season (February), and another month of the wet season (September) showed significant differences between the two study areas. Environmental factors and sources (green areas) affected diurnal changes in conidial concentration in the southern area (urbanization index, UI, 0.25), but not in the central area (UI 0.97). In general, spore concentrations were greatest in the southern area when relative humidities were low, and temperatures and wind velocities were high. It was difficult to establish effects of climatic factors on the spore concentration in the city centre. This probably results from the large amounts of air pollution, the heat island phenomenon, and from the distant origin of trapped conidia obviating aerial transport. Nevertheless, the seasonal and diurnal distributions of conidia found were similar to those reported for other tropical regions of the world. Received: 13 August 1996 / Accepted: 4 December 1996  相似文献   

15.
The concentration of fungal spores in the atmosphere of Madrid was recorded and analyzed for the year 2003. Airborne spores were sampled continuously with a Hirst-type spore trap located on the roof of a building of the School of Pharmacy, at about 8 m above ground level. Correlation between the mean daily spore concentrations and meteorological variables were explored by means of Spearman’s correlation analyses. Seventy spore types were identified, of which the most numerous were Cladosporium, Aspergillaceae (conidia), Coprinus, Agaricales (basidiospores), Ustilago (teliospores) and Pleospora (ascospores). These six types of spores represented more than 70% of the total. Cladosporium represented 41% of the total fungal spores, while Ustilago spores, the concentrations of which in May and June exceeded 47% of the monthly total spore count, constituted the second most important group. Spores reached their highest concentrations in the spring months, and in the autumn, mainly in October. A␣positive significant correlation was found between airborne spore counts and temperature and relative humidity. The results provide a picture of the spectrum of airborne fungal spores present in the atmosphere of Madrid and of the `peak' periods of their presence. Future studies will provide more detailed information on the seasonal dynamics of the spores most frequently found in the air as well as on the extent to which atmospheric conditions influence their release, dispersion and sedimentation processes.  相似文献   

16.
Sampling was conducted from June 2007 to May 2008 in an enclosed rabbit house to investigate composition and variability of airborne fungi. Samples were collected using an Andersen-6 sampler, with Sabouraud culture medium as sampling medium. The results showed that monthly mean concentration was 2.79–5.46 × 103 colony forming unit/m3 air (CFU/m3 air), with the maximum level in October, and the minimum level in January. Within a day, the maximum level occurred at 09:00, followed by 17:00 and then 13:00. A total of 6,523 fungal colonies, belonging to 17 genera and 36 species, were obtained. The predominant genera included Cladosporium, Penicillium, Aspergillus and Altemaria, comprising 71.45% of the colony count. The obtained fungi of the year were mainly centralized in the stage D of the sampler (2.0–3.0 μm), accounting for 37.8% of the colonies. The minimum value occurred at stage F (<0.65 μm), accounting for 1.10% of the colonies.  相似文献   

17.
Summary A study of concentration of airborne pollen grains and fungal spores has been carried out in Barcelona (Spain) during 1989–90. The volumetric method of filtration, previously described for airborne pollen analysis (Suarez-Cervera and Seoane-Camba, 1983) has been used. In this case, the filters have also been cultivated in Czapecdox-agar, Sabouraud-agar and Sabouraud-agar with streptomycin for the identification of the fungal colonies. Analysis of the number of fungal spores growing on the filter shows that the maxima of colonies of spores developed in culture per m3 of air filtered, correspond to September–December. Pollen and spore concentrations start from November–December, reach a maximum in March–April and decline progressively until September–October. Therefore, in the city of Barcelona, the greatest concentration occurs in spring and the lowest in autumn.  相似文献   

18.
The objective of this research was to investigate the prevalence and distribution of airborne and waterborne fungi and actinomycetes along the main stream of the Nile river during April to July, 2005. Air and water samples were collected at eight sites within a ~50 km stretch of the river. The distribution and prevalence of air and water microorganisms varied with location. The highest counts of airborne fungi (516 CFU/p/h) and actinomycetes (222 CFU/p/h) were detected at suburban sites near cultivated areas. However, the highest counts of waterborne fungi (56.4 CFU/ml) and actinomycetes (15.4 CFU/ml) were detected at Al-Galaa (city centre) and Kafr-El-elwe (south Cairo), respectively. A total of 1,816 fungal colonies (943 isolates from air and 873 from water samples) belonging to 27 genera were identified. Aspergillus, Alternaria, Cladosporium, and yeasts were the predominant fungal types in both air and water environments. Dreschlera, Emericella, Nigrospora, Spicaria, Stachybotrys, and Verticillium were only detected in the air, and Epicoccum, Philaphora, Phoma and Ulocladium were only detected in the water. Mycotoxin-producing fungi represented by Aspergillus flavus, Aspergillus parasiticus, Penicillium, Fusarium, and Trichoderma were found in the air and water environments. Significant differences (P ≤ 0.05) were found between fungal populations in air and water at different sampling sites. No significant differences (P ≥ 0.05) were found between waterborne actinomycetes. Sampling location, human activity, and pollution load are the main factors affecting the variability and biodiversity of microorganisms in different microenvironments.  相似文献   

19.
The Burkard 7-day spore trap with standard orifice is commonly used by researchers in sampling outdoor air. The alternate orifice is reported to have higher efficiency in collecting small airborne fungal spores; however, no previous studies compared Burkard samplers with different orifices. This study was conducted to study the effect of the alternate orifice on the concentration of airborne fungal spores. Air samples were collected from July to October 2005 with two Burkard spore traps, one had the standard orifice and the second had the alternate orifice. The two spore traps were located on the roof of a building (12 m height) at the University of Tulsa, Oklahoma. Burkard daily slides were analyzed for airborne spores by light microscopy. The data from the two samplers were statistically analyzed using t-tests. The results indicated that the alternate orifice had significantly higher concentrations of Penicillium/Aspergillus-type spores and basidiospores than the standard orifice. By contrast, the standard orifice had significantly higher concentrations of Alternaria, ascospores, and other spores than the alternate orifice. The alternate orifice can be used to increase the efficiency of trapping small spores, which can be underestimated by using the standard orifice. However, additional comparison in other months of the year is recommended.  相似文献   

20.
Brian Crook  John Lacey 《Grana》2013,52(2):446-449
Exposure to microorganisms, including thermophilic actinomycetes and fungal spores, and to airborne dust produced during compost production and mushroom picking may cause work-related respiratory symptoms. Previous studies have implicated Thermoactinomyces vulgaris and Faenia rectivirgula, the aetiological agents in farmer's lung disease, as causes of these symptoms but these species have been rare in aerobiological studies of mushroom farms. As part of a study of the respiratory health of the exposed workers, we carried out an aerobiological survey of all the stages of commercial mushroom production. Samples of viable airborne microorganisms were collected at a farm from eight locations on two occasions using Andersen cascade impactors. Large numbers of airborne thermophilic actinomycetes, yielding > 106 colony-forming units (cfu) m?3 air sampled, were associated with compost handling. These were predominantly Thermomonospora spp., while Thermoactinomyces spp. and Faenia rectivirgula were few. Because the compost was largely undisturbed, few airborne actinomycete spores were found in mushroom growing houses, but concentrations of fungal spores exceeded 105 cfu m?3 when mushrooms were being harvested. Most were Penicillium spp. and Aspergillus fumigatus but Peziza ostracoderma and Trichoderma spp. were also isolated. Workers are thus exposed to a wide range of airborne microorganisms, but the role of many of these in mushroom workers' respiratory symptoms is not yet fully understood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号