首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In fungi, two-component histidine kinases are involved in response mechanisms to extracellular changes in osmolarity, resistance to dicarboximide fungicides, and cell-wall assembly. In the human opportunistic fungus, Candida albicans, each of the three histidine kinases plays a role in virulence. Here, we identify, for the first time, a gene, FOS-1, from the human pathogenic fungus Aspergillus fumigatus that predicts a protein with homology to two-component histidine kinases. The predicted FOS-1 protein is highly homologous to bacterial and other fungal histidine kinases in several functional domains, but is divergent at the amino- and carboxy-termini. A mutant lacking the FOS-1 locus, DeltaFOS-1, did not exhibit a detectable defect in either hyphal growth or morphology when grown on solid or liquid medium. However, in liquid medium, conidiophore development of the DeltaFOS-1 mutant was delayed. Compared to wild type, the DeltaFOS-1 strain was neither osmotically sensitive nor sensitive or resistant to a number of nondicarboximide antifungal drugs, but was highly resistant to dicarboximide fungicides and resistant to novozym 234, suggesting that FOS-1p may play a role in the regulation of cell-wall assembly.  相似文献   

2.
The yeast histidine kinase, Sln1p, is a plasma membrane-associated osmosensor that regulates the activity of the osmotic stress MAP kinase pathway. Changes in the osmotic environment of the cell influence the autokinase activity of the cytoplasmic kinase domain of Sln1p. Neither the nature of the stimulus, the mechanism by which the osmotic signal is transduced nor the manner in which the kinase is regulated is currently clear. We have identified several mutations located in the linker region of the Sln1 kinase (just upstream of the kinase domain) that cause hyperactivity of the Sln1 kinase. This region of histidine kinases is largely uncharacterized, but its location between the transmembrane domains and the cytoplasmic kinase domain suggests that it may have a potential role in signal transduction. In this study, we have investigated the Sln1 linker region in order to understand its function in signal transduction and regulation of Sln1 kinase activity. Our results indicate that the linker region forms a coiled-coil structure and suggest a mechanism by which alterations induced by osmotic stress influence kinase activity by altering the alignment of the phospho-accepting histidine with respect to the catalytic domain of the kinase.  相似文献   

3.
4.
Signal-responsive components of transmembrane signal-transducing regulatory systems include methyl-accepting chemotaxis proteins and membrane-bound, two-component histidine kinases. Prokaryotes use these regulatory networks to channel environmental cues into adaptive responses. A typical network is highly discriminating, using a specific phosphoryl relay that connects particular signals to appropriate responses. Current understanding of transmembrane signal transduction includes periplasmic signal binding with the subsequent conformational changes being transduced, via transmembrane helix movements, into the sensory protein's cytoplasmic domain. These induced conformational changes bias the protein's regulatory function. Although the mutational analyses reviewed here identify a role for the linker region in transmembrane signal transduction, no specific mechanism of linker function has yet been described. We propose a speculative, mechanistic model for linker function based on interactions between two putative amphipathic helices. The model attempts to explain both mutant phenotypes and hybrid sensor data, while accounting for recognized features of amphipathic helices.  相似文献   

5.
Bacterial pathogens often employ two-component systems (TCSs), typically consisting of a sensor kinase and a response regulator, to control expression of a set of virulence genes in response to changing host environments. In Staphylococcus aureus, the SaeRS TCS is essential for in vivo survival of the bacterium. The intramembrane-sensing histidine kinase SaeS contains, along with a C-terminal kinase domain, a simple N-terminal domain composed of two transmembrane helices and a nine amino acid-long extracytoplasmic linker peptide. As a molecular switch, SaeS maintains low but significant basal kinase activity and increases its kinase activity in response to inducing signals such as human neutrophil peptide 1 (HNP1). Here we show that the linker peptide of SaeS controls SaeS’s basal kinase activity and that the amino acid sequence of the linker peptide is highly optimized for its function. Without the linker peptide, SaeS displays aberrantly elevated kinase activity even in the absence of the inducing signal, and does not respond to HNP1. Moreover, SaeS variants with alanine substitution of the linker peptide amino acids exhibit altered basal kinase activity and/or irresponsiveness to HNP1. Biochemical assays reveal that those SaeS variants have altered autokinase and phosphotransferase activities. Finally, animal experiments demonstrate that the linker peptide-mediated fine tuning of SaeS kinase activity is critical for survival of the pathogen. Our results indicate that the function of the linker peptide in SaeS is a highly evolved feature with very optimized amino acid sequences, and we propose that, in other SaeS-like intramembrane sensing histidine kinases, the extracytoplasmic linker peptides actively fine-control their kinases.  相似文献   

6.
7.
Membrane-associated histidine kinases (HKs) in two-component systems respond to environmental stimuli by autophosphorylation and phospho-transfer. HK typically contains a periplasmic sensor domain that regulates the cytoplasmic kinase domain through a conserved cytoplasmic linker. How signal is transduced from the ligand-binding site across the membrane barrier remains unclear. Here, we analyse two linker regions of a typical HK, DctB. One region connects the first transmembrane helix with the periplasmic Per-ARNT-Sim domains, while the other one connects the second transmembrane helix with the cytoplasmic kinase domains. We identify a leucine residue in the first linker region to be essential for the signal transduction and for maintaining the delicate balance of the dimeric interface, which is key to its activities. We also show that the other linker, belonging to the S-helix coiled-coil family, plays essential roles in signal transduction inside the cell. Furthermore, by combining mutations with opposing activities in the two regions, we show that these two signalling transduction elements are integrated to produce a combined effect on the final activity of DctB.  相似文献   

8.
9.
Shiraishi Y  Imanishi M  Sugiura Y 《Biochemistry》2004,43(20):6352-6359
In the DNA recognition mode of C(2)H(2)-type zinc fingers, the finger-finger connection region, consisting of the histidine spacing (HX(3-5)H) and linker, would be important for determining the orientation of the zinc finger domains. To clarify the influence of spacing between two ligand histidines in the DNA binding, we exchanged the histidine spacing between Sp1 and GLI zinc fingers, which have an HX(3)H-TGEKK linker (typical) and an HX(4)H-SNEKP linker (atypical), respectively. A significant decrease in the DNA binding affinity and specificity is found in Sp1-type peptides, whereas GLI-type peptides show a mild reduction. To evaluate the effect of the linker characteristics, we further designed Sp1-type mutants with an SNEKP linker. As a result, the significant effect of the histidine spacing in Sp1-type peptides was reduced. These results demonstrate that (1) the histidine spacing significantly affects the DNA binding of zinc finger proteins and (2) the histidine spacing and the following linker regions are one effective target for regulating the DNA recognition mode of zinc finger proteins.  相似文献   

10.
Tez1 is a chimeric protein in which the periplasmic and transmembrane domains of Tar, a chemosensor, are fused to the cytoplasmic catalytic domain of EnvZ, an osmosensing histidine kinase, through the EnvZ linker. Unlike Taz1 (a similar hybrid with the Tar linker), Tez1 could not respond to Tar ligand, aspartate, whereas single Ala insertion at the transmembrane/linker junction, as seen in Tez1A1, restored the aspartate-regulatable phenotype. Analysis of the Ala insertion site requirement and the nature of the insertion residue on the phenotype of Tez1 indicated that a junction region between the transmembrane domain and the predicted helix I in the linker is critical to signal transduction. Random mutagenesis revealed that P185Q mutation in the Tez1 linker restored the aspartate-regulatable phenotype. Substitution mutations at Pro-185 further demonstrated that specific residues are required at this site for an aspartate response. None of the hybrid receptors constructed with different Tar/EnvZ fusion sites in the linker could respond to aspartate, suggesting that specific interactions between the two predicted helices in the linker are important for the linker function. In addition, a mutation (F220D) known to cause an OmpCc phenotype in EnvZ resulted in similar OmpCc phenotypes in both Tez1A1 and Tez1, indicating the importance of the predicted helix II in signal propagation. Together, we propose that the N-terminal junction region modulates the alignment between the two helices in the linker upon signal input. In turn helix II propagates the resultant conformational signal into the downstream catalytic domain of EnvZ to regulate its bifunctional enzymatic activities.  相似文献   

11.
A two-component histidine protein kinase gene, homologous to os-1 from Neurospora crassa, was cloned and sequenced from a single ascospore isolate of Botryotinia fuckeliana. A series of nine spontaneous mutants resistant to dicarboximide fungicides was selected from this strain and characterized with respect to fungicide resistance and osmotic sensitivity. Genetic crosses of the mutants with an authentic Daf1 strain showed that the phenotypes mapped to this locus. Single point mutations (seven transitions, one transversion, and one short deletion) were detected in the alleles of the nine mutants sequenced. The mutational changes were shown to cosegregate with the dicarboximide resistance and osmotic sensitivity phenotypes in progeny obtained from crossing selected resistant strains with a sensitive strain. All mutations detected are predicted to result in amino acid changes in the coiled-coil region of the putative Daf1 histidine kinase, and it is proposed that dicarboximide fungicides target this domain.  相似文献   

12.
The alphavirus Semliki Forest virus (SFV) infects cells through a low-pH-dependent membrane fusion reaction mediated by the virus fusion protein E1. Acidic pH initiates a series of E1 conformational changes that culminate in membrane fusion and include dissociation of the E1/E2 heterodimer, insertion of the E1 fusion loop into the target membrane, and refolding of E1 to a stable trimeric hairpin conformation. A highly conserved histidine (H3) on the E1 protein was previously shown to promote low-pH-dependent E1 refolding. An SFV mutant with an alanine substitution at this position (H3A) has a lower pH threshold and reduced efficiency of virus fusion and E1 trimer formation than wild-type SFV. Here we addressed the mechanism by which H3 promotes E1 refolding and membrane fusion. We identified E1 mutations that rescue the H3A defect. These revertants implicated a network of interactions that connect the domain I-domain III (DI-DIII) linker region with the E1 core trimer, including H3. In support of the importance of these interactions, mutation of residues in the network resulted in more acidic pH thresholds and reduced efficiencies of membrane fusion. In vitro studies of truncated E1 proteins demonstrated that the DI-DIII linker was required for production of a stable E1 core trimer on target membranes. Together, our results suggest a critical and previously unidentified role for the DI-DIII linker region during the low-pH-dependent refolding of E1 that drives membrane fusion.  相似文献   

13.
Protein phosphorylation is one of the most ubiquitous and important types of post-translational modification for the regulation of cell function. The importance of two-component histidine kinases in bacteria, fungi and plants has long been recognised. In mammals, the regulatory roles of serine/threonine and tyrosine kinases have attracted most attention. However, the existence of histidine kinases in mammalian cells has been known for many years, although little is still understood about their biological roles by comparison with the hydroxyamino acid kinases. In addition, with the exception of NDP kinase, other mammalian histidine kinases remain to be identified and characterised. NDP kinase is a multifunctional enzyme that appears to act as a protein histidine kinase and as such, to regulate the activation of some G-proteins. Histone H4 histidine kinase activity has been shown to correlate with cellular proliferation and there is evidence that it is an oncodevelopmental marker in liver. This review mainly concentrates on describing recent research on these two types of histidine kinase. Developments in methods for the detection and assay of histidine kinases, including mass spectrometric methods for the detection of phosphohistidines in proteins and in-gel kinase assays for histone H4 histidine kinases, are described. Little is known about inhibitors of mammalian histidine kinases, although there is much interest in two-component histidine kinase inhibitors as potential antibiotics. The inhibition of a histone H4 histidine kinase by genistein is described and that of two-component histidine kinase inhibitors of structurally-related mammalian protein kinases. In addition, recent findings concerning mammalian protein histidine phosphatases are briefly described.  相似文献   

14.
The Rcs signalling pathway controls a variety of physiological functions like capsule synthesis, cell division or motility in prokaryotes. The Rcs regulation cascade, involving a multi-step phosphorelay between the two membrane-bound hybrid sensor kinases RcsC and RcsD and the global regulator RcsB, is, up to now, one of the most complicated regulatory systems in bacteria. To understand the structural basis of Rcs signal transduction, NMR spectroscopy was employed to determine the solution structure of the RcsC C terminus, possessing a phosphoreceiver domain (RcsC-PR), and a region previously described as a long linker between the histidine kinase domain of RcsC (RcsC-HK) and the RcsC-PR. We have found that the linker region comprises an independent structural domain of a new alpha/beta organization, which we named RcsC-ABL domain (Alpha/Beta/Loop). The ABL domain appears to be a conserved and unique structural element of RcsC-like kinases with no significant sequence homology to other proteins. The second domain of the C terminus, the RcsC-PR domain, represents a well-folded CheY-like phosphoreceiver domain with the central parallel beta-sheet covered with two alpha-helical layers on both sides. We have mapped the interaction of RcsC-ABL and RcsC-PR with the histidine phosphotransfer domain (HPt) of RcsD. In addition we have characterized the interaction with and the conformational effects of Mg2+ and the phosphorylation mimetic BeF(-)(3) on RcsC-ABL and RcsC-PR.  相似文献   

15.
Two-component signal transduction systems, comprised of histidine kinase and its cognate response regulator, are the predominant mechanism by which microorganisms sense and respond to changes in many different environmental conditions. Different Thermotoga maritima histidine kinases have been used as prototypes; among them, the orphan TM0853 has been presented as a structural model of class I histidine kinases. We used phosphotransfer assays to identify TM0468 as the partner response regulator of TM0853. Since full-length TM0853 can be produced as a soluble protein in Escherichia coli, it was used to analyze the union stoichiometry in an intact two-component system for the first time. We demonstrate that TM0853, or its cytoplasmic catalytic portion, form a 1:1 complex with TM0468 with native PAGE. The complex band is unique, even in the presence of an excess of each individual protein, indicating that the union is cooperative. We corroborated these findings by using ultracentrifugation assays. Therefore, we propose that the general mode of interaction in an orthodox two-component system may be the stoichiometric and cooperative complex between a dimeric histidine kinase and two response regulators. Finally, we have been able to produce protein crystals of the complex between the cytoplasmic portion of TM0853 and TM0468 that diffract to 2.8 A Bragg spacing.  相似文献   

16.
Two-component systems including histidine protein kinases represent the primary signal transduction paradigm in prokaryotic organisms. To understand how these systems adapt to allow organisms to detect niche-specific signals, we analyzed the phylogenetic distribution of nearly 5,000 histidine protein kinases from 207 sequenced prokaryotic genomes. We found that many genomes carry a large repertoire of recently evolved signaling genes, which may reflect selective pressure to adapt to new environmental conditions. Both lineage-specific gene family expansion and horizontal gene transfer play major roles in the introduction of new histidine kinases into genomes; however, there are differences in how these two evolutionary forces act. Genes imported via horizontal transfer are more likely to retain their original functionality as inferred from a similar complement of signaling domains, while gene family expansion accompanied by domain shuffling appears to be a major source of novel genetic diversity. Family expansion is the dominant source of new histidine kinase genes in the genomes most enriched in signaling proteins, and detailed analysis reveals that divergence in domain structure and changes in expression patterns are hallmarks of recent expansions. Finally, while these two modes of gene acquisition are widespread across bacterial taxa, there are clear species-specific preferences for which mode is used.  相似文献   

17.
A novel series of benzoazepin-2-ones were designed and synthesized targeting the PIF pocket of AGC protein kinases, among which a series of thioether-linked benzoazepin-2-ones were discovered to bind to the PIF pocket of 3-phosphoinositide-dependent kinase-1 (PDK1), and to displace the PIF peptide with an EC50 values in the lower micromolar range. The structure–activity relationships (SARs) of the linker region, tail region, and distal region were explored to further optimize these novel binders which target the PIF pocket of PDK1. When tested in an in vitro PDK1 enzymatic assay using a peptide substrate, the benzodiazepin-2-ones increased the activity of the enzyme in a concentration-dependent fashion, indicating these compounds act as PDK1 allosteric activators. These new compounds may be further developed as therapeutic agents for the treatment of diseases where the PDK1-mediated AGC protein kinases are dysregulated.  相似文献   

18.
The initiation of sporulation in Bacillus species is regulated by the phosphorelay signal transduction pathway, which is activated by several histidine sensor kinases in response to cellular and metabolic signals. Comparison of the protein components of the phosphorelay between Bacillus subtilis and Bacillus anthracis revealed high homology in the phosphorelay orthologs of Spo0F, Spo0B, and Spo0A. The sensor domains of sensor histidine kinases are poorly conserved between species, making ortholog recognition tenuous. Putative sporulation sensor histidine kinases of B. anthracis were identified by homology to the HisKA domain of B. subtilis sporulation sensor histidine kinases, which interacts with Spo0F. Nine possible kinases were uncovered, and their genes were assayed for complementation of kinase mutants of B. subtilis, for ability to drive lacZ expression in B. subtilis and B. anthracis, and for the effect of deletion of each on the sporulation of B. anthracis. Five of the nine sensor histidine kinases were inferred to be capable of inducing sporulation in B. anthracis. Four of the sensor kinases could not be shown to induce sporulation; however, the genes for two of these were frameshifted in all B. anthracis strains and one of these was also frameshifted in the pathogenic pXO1-bearing Bacillus cereus strain G9241. It is proposed that acquisition of plasmid pXO1 and pathogenicity may require a dampening of sporulation regulation by mutational selection of sporulation sensor histidine kinase defects. The sporulation of B. anthracis ex vivo appears to result from any one or a combination of the sporulation sensor histidine kinases remaining.  相似文献   

19.
Plant genomes encode a variety of protein kinases, and while some are functional homologues of animal and fungal kinases, others have a novel structure. This review focuses on three groups of unusual membrane-associated plant protein kinases: receptor-like protein kinases (RLKs), calcium-dependent protein kinases (CDPKs), and histidine protein kinases. Animal RLKs have a putative extracellular domain, a single transmembrane domain, and a protein kinase domain. In plants, all of the RLKs identified thus far have serine/threonine signature sequences, rather than the tyrosine-specific signature sequences common to animals. Recent genetic experiments reveal that some of these plant kinases function in development and pathogen resistance. The CDPKs of plants and protozoans are composed of a single polypeptide with a protein kinase domain fused to a C-terminal calmodulin-like domain containing four calcium-binding EF hands. No functional plant homologues of protein kinase C or Ca2+/calmodulin-dependent protein kinase have been identified, and no animal or fungal CDPK homologues have been identified. Recently, histidine kinases have been shown to participate in signaling pathways in plants and fungi. ETR1, an Arabidopsis histidine kinase homologue with three transmembrane domains, functions as a receptor for the plant hormone ethylene. G-protein-coupled receptors, which often serve as hormone receptors in animal systems, have not yet been identified in plants. Received: 18 August 1997/Revised: 23 December 1997  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号