首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Cancer cells present a sustained de novo fatty acid synthesis with an increase of saturated and monounsaturated fatty acid (MUFA) production. This change in fatty acid metabolism is associated with overexpression of stearoyl-CoA desaturase 1 (Scd1), which catalyses the transformation of saturated fatty acids into monounsaturated fatty acids (e.g., oleic acid). Several reports demonstrated that inhibition of Scd1 led to the blocking of proliferation and induction of apoptosis in cancer cells. Nevertheless, mechanisms of cell death activation remain to be better understood.

Principal Findings

In this study, we demonstrated that Scd1 extinction by siRNA triggered abolition of de novo MUFA synthesis in cancer and non-cancer cells. Scd1 inhibition-activated cell death was only observed in cancer cells with induction of caspase 3 activity and PARP-cleavage. Exogenous supplementation with oleic acid did not reverse the Scd1 ablation-mediated cell death. In addition, Scd1 depletion induced unfolded protein response (UPR) hallmarks such as Xbp1 mRNA splicing, phosphorylation of eIF2α and increase of CHOP expression. However, the chaperone GRP78 expression, another UPR hallmark, was not affected by Scd1 knockdown in these cancer cells indicating a peculiar UPR activation. Finally, we showed that CHOP induction participated to cell death activation by Scd1 extinction. Indeed, overexpression of dominant negative CHOP construct and extinction of CHOP partially restored viability in Scd1-depleted cancer cells.

Conclusion

These results suggest that inhibition of de novo MUFA synthesis by Scd1 extinction could be a promising anti-cancer target by inducing cell death through UPR and CHOP activation.  相似文献   

2.
3.
Chronic excessive fluoride intake is known to be toxic and can lead to fluorosis and bone pathologies. However, the cellular mechanisms underlying NaF-induced cytotoxicity in osteoblasts are not well understood. The objectives of this study were to determine the effects of fluoride treatment on MC3T3-E1 osteoblastic cell viability, cell cycle analysis, apoptosis and the expression levels of bcl-2 family members: bcl-2 and bax. MC3T3-E1 cells were treated with 10−5; 5 × 10−5; 10−4; 5 × 10−4 and 10−3 M NaF for up to 48 h. NaF was found to reduce cell viability in a temporal and concentration dependent manner and promote apoptosis even at low concentrations (10−5 M). This increased apoptosis was due to alterations in the expression of both pro-apoptotic bax and anti-apoptotic bcl-2. The net result was a decrease in the bcl-2/bax ratio which was found at both the mRNA and protein levels. Furthermore, we also noted that NaF-induced S-phase arrest during the cell cycle of MC3T3-E1 cells. These data suggest that fluoride-induced osteoblast apoptosis is mediated by direct effects of fluoride on the expression of bcl-2 family members.  相似文献   

4.
Breast cancer is the leading cause of deaths in women around the world. Resistance to therapy is the main cause of treatment failure and still little is known about predictive biomarkers for response to systemic therapy. Increasing evidence show that Survivin and XIAP overexpression is closely associated with chemoresistance and poor prognosis in breast cancer. However, their impact on resistance to doxorubicin (dox), a chemotherapeutic agent widely used to treat breast cancer, is poorly understood. Here, we demonstrated that dox inhibited cell viability and induced DNA fragmentation and activation of caspases-3, -7 and -9 in the breast cancer-derived cell lines MCF7 and MDA-MB-231, regardless of different p53 status. Dox exposure resulted in reduction of Survivin and XIAP mRNA and protein levels. However, when we transfected cells with a Survivin-encoding plasmid, we did not observe a cell death-resistant phenotype. XIAP and Survivin silencing, either alone or in combination, had no effect on breast cancer cells sensitivity towards dox. Altogether, we demonstrated that breast cancer cells are sensitive to the chemotherapeutic agent dox irrespective of Survivin and XIAP expression levels. Also, our findings suggest that dox-mediated modulation of Survivin and XIAP might sensitize cells to taxanes when used in a sequential regimen.  相似文献   

5.
Arsenic trioxide (ATO; As2O3) can induce apoptotic cell death in various cancer cells including lung cancer cells. However, little is known about the toxicological effects of ATO on normal primary lung cells. In this study, we investigated the cellular effects of ATO on human pulmonary fibroblast (HPF) cells in relation to cell growth inhibition and death. ATO inhibited HPF cell growth with an IC50 of approximately 30–40 μM at 24 h and induced cell death accompanied by the loss of mitochondrial membrane potential (MMP; ΔΨm). Thus, HPF cells were considered to be very resistant to ATO insults. ATO increased the expression of p53 protein and decreased that of Bcl-2 protein. This agent activated caspase-8 but not caspase-3 in HPF cells. Z-VAD (a pan-caspase inhibitor; 15 μM) did not significantly decrease cell growth inhibition, death and MMP (ΔΨm) loss by ATO. Moreover, administration of Bax or casase-8 siRNA attenuated HPF cell death by ATO whereas p53 or caspase-3 siRNAs did not affect cell death. In conclusion, HPF cells were resistant to ATO and higher doses of ATO induced the growth inhibition and death in HPF cells via the regulation of Bcl-2 family and caspase-8.  相似文献   

6.
Manganese ions block apoptosis of phagocytes induced by various agents. The prevention of apoptosis was attributed to the activation of manganous superoxide dismutase (Mn-SOD) and to the antioxidant function of free Mn2+ cations. However, the effect of Mn2+ on B cell apoptosis is not documented. In this study, we investigated the effects of Mn2+ on the apoptotic process in human B cells. We observed that Mn2+ but not Mg2+ or Ca2+, inhibited cell growth and induced apoptosis of activated tonsilar B cells, Epstein Barr virus (EBV)-negative Burkitt's lymphoma cell lines (BL-CL) and EBV-transformed B cell lines (EBV-BCL). In the same conditions, no apoptosis was observed in U937, a monoblastic cell line. Induction of B cell apoptosis by Mn2+ was time- and dose-dependent. The cell permeable tripeptide inhibitor of ICE family cysteine proteases, zVAD-fmk, suppressed Mn2+-induced apoptosis. Furthermore, Mn2+ triggered the activation of interleukin-1beta converting enzyme (ICE/caspase 1), followed by the activation of CPP32/Yama/Apopain/caspase-3. In addition, poly-(ADP-ribose) polymerase (PARP), a cellular substrate for CPP32 protease was degraded to generate apoptotic fragments in Mn2+-treated B cell lines. The inhibitor, zVAD-fmk suppressed Mn2+-triggered CPP32 activation and PARP cleavage and apoptosis. These results indicate that the activation of caspase family proteases is required for the apoptotic process induced by Mn2+ treatment of B cells. While the caspase-1 inhibitor YVAD was unable to block apoptosis, the caspase-3 specific inhibitor DEVD-cmk, partially inhibited Mn2+-induced CPP32 activation, PARP cleavage and apoptosis of cells. Moreover, Bcl-2 overexpression in BL-CL effectively protected cells from apoptosis and cell death induced by manganese. This is the first report showing the involvement of Mn2+ in the regulation of B lymphocyte death presumably via a caspase-dependent process with a death-protective effect of Bcl-2.  相似文献   

7.
8.
Listeria monocytogenes induces apoptosis in vitro and in vivo in a variety of cell types. However, the mechanism of cell death in L. monocytogenes -infected macrophages was initially reported to be distinct from apoptosis. Here, we studied the mechanism of L. monocytogenes -induced cell death using sensitive fluorescent techniques. We found that caspase-1 activation preceded cell death of macrophages infected with L. monocytogenes , using fluorogenic substrates. Caspase-1 activation was diminished after infection with wild-type L. monocytogenes when cells were treated with NH4Cl, or if they were infected with a listeriolysin mutant that cannot escape from the phagolysosome. Mitochondrial membrane integrity was preserved during the infection. A particular mechanism of cell death, recently termed 'pyroptosis', is associated with infection by intracellular microorganisms, and has an inherent pro-inflammatory character, due to involvement of caspase-1 activation with consequent IL-1β and IL-18 production. Cell death through caspase-1 activation would constitute a defence mechanism of macrophages which induces cell death to eliminate the bacteria's intracytosolic niche and recruits early host's defences through the secretion of inflammatory cytokines.  相似文献   

9.
The distribution of the bcl-2, bax and caspase-3 proteins was investigated in the cells of developing human spinal ganglia. Paraffin sections of 10 human conceptuses between 5th and 9th gestational weeks were analysed morphologically, immunohistochemically and by TUNEL-method. Cells positive to caspase-3 had brown stained nuclei or nuclear fragmentations. At earliest stages, 6% of ganglion population were caspase-3 positive cells. Later on, a significant increase in number of caspase-3 positive cells appeared, particularly in the ventral part of ganglia (12%), and subsequently decreased to 6%. TUNEL-positive cells had the same distribution pattern as caspase-3 positive cells. Bax-positive cells followed the developmental pattern similar to caspase-3 cells, changing in range between 20% and 32%. There were 8% of bcl-2 positive cells at earliest stages. They increased significantly in dorsal part of the ganglion during the 7th week (28%), and than dropped to 15% by the end of the 8th week. These findings suggest a ventro-dorsal course of development in human spinal ganglia. Number of bcl-2, bax and caspase-3 positive cells changed in a temporally and spatially restricted manner, coincidently with ganglion differentiation. While apoptosis might control cell number, bcl-2 could act in suppression of apoptosis and enhancement of cell differentiation.  相似文献   

10.
The present study focused on the effects of simulated microgravity on the human follicular thyroid carcinoma cell line ML-1. Cultured on a three-dimensional clinostat ML- 1 cells formed three-dimensional multicellular tumor spheroids (MCTS: 0.3 +/= 0.01mm in diameter). Furthermore, ML-1 cells grown on the clinostat showed elevated amounts of the apoptosis-associated Fas protein, of p53 and of bax, but reduced quantities of bcl-2. In addition, signs of apoptosis as assessed by TdT-mediated DUTP digoxigenin nick end labeling, DAPI staining, DNA laddering and 85-kDa apoptosis-related DNA fragments became detectable. The latter ones resulted from enhanced 116-kDa poly(ADP-ribose)polymerase activity. Electron microscopy revealed all morphological signs of apoptosis. Caspase 3 was clearly upregulated. In conclusion, our experiments show that conditions of simulated microgravity induce early programmed cell death and use different pathways of apoptosis.  相似文献   

11.
Molecular Biology Reports - Pancreatic cancer is the fourth common cause of cancer death. Surgery and chemotherapy are the common treatment strategies for pancreatic cancer patients; however, the...  相似文献   

12.
Galectin-1, a mammalian lectin expressed in many tissues, induces death of diverse cell types, including lymphocytes and tumor cells. The galectin-1 T cell death pathway is novel and distinct from other death pathways, including those initiated by Fas and corticosteroids. We have found that galectin-1 binding to human T cell lines triggered rapid translocation of endonuclease G from mitochondria to nuclei. However, endonuclease G nuclear translocation occurred without cytochrome c release from mitochondria, without nuclear translocation of apoptosis-inducing factor, and prior to loss of mitochondrial membrane potential. Galectin-1 treatment did not result in caspase activation, nor was death blocked by caspase inhibitors. However, galectin-1 cell death was inhibited by intracellular expression of galectin-3, and galectin-3 expression inhibited the eventual loss of mitochondrial membrane potential. Galectin-1-induced cell death proceeds via a caspase-independent pathway that involves a unique pattern of mitochondrial events, and different galectin family members can coordinately regulate susceptibility to cell death.  相似文献   

13.
Proteolysis mediated by the ubiquitin-proteasome system has been implicated in the regulation of programmed cell death. Here we investigated the differential effects of proteasomal inhibitors on the viability of proliferating and quiescent primary endothelial cells in vitro and in vivo. Subconfluent, proliferating cells underwent carbobenzoxy-L-isoleucyl-gamma-t-butyl-L-glutamyl-L-alanyl-L-leucinal (PSI) -induced apoptosis at low concentrations (EC(50)=24 nM), whereas at least 340-fold higher concentrations of PSI were necessary to obtain the same effect in confluent, contact-inhibited cells. PSI-mediated cell death could be blocked by a caspase-3 inhibitor (Ac-DEVD-H), but not by a caspase-1 inhibitor (Ac-YVAD-H), suggesting that a caspase-3-like enzyme is activated during PSI-induced apoptosis. When applied to the embryonic chick chorioallantoic membrane, a rapidly expanding tissue, PSI induced massive apoptosis also in vivo. PSI treatment of the CAM led to the formation of areas devoid of blood flow due to the induction of apoptosis in endothelial and other cells and to the collapse of capillaries and first order vessels. Our results demonstrate that proteasomal inhibitors such as PSI may prove effective as novel anti-angiogenic and anti-neoplastic substances.  相似文献   

14.
Journal of Physiology and Biochemistry - In this study, the effects of melatonin (1 μM–1 mM) on pancreatic stellate cells (PSC) have been examined. Cell viability and...  相似文献   

15.
Oxidative stress is one of the major causes of cellular injury. Various reactive oxygen (ROS) and nitrogen (RNS) species such as superoxide, hydroxyl radical, peroxynitrite, and nitric oxide are involved in the manifestations of different types of organ toxicity and the resultant syndromes, symptoms, or diseases. Hypothermic conditions have been reported to reduce the oxidative stress in various in vitro and in vivo studies. In the present study, we sought to determine the effect of lowered temperatures on oxidative stress-induced cell death in Chinese hamster ovary (CHO) cells. We also investigated the oxidative stress-induced alterations in the expression of anti-apoptotic protein, bcl-2, in CHO cells at lowered temperatures. CHO cells were incubated at four different temperatures of 30, 32, 35, and 37 degrees C (control temperature) from 1 to 4 d. In another set, the cells were incubated with 100 microM hydrogen peroxide (H(2)O(2)) for 30 min before harvesting at different time points. The cells were harvested at 1, 2, 3, and 4 d. Cell survival was significantly higher at 30 degrees C as compared to 37 degrees C over 4 d of incubation. In cells incubated with H(2)O(2), significantly higher cell viability was observed at lower temperatures as compared to the cells incubated at 37 degrees C. The activity of glutathione peroxidase (GSH-Px) also increased significantly at lower temperatures. Lowered temperature also provided a significant increase in the expression of anti-apoptotic protein, bcl-2 after 4 d of incubation. These data suggest that hypothermic conditions lowers the risk of oxidative stress-induced cellular damage and programmed cell death by increasing the activity of GSH-Px and by the induction in the expression of the anti-apoptotic protein, bcl-2.  相似文献   

16.
Epstein-Barr virus (EBV) not only induces growth transformation in human B lymphocytes, but has more recently been shown to enhance B cell survival under suboptimal conditions where growth is inhibited; both effects are mediated through the coordinate action of eight virus-coded latent proteins. The effect upon cell survival is best recognized in EBV-positive Burkitt's lymphoma cell lines where activation of full virus latent gene expression protects the cells from programmed cell death (apoptosis). Here we show by DNA transfection into human B cells that protection from apoptosis is conferred through expression of a single EBV latent protein, the latent membrane protein LMP 1. Furthermore, we demonstrate that LMP 1 mediates this effect by up-regulating expression of the cellular oncogene bcl-2. The interplay between EBV infection and expression of this cellular oncogene has important implications for virus persistence and for the pathogenesis of virus-associated malignant disease.  相似文献   

17.
Human oral squamous cell carcinoma (OSCC) has been associated with a relatively low survival rate over the years and is characterized by a poor prognosis. C-X3-C motif chemokine ligand 1 (CX3CL1) has been involved in advanced migratory cells. Overexpressed CX3CL1 promotes several cellular responses related to cancer metastasis, including cell movement, migration and invasion in tumour cells. However, CX3CL1 controls the migration ability, and its molecular mechanism in OSCC remains unknown. The present study confirmed that CX3CL1 increased cell movement, migration and invasion. The CX3CL1-induced cell motility is upregulated through intercellular adhesion molecule-1 (ICAM-1) expression in OSCC cells. These effects were significantly suppressed when OSCC cells were pre-treated with CX3CR1 monoclonal antibody (mAb) and small-interfering RNA (siRNA). The CX3CL1-CX3CR1 axis activates promoted PLCβ/PKCα/c-Src phosphorylation. Furthermore, CX3CL1 enhanced activator protein-1 (AP-1) activity. The CX3CR1 mAb and PLCβ, PKCα, c-Src inhibitors reduced CX3CL1-induced c-Jun phosphorylation, c-Jun translocation into the nucleus and c-Jun binding to the ICAM-1 promoter. The present results reveal that CX3CL1 induces the migration of OSCC cells by promoting ICAM-1 expression through the CX3CR1 and the PLCβ/PKCα/c-Src signal pathway, suggesting that CX3CL1-CX3CR1-mediated signalling is correlated with tumour motility and appealed to be a precursor for prognosis in human OSCC.  相似文献   

18.
Cyclooxygenase-2 (COX-2) has been suggested to be associated with carcinogenesis. Recently, many studies have shown increased expression of COX-2 in a variety of human malignancies, including hepatocellular carcinoma (HCC). Therefore, it becomes important to know more about what determines COX-2 expression. In this work, we have studied the effect of PPARdelta activation on COX-2 expression using a selective agonist (GW501516) in human hepatocellular carcinoma (HepG2) cells. Activation of PPARdelta resulted in increased COX-2 mRNA and protein expression. The mechanism behind the induction seems to be increased activity of the proximal promoter of the COX-2 gene, spanning nucleotides -327 to +59. The increased COX-2 protein expression and promoter activity induced by the GW501516 was also confirmed in the monocytic cell line THP-1. Induced levels of COX-2 have previously been associated with resistance to apoptosis and increased cell proliferation in many cell types. In HepG2 cells, we observed a dose-dependent increase in cell number by GW501516 treatment for 72h. The levels of PCNA, used as an indicator of cell division were induced, and the cell survival promoting complex p65 (NF-kappaB) was phosphorylated under GW501516 treatment. We conclude that PPARdelta activation in HepG2 cells results in induced COX-2 expression and increased cellular proliferation. These results may suggest that PPARdelta plays an important role in the development of HCC by modulating expression of COX-2.  相似文献   

19.
The Epstein-Barr virus (EBV) immediate-early protein BZLF1 mediates the switch between the latent and lytic forms of EBV infection and has been previously shown to induce a G(1)/S block in cell cycle progression in some cell types. To examine the effect of BZLF1 on cellular gene expression, we performed microarray analysis on telomerase-immortalized human keratinocytes that were mock infected or infected with a control adenovirus vector (AdLacZ) or a vector expressing the EBV BZLF1 protein (AdBZLF1). Cellular genes activated by BZLF1 expression included E2F-1, cyclin E, Cdc25A, and a number of other genes involved in cell cycle progression. Immunoblot analysis confirmed that BZLF1 induced expression of E2F-1, cyclin E, Cdc25A, and stem loop binding protein (a protein known to be primarily expressed during S phase) in telomerase-immortalized keratinocytes. Similarly, BZLF1 increased expression of E2F-1, cyclin E, and stem loop binding protein (SLBP) in primary tonsil keratinocytes. In contrast, BZLF1 did not induce E2F-1 expression in normal human fibroblasts. Cell cycle analysis revealed that while BZLF1 dramatically blocked G(1)/S progression in normal human fibroblasts, it did not significantly affect cell cycle progression in primary human tonsil keratinocytes. Furthermore, in EBV-infected gastric carcinoma cells, the BZLF1-positive cells had an increased number of cells in S phase compared to the BZLF1-negative cells. Thus, in certain cell types (but not others), BZLF1 enhances expression of cellular proteins associated with cell cycle progression, which suggests that an S-phase-like environment may be advantageous for efficient lytic EBV replication in some cell types.  相似文献   

20.
Colorectal carcinomas (CRCs) with P53 mutations have been shown to be resistant to chemotherapy with 5-fluorouracil (5-FU), the most widely used chemotherapeutic drug for CRC treatment. Autophagy is emerging as a promising therapeutic target for drug-resistant tumors. In the present study, we tested the effects of ursolic acid (UA), a natural triterpenoid, on cell death mechanisms and its effects in combination with 5-FU in the HCT15 p53 mutant apoptosis-resistant CRC cell line. The involvement of UA in autophagy and its in vivo efficacy were evaluated.Our data show that UA induces apoptosis independent of caspases in HCT15 cells and enhances 5-FU effects associated with an activation of c-jun N-terminal kinase (JNK). In this cell line, where this compound has a more pronounced effect on the induction of cell death compared to 5-FU, apoptosis corresponds only to a small percentage of the total cell death induced by UA. UA also modulated autophagy by inducing the accumulation of LC3 and p62 levels with involvement of JNK pathway, which indicates a contribution of autophagy on JNK-dependent induction of cell death by UA. By using nude mice xenografted with HCT15 cells, we verified that UA was also active in vivo decreasing tumor growth rate.In conclusion, this study shows UA's anticancer potential both in vitro and in vivo. Induction of cell death and modulation of autophagy in CRC-resistant cells were shown to involve JNK signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号