首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
After tissue loss the liver has the unique capacity to restore its mass by hepatocyte proliferation. Interleukin-6 (IL6)-deficient mice show a lack in DNA synthesis after partial hepatectomy (PH). To define better the role of IL6 and its family members for liver regeneration after PH, we used conditional knockout mice for glycoprotein 130 (gp130), the common signal transducer of all IL6 family members. We show that gp130-dependent pathways control Stat3 activation after PH. By using gene array analysis, we demonstrate that c-jun, NF-kappa B, c-myc, and tumor necrosis factor receptor expression is gp130-dependent. However, in gp130-deleted mice only minor effects on cell cycle and on the maximum of DNA synthesis after PH were found compared with controls. As in conditional gp130 animals, the acute phase response was completely abolished, we considered that other means are essential to define the role of gp130-dependent pathways for liver regeneration. LPS stimulation in gp130-deleted and also IL6 -/- animals after PH leads to a significant reduction in survival and DNA synthesis, which was associated with decreased Bcl-xL expression and higher apoptosis in the liver. These results indicate that the phenotype concerning the reduction in DNA synthesis might be linked to the degree of infection after PH. Thus our results suggest that the role of gp130-dependent signaling is not a direct influence on cell cycle progression after partial hepatectomy but is to activate protective pathways important to enable hepatocyte proliferation.  相似文献   

5.
6.
7.
8.
Y Yamanaka  K Nakajima  T Fukada  M Hibi    T Hirano 《The EMBO journal》1996,15(7):1557-1565
Interleukin-6 (IL-6) induces growth arrest and macrophage differentiation through its receptor in a murine myeloid leukaemic cell line, M1, although it is largely unknown how the IL-6 receptor generates these signals. By using chimeric receptors consisting of the extracellular domain of growth hormone receptor and the transmembrane and cytoplasmic domain of gp130 with progressive C-terminal truncations, we showed that the membrane-proximal 133, but not 108, amino acids of gp130 could generate the signals for growth arrest, macrophage differentiation, down-regulation of c-myc and c-myb, induction of junB and IRF1 and Stat3 activation. Mutational analysis of this region showed that the tyrosine residue with the YXXQ motif was critical not only for Stat3 activation but also for growth arrest and differentiation, accompanied by down-regulation of c-myc and c-myb and immediate early induction of junB and IRF1. The tight correlation between Stat3 activation and other IL-6 functions was further observed in the context of the full-length cytoplasmic region of gp130. The result suggest that Stat3 plays an essential role in the signals for growth arrest and differentiation.  相似文献   

9.
10.
Interleukin (IL)-6 is a pleiotropic cytokine that not only affects the immune system, but also acts in other biological systems and many physiological events in various organs. In a target cell, IL-6 can simultaneously generate functionally distinct or sometimes contradictory signals through its receptor complex, IL-6Rα and gp130. One good illustration is derived from the in vitro observations that IL-6 promotes the growth arrest and differentiation of M1 cells through gp130-mediated STAT3 activation, whereas the Y759/SHP-2-mediated cascade by gp130 stimulation has growth-enhancing effects. The final physiological output can be thought of as a consequence of the orchestration of the diverse signaling pathways generated by a given ligand. This concept, the signal orchestration model, may explain how IL-6 can elicit proinflammatory or anti-inflammatory effects, depending on the in vivo environmental circumstances. Elucidation of the molecular mechanisms underlying this issue is a challenging subject for future research. Intriguingly, recent in vivo studies indicated that the SHP-2-binding site- and YXXQ-mediated pathways through gp130 are not mutually exclusive but affect each other: a mutation at the SHP-2-binding site prolongs STAT3 activation, and a loss of STAT activation by gp130 truncation leads to sustained SHP-2/ERK MAPK phosphorylation. Although IL-6/gp130 signaling is a promising target for drug discovery for many human diseases, the interdependence of each signaling pathway may be an obstacle to the development of a nonpeptide orally active small molecule to inhibit one of these IL-6 signaling cascades, because it would disturb the signal orchestration. In mice, a consequence of the imbalanced signals causes unexpected results such as gastrointestinal disorders, autoimmune diseases, and/or chronic inflammatory proliferative diseases. However, lessons learned from IL-6 KO mice indicate that IL-6 is not essential for vital biological processes, but a significant impact on disease progression in many experimental models for human disorders. Thus, IL-6/gp130 signaling will become a more attractive therapeutic target for human inflammatory diseases when a better understanding of IL-6 signaling, including the identification of the conductor for gp130 signal transduction, is achieved.  相似文献   

11.
Stat3 is one of the main signaling components of cytokine receptors, including gp130. Here we show that activation of cytokine receptor gp130 resulted in a dramatic ventralization of Xenopus embryos and that the ventralization correlated well with Stat3 activation potential of the receptor. This finding led to identification of Xenopus Stat3 (Xstat3), which showed a 95% homology to its murine and human counterparts, at the amino acid level, and was expressed from the one-cell stage throughout development. The mechanism of gp130/XStat3-mediated ventralization proved to be independent of BMP-4. gp130/Xstat3 stimulation inhibited Smad2-induced ectopic axis formation in embryos and Smad2-dependent luciferase activity. A dominant-negative Stat3, in contrast, dorsalized Xenopus embryos, resulting in ectopic axis formation. We propose that Stat3-mediated signaling has the capacity to modify dorsoventral patterning in the early development of Xenopus.  相似文献   

12.
13.
Cells have various receptors on their surface for responding to extracellular signals that involve intercellular communication. Although the mechanism of signal transduction by such wild‐type receptors has been studied intensively, there has been minimal effort in investigating whether such receptors could signal when unnaturally coupled. In this study, we investigated whether unnatural receptor pairs comprising interleukin‐2 (IL‐2) and interleukin‐6 (IL‐6) receptor subunits could transduce a signal through forced dimerization. We replaced the extracellular domain of IL‐2R and IL‐6R signaling subunits (IL‐2Rβ, IL‐2Rγ, and gp130) with the FK506‐binding protein (FKBP) or the FKBP12‐rapamycin binding (FRB) domain, the protein pair known to be heterodimerized by rapamycin. When expressed in a hematopoietic cell line, unnatural heterodimers (IL‐2Rβ‐gp130 and IL‐2Rγ‐gp130 pairs) successfully transduced a signal. While the IL‐2Rγ‐gp130 pair maximally mimicked gp130 signaling, the IL‐2Rβ‐gp130 pair gave weaker gp130 signaling and no significant induction of IL‐2Rβ signaling, indicating a high potential of the IL‐2Rγ chain in terms of activating the coupled partners. This is the first report demonstrating that heterodimeric combinations of IL‐2R and IL‐6R subunits are functional for signaling. Further extension of this approach may attain a creative design of artificial receptor pairs that have distinct signaling properties when compared with natural receptors. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1512–1518, 2013  相似文献   

14.
15.
Interleukin‐6 (IL‐6) is a multifunctional cytokine that employs IL‐6 classic and trans‐signalling pathways, and these two signal channels execute different or even opposite effects in certain diseases. As a cardinal event of diabetic kidney disease (DKD), whether the podocyte abnormalities are associated with IL‐6 signalling, especially classic or trans‐signalling respectively, remains unclear. In this study, we identified that the circulatory IL‐6, soluble IL‐6R (sIL‐6R) and soluble glycoprotein 130 (sgp130) levels are elevated in patients with DKD. The expressions of membrane‐bound IL‐6R (mIL‐6R), sIL‐6R and gp130 are enhanced in kidney cortex of diabetic mice accompanying with activated STAT3 by tyrosine 705 residue phosphorylation, while not serine 727. Above data infer both classic signalling and trans‐signalling of IL‐6 are activated during DKD. In cultured podocyte, high glucose (HG) up‐regulates the expression of mIL‐6R and gp130, as well as STAT3 tyrosine 705 phosphorylation, in a time‐dependent manner. Entirely blocking IL‐6 signalling by gp130 shRNA, gp130 or IL‐6 neutralizing antibodies attenuates HG‐induced podocyte injury. Interestingly, either inhibiting IL‐6 classic signalling by mIL‐6R shRNA or suppressing its trans‐signalling using sgp130 protein dramatically alleviates HG‐induced podocyte injury, suggesting both IL‐6 classic signalling and trans‐signalling play a detrimental role in HG‐induced podocyte injury. Additionally, activation of IL‐6 classic or trans‐signalling aggravates podocyte damage in vitro. In summary, our observations demonstrate that the activation of either IL‐6 classic or trans‐signalling advances podocyte harming under hyperglycaemia. Thus, suppressing IL‐6 classic and trans‐signalling simultaneously may be more beneficial in podocyte protection and presents a novel therapeutic target for DKD.  相似文献   

16.
IL-6 regulates in vivo dendritic cell differentiation through STAT3 activation   总被引:14,自引:0,他引:14  
Dendritic cells (DCs) orchestrate immune responses according to their state of maturation. In response to infection, DCs differentiate into mature cells that initiate immune responses, while in the absence of infection, most of them remain in an immature form that induces tolerance to self Ags. Understanding what controls these opposing effects is an important goal for vaccine development and prevention of unwanted immune responses. A crucial question is what cytokine(s) regulates DC maturation in the absence of infection. In this study, we show that IL-6 plays a major role in maintaining immature DCs. IL-6 knockout (KO) mice had increased numbers of mature DCs, indicating that IL-6 blocks DC maturation in vivo. We examined this effect further in knockin mice expressing mutant versions of the IL-6 signal transducer gp130, with defective signaling through either Src homology region 2 domain-containing phosphatase 2/Gab/MAPK (gp130(F759/F759)) or STAT3 (gp130(FxxQ/FxxQ)), and combined gp130 and IL-6 defects (gp130(F759/F759)/IL-6 KO mice). Importantly, we found STAT3 activation by IL-6 was required for the suppression of LPS-induced DC maturation. In addition, STAT3 phosphorylation in DCs was regulated by IL-6 in vivo, and STAT3 was necessary for the IL-6 suppression of bone marrow-derived DC activation/maturation. DC-mediated T cell activation was enhanced in IL-6 KO mice and suppressed in gp130(F759/F759) mice. IL-6 is thus a potent regulator of DC differentiation in vivo, and IL-6-gp130-STAT3 signaling in DCs may represent a critical target for controlling T cell-mediated immune responses in vivo.  相似文献   

17.
The transmembrane glycoprotein gp130 is the common signal transducing receptor subunit of the IL-6-type cytokines. The gp130 extracellular part is predicted to consist of six individual domains. Whereas the role of the three membrane-distal domains (D1-D3) in binding of IL-6 and IL-11 is well established, the function of the membrane-proximal domains (D4-D6) is unclear. Mapping of a neutralizing mAb to the membrane-proximal part of gp130 suggests a functional role of D4-D6 in receptor activation. Individual deletion of these three domains differentially interferes with ligand binding of the soluble and membrane-bound receptors. All deletion mutants do not signal in response to IL-6 and IL-11. The deletion mutants Delta4 and, to a lesser extent, Delta6 are still activated by agonistic monoclonal gp130 Abs, whereas the deletion mutant Delta5 does not respond. Because membrane-bound Delta5 binds IL-6/soluble IL-6R as does wild-type gp130, but does not transduce a signal in response to various stimuli, this domain plays a prominent role in coupling of ligand binding and signal transduction. Replacement of the fifth domain of gp130 by the corresponding domain of the homologous G-CSF receptor leads to constitutive activation of the chimera upon overexpression in COS-7 cells. In HepG2 cells this mutant responds to IL-6 comparable to wild-type gp130. Our findings suggest a functional role of the membrane-proximal domains of gp130 in receptor activation. Thus, within the hematopoietic receptor family the mechanism of receptor activation critically depends on the architecture of the receptor ectodomain.  相似文献   

18.
The interleukin-6 (IL-6) stimulates growth in cells such as multiple myeloma and B-cell plasmacytomas/hybridomas, while it inhibits growth in several myeloid leukemia cells. The IL-6 receptor has subunit called gp130. It was reported that Ser-782 of gp130 is phosphorylated by unidentified kinase(s) in cell extracts, and level of gp130 (S782A) transiently expressed on the cell surface of COS-7 is 6-times higher than that of the wild type. These results motivated us to analyze whether the phosphorylation of gp130 at Ser-782 is involved in its degradation or not. In this study, we demonstrated here that treatment of HepG2 cells with okadaic acid (OA), a potent inhibitor for PP2A, promotes phosphorylation of gp 130 at Ser-782 and degradation of gp 130. MG115, a proteasome inhibitor, suppressed this degradation. These effects of OA could not be replaced with tautomycetin (TC), an inhibitor for PP1. Purified PP2A dephosphorylated phospho-Ser-782 of gp130 in vitro. IL-6-induced activation of Stat3 was suppressed by preincubation of the cells with OA, suggesting that the IL-6 signaling pathway was blocked by OA through degradation of gp 130. Taken together, present results strongly suggest that degradation of gp 130 is regulated through a phosphorylation-dephosphorylation mechanism in which PP2A is crucially involved and that gp 130 is a potential therapeutic target in cancers.  相似文献   

19.
The interleukin-6 (IL-6) stimulates growth in cells such as multiple myeloma and B-cell plasmacytomas/hybridomas, while it inhibits growth in several myeloid leukemia cells. The IL-6 receptor has subunit called gp130. It was reported that Ser-782 of gp130 is phosphorylated by unidentified kinase(s) in cell extracts, and level of gp130 (S782A) transiently expressed on the cell surface of COS-7 is 6-times higher than that of the wild type. These results motivated us to analyze whether the phosphorylation of gp130 at Ser-782 is involved in its degradation or not. In this study, we demonstrated here that treatment of HepG2 cells with okadaic acid (OA), a potent inhibitor for PP2A, promotes phosphorylation of gp130 at Ser-782 and degradation of gp130. MG115, a proteasome inhibitor, suppressed this degradation. These effects of OA could not be replaced with tautomycetin (TC), an inhibitor for PP1. Purified PP2A dephosphorylated phospho-Ser-782 of gp130 in vitro. IL-6-induced activation of Stat3 was suppressed by preincubation of the cells with OA, suggesting that the IL-6 signaling pathway was blocked by OA through degradation of gp130. Taken together, present results strongly suggest that degradation of gp130 is regulated through a phosphorylation-dephosphorylation mechanism in which PP2A is crucially involved and that gp130 is a potential therapeutic target in cancers. (Mol Cell Biochem 269: 183–187, 2005)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号