首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystal structure and a 96-ps molecular dynamics simulation used to analyze structural and motional contributions to spin-lattice (T1) relaxation times of phenylalanine and tyrosine C gamma carbons of the pancreatic trypsin inhibitor. The H beta and H delta protons geminal to C gamma are calculated to account for approximately 80% of the dipolar relaxation for each residue. Experimental T1 values for the phenylalanine residues obtained at 25 MHz are observed to be 15-25% longer than estimates based on the rigid crystal structure. It is shown how an increase in T1 can be related to order parameters for the picosecond motional averaging of the important C,H dipolar interactions, and how these order parameters can be calculated from a protein molecular dynamics trajectory.  相似文献   

2.
The regulatory mechanism of rabbit muscle pyruvate kinase has been studied as a function of temperature in conjunction with phenylalanine, the allosteric inhibitor. The inhibitory effect of phenylalanine is modulated by temperature. At low temperatures, the presence of phenylalanine is almost inconsequential, but as the temperature increases so does the phenylalanine-dependent inhibition of the kinetic activity. In addition, the presence of phenylalanine induces cooperativity in the relation between velocity and substrate concentration. This effect is especially pronounced at elevated temperature. The kinetic data were analyzed using an equation that describes the steady-state kinetic velocity data as a function of five equilibrium constants and two rate constants. Van't Hoff analysis of the temperature dependence of the equilibrium constants determined by nonlinear curve fitting revealed that the interaction of pyruvate kinase with its substrate, phosphoenolpyruvate, is an enthalpy-driven process. This is consistent with an interaction that involves electrostatic forces, and indeed, phosphoenolpyruvate is a negatively charged substrate. In contrast, the interaction of pyruvate kinase with phenylalanine is strongly entropy driven. These results imply that the binding of phenylalanine involves hydrophobic interaction and are consistent with the basic concepts of strengthening of the hydrophobic effect with an increase in temperature. The effect of phenylalanine at high temperatures is the net consequence of weakening of substrate-enzyme interaction and significant strengthening of inhibitor binding to the inactive state of pyruvate kinase. The effects of salts were also studies. The results show that salts also exert a differential effect on the binding of substrate and inhibitor to the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Phenylalanine hydroxylase was prepared from human foetal liver and purified 800-fold; it appeared to be essentially pure. The phenylalanine hydroxylase activity of the liver was confined to a single protein of mol.wt. approx. 108000, but omission of a preliminary filtration step resulted in partial conversion into a second enzymically active protein of mol.wt. approx. 250000. Human adult and full-term infant liver also contained a single phenylalanine hydroxylase with molecular weights and kinetic parameters the same as those of the foetal enzyme; foetal, newborn and adult phenylalanine hydroxylase are probably identical. The K(m) values for phenylalanine and cofactor were respectively one-quarter and twice those found for rat liver phenylalanine hydroxylase. As with the rat enzyme, human phenylalanine hydroxylase acted also on p-fluorophenylalanine, which was inhibitory at high concentrations, and p-chlorophenylalanine acted as an inhibitor competing with phenylalanine. Iron-chelating and copper-chelating agents inhibited human phenylalanine hydroxylase. Thiol-binding reagents inhibited the enzyme but, as with the rat enzyme, phenylalanine both stabilized the human enzyme and offered some protection against these inhibitors. It is hoped that isolation of the normal enzyme will further the study of phenylketonuria.  相似文献   

4.
1. Excised discs of potato (Solanum tuberosum) tuber were incubated with [3H]fucose and extracts were prepared and incubated with an antibody to phenylalanine ammonia-lyase. Analysis of the resulting immunoprecipitated proteins by SDS/PAGE showed [3H]mannose- and [3H]fucose-labelled bands with Mr values corresponding to those of phenylalanine ammonia-lyase subunits. 2. When potato discs were incubated with [3H]sugars in the presence of tunicamycin, an inhibitor of N-linked protein glycosylation, incorporation of radioactivity from [3H]mannose into the immunoprecipitated enzyme subunits was virtually eliminated, whereas that from [3H]fucose was only marginally inhibited. 3. Tunicamycin reduced the level of extractable phenylalanine ammonia-lyase activity induced in excised potato tuber discs. Kinetic analysis revealed that the Vmax value of the enzyme in crude extracts from tunicamycin-treated tissue was reduced, whereas the apparent Km values were unaffected. 4. Immunoprecipitation of the enzyme labelled in vivo with [35S]methionine showed that tunicamycin did not inhibit the synthesis of the enzyme protein per se, nor did it increase the degradation of the enzyme protein. 5. Immunoprecipitation of the enzyme labelled in vitro with [14C]nitromethane showed that tunicamycin did not affect the introduction of the dehydroalanine residue into the active site. 6. These results are consistent with the following hypothesis: tunicamycin inhibits the N-linked glycosylation of phenylalanine ammonia-lyase which, in turn, results in imperfect folding of the enzyme protein. The orientation of the active site is changed in such a way that the affinity of the enzyme for its substrate is unaffected, whereas the catalytic activity of the enzyme is reduced. 7. Both optical- and electron-microscopic immunolocalization studies with antibody to phenylalanine ammonia-lyase showed increased deposition of silver granules in cells in sections of potato discs in which induction of the enzyme was allowed to occur compared with cells from newly wounded tissue. The enzyme was located in the cytoplasm, and was possibly membrane-associated.  相似文献   

5.
P-chlorophenylalanine is an irreversible inhibitor of rat phenylalanine hydroxylase in vivo and in rat hepatoma cells and is frequently administered to rodents to create an animal model for phenylketonuria. We investigated the effect of p-chlorophenylalanine on production of human phenylalanine hydroxylase in human hepatoma cells and cells transformed with the recombinant human phenylalanine hydroxylase gene. P-chlorophenylalanine inhibited production of the human enzyme in human hepatoma cells and transformed mouse hepatoma cells but had no effect on the production of the enzyme in transformed NIH3T3 cells or in E. coli. Thus, phenylalanine hydroxylase inhibition does not result from a simple interaction between the drug and enzyme.  相似文献   

6.
J R Carias  R Julien 《FEBS letters》1975,56(2):303-306
Aurin tricarboxylic acid (A.T.A.), an inhibitor of protein biosynthesis (initiation and elongation steps), acts also as a competitive inhibitor of phenylalanine, in the ATP-PPi exchange and tRNAPhe aminoacylation reactions catalysed by cytoplasmic wheat germ phenylalanine:tRNA ligase.  相似文献   

7.
1. Histidine-pyruvate aminotransferase (isoenzyme 1) was purified to homogeneity from the mitochondrial and supernatant fractions of rat liver, as judged by polyacrylamide-gel electrophoresis and isolectric focusing. Both enzyme preparations were remarkably similar in physical and enzymic properties. Isoenzyme 1 had pI8.0 and a pH optimum of 9.0. The enzyme was active with pyruvate as amino acceptor but not with 2-oxoglutarate, and utilized various aromatic amino acids as amino donors in the following order of activity: phenylalanine greater than tyrosine greater than histidine. Very little activity was found with tryptophan and 5-hydroxytryptophan. The apparent Km values were about 2.6mM for histidine and 2.7 mM for phenylalanine. Km values for pyruvate were about 5.2mM with phenylalanine as amino donor and 1.1mM with histidine. The aminotransferase activity of the enzyme towards phenylalanine was inhibited by the addition of histidine. The mol.wt. determined by gel filtration and sucrose-density-gradient centrifugation was approx. 70000. The mitochondrial and supernatant isoenzyme 1 activities increased approximately 25-fold and 3.2-fold respectively in rats repeatedly injected with glucagon for 2 days. 2. An additional histidine-pyruvate aminotransferase (isoenzyme 2) was partially purified from both the mitochondrial and supernatant fractions of rat liver. Nearly identical properties were observed with both preparations. Isoenzyme 2 had pI5.2 and a pH optimum of 9.3. The enzyme was specific for pyruvate and did not function with 2-oxoglutarate. The order of effectiveness of amino donors was tyrosine = phenylalanine greater than histidine greater than tryptophan greater than 5-hydroxytryptophan. The apparent Km values for histidine and phenylalanine were about 0.51 and 1.8 mM respectively. Km values for pyruvate were about 3.5mM with phenylalanine and 4.7mM with histidine as amino donors. Histidine inhibited phenylalanine aminotransferase activity of the enzyme. Gel filtration and sucrose-density-gradient centrifugation yielded a mol.wt. of approx. 90000. Neither the mitochondrial nor the supernatant isoenzyme 2 activity was elevated by glucagon injection.  相似文献   

8.
The inhibitory properties of beta-2-thienyl-dl-alanine on rat phenylalanine hydroxylase from crude liver and kidney homogenates were assessed in vitro and in vivo, as well as its effects on the intestinal transport of phenylalanine, by using a perfusion procedure in vivo. The apparent K(m) for liver phenylalanine hydroxylase changed from 0.61mm in the absence of the inhibitor to 2.70mm in the presence of 24mm-beta-2-thienyl-dl-alanine, with no significant change in the V(max.). For kidney the corresponding values were 0.50 and 1.60mm respectively. A single dose of beta-2-thienyl-dl-alanine (2mmol/kg) failed to inhibit phenylalanine hydroxylase in either organ. Repeated injections during a 4-day period caused a decline of the enzymic activity to about 40% of controls. Intestinal absorption of phenylalanine when perfused at 0.2-2.0mm concentration was also competitively inhibited by beta-2-thienyl-dl-alanine. Its K(i) value was estimated at 81mm. The limited inhibitory effects of beta-2-thienyl-dl-alanine towards hepatic phenylalanine hydroxylase and phenylalanine intestinal transport, and its rapid metabolism, as suggested by the small elimination of this compound in the urine and its virtual absence from animal tissues, are factors that restrict its potential usefulness as an inducer of phenylketonuria in rats or as an effective blocker of phenylalanine absorption by the gut.  相似文献   

9.
The reactive-site sequence of a proteinase inhibitor can be written as . . . -P3-P2-P1-P'1-P'2-P'3- . . . , where-P1-P'1-denotes the reactive site. Three semisynthetic homologues have been synthesized of the bovine trypsin-kallikrein inhibitor (Kunitz) with either arginine, phenylalanine or tryptophan in place of the reactive-site residue P1, lysine-15. These homologues correspond to gene products after mutation of the lysine 15 DNA codon to an arginine, phenylalanine or tryptophan DNA codon. Starting from native (virgin) inhibitor, reactive-site hydrolyzed, still active (modified) inhibitor was prepared by chemical and enzymic reactions. Modified inhibitor was then converted into inactive des-Lys15-inhibitor by reaction with carboxypeptidase B. Inactive des-Lys15-inhibitor was reactivated by enzymic replacement of the P1 residue according to Leary and Laskowski, Jr. The introduction of arginine was catalyzed by an inverse reaction with carboxypeptidase B, while phenylalanine or tryptophan were replaced by carboxypeptidase A. The reactivated semisynthetic inhibitors were trapped by complex formation with either trypsin or chymotrypsin. The enzyme - inhibitor complexes were subjected to kinetic-control dissociation, and the semisynthetic virgin inhibitors were isolated. The inhibitory properties of the semisynthetic inhibitors have been investigated against bovine trypsin and chymotrypsin and against porcine pancreatic kallikrein and plasmin. The homologues with either lysine or arginine in the P1 position are equally good inhibitors of trypsin, plasmin and kallikrein. The Arg-15-homologue is a slightly more effective kallikrein inhibitor than the Lys15-inhibitor. The semisynthetic phenylalanine and tryptophan homologues, however, are weak inhibitors of trypsin and still weaker inhibitors of kallikrein, but are excellent inhibitors of chymotrypsin. Their association constant with chymotrypsin is at least ten times higher than that of native Lys-15-inhibitor. A dramatic specificity change is observed with the phenylalanine and tryptophan homologues, which in contrast to the native inhibitor do not at all inhibit porcine plasmin. Thus, the nature of the P1 residue strongly influences the primary inhibitory specificity of the bovine inhibitor (Kunitz).  相似文献   

10.
We have investigated the p-chlorophenylalanine-dependent loss of phenylalanine hydroxylase activity in cultured hepatoma cells. The similarity of the effect of p-chlorophenylalanine on phenylalanine hydroxylase in the hepatoma cells and that reported from studies in vivo indicates that the loss of phenylalanine hydroxylase activity is due to a direct interaction of the amino acid analogue with the liver. We can find no evidence that the loss of phenylalanine hydroxylase activity is due to: a direct inactivation of the hydroxylase by p-chlorophenylalanine or an inhibitor produced by p-chlorophenylalanine treatment; an effect similar to that of p-fluorophenylalanine; or leakage of enzyme from the cells during p-chlorophenylalanine treatment. The data presented indicate: (a) the p-chlorophenylalanine effect is rather specific for phenylalanine hydroxylase; (b) following p-chlorophenylalanine removal, new protein synthesis is necessary for restoration of the hydroxylase activity; (c) the rate of loss of phenylalanine hydroxylase activity after the addition of p-chlorophenylalanine is much faster than the rate of restoration of the hydroxylase activity after removal of p-chlorophenylalanine; (d) even in the presence of p-chlorophenylalanine, hydrocortisone greatly stimulates the hydroxylase activity; (e) the cell density-dependent increase of phenylalanine hydroxylase activity is blocked by p-chlorophenylalanine. A discussion of the possible mechanisms of p-chlorophenylalanine-dependent loss of phenylalanine hydroxylase is presented. To measure very low leanine-dependent loss of phenylalanine hydroxylase is presented. To measure very low levels of phenylalanine hydroxylase activity, a new procedure, based on isotope dilution, was developed for isolating the tyrosine formed during the enzymatic reaction.  相似文献   

11.
Continued high levels of phenylalanine hydroxylase in cultured H4-II-E-C3 rat hepatoma cells require either serum or glucocorticoids in the culture medium. Upon withdrawal of serum, cellular phenylalanine hydroxylase levels decay exponentially with a half-life of 22 hours for about 60 hours, after which time a low, constant enzyme content persists for at least 96 hours. This decline of phenylalanine hydroxylase is fully reversible; normal enzyme levels are restored in a time- and dosage-dependent fashion upon addition of serum to basal cultures. The serum factor is nondialyzable and moderately heat-stable. The stimulation by serum of the phenylalanine hydroxylas content of basal cultures is blocked by 3-[2-(3,5-dimethyl-2-oxocyclohexyl)-2-hydroxyethyl]glutarimide and requires ongoing cellular protein synthesis. When added to the enzyme-assay mixture in vitro, serum does not alter the phenylalanine hydroxylase activity of extracts from basal cultures. Three lines of evidence suggest that serum contains a nonsteroidal phenylalanine hydroxylase stimulatory components(s): (a) glucocorticoid antagonists inhibit less than one-half of the biological activity of serum; (b) exhaustive extraction of endogenous serum glucocorticoids with charcoal reduces the activity of serum to about one-half of control values; and (c) the stimulatory effects of charcoal reduces the values; and (c) the stimulatory effects of charcoal-extracted serum and hydrocortisone are additive. The phenylalanine hydroxylase stimulatory activities of the charcoal-extracted sera from four mammalian species and from three stages in development in one mammalian species are comparable. A survey of partially purified preparations of a number of known hormones failed to reveal any one capable of elevating the phenylalanine hydroxylas levels of basal cultures in a manner comparable to that of charcoal-extracted serum.  相似文献   

12.
Maternal phenylketonuria. Review with emphasis on pathogenesis   总被引:1,自引:0,他引:1  
H L Levy 《Enzyme》1987,38(1-4):312-320
Maternal phenylketonuria (PKU) refers to fetal damage from PKU in the pregnant woman. The progeny from such pregnancies are almost always microcephalic and mentally subnormal and have an increased frequency of congenital heart disease and low birth weight. Treatment with a phenylalanine-restricted diet, if begun before conception, seems to protect the fetus. The degree of protection is much less if dietary treatment is delayed until the pregnancy is in progress. The origin of fetal damage in maternal PKU is not known. Due to placental concentration of amino acids, the fetus is exposed to a higher concentration of phenylalanine than that in the mother, but it is not certain that phenylalanine is the toxic agent. Animal models made hyperphenylalaninemic by the administration of phenylalanine, often accompanied by a phenylalanine hydroxylase inhibitor, do not reproduce the full maternal PKU syndrome; but fetuses and newborns from these models have had reduced growth of the body and brain, and offspring later may show evidence of impaired learning ability.  相似文献   

13.
A recently described new form of hyperphenylalaninemia is characterized by the excretion of 7-substituted isomers of biopterin and neopterin and 7-oxo-biopterin in the urine of patients. It has been shown that the 7-substituted isomers of biopterin and neopterin derive from L-tetrahydrobiopterin and D-tetrahydroneopterin and are formed during hydroxylation of phenylalanine to tyrosine with rat liver dehydratase-free phenylalanine hydroxylase. We have now obtained identical results using human phenylalanine hydroxylase. The identity of the pterin formed in vitro and derived from L-tetrahydrobiopterin as 7-(1',2'-dihydroxypropyl)pterin was proven by gas-chromatography mass spectrometry. Tetrahydroneopterin and 6-hydroxymethyltetrahydropterin also are converted to their corresponding 7-substituted isomers and serve as cofactors in the phenylalanine hydroxylase reaction. Dihydroneopterin is converted by dihydrofolate reductase to the tetrahydro form which is biologically active as a cofactor for the aromatic amino acid monooxygenases. The 6-substituted pterin to 7-substituted pterin conversion occurs in the absence of pterin-4a-carbinolamine dehydratase and is shown to be a nonenzymatic process. 7-Tetrahydrobiopterin is both a substrate (cofactor) and a competitive inhibitor with 6-tetrahydrobiopterin (Ki approximately 8 microM) in the phenylalanine hydroxylase reaction. For the first time, the formation of 7-substituted pterins from their 6-substituted isomers has been demonstrated with tyrosine hydroxylase, another important mammalian enzyme which functions in the hydroxylation of phenylalanine and tyrosine.  相似文献   

14.
The state of phosphorylation of phenylalanine hydroxylase was determined in isolated intact rat hepatocytes. 32P-labeled phenylalanine hydroxylase was immunoisolated from cells loaded with 32Pi or from cell extracts 'back-phosphorylated' with [gamma-32P]ATP by cAMP-dependent protein kinase. The rate of phenylalanine hydroxylase phosphorylation in cells with elevated cAMP was similar to that observed for the isolated enzyme phosphorylated by homogeneous cAMP-dependent protein kinase. The phosphorylation rate in cAMP-stimulated cells was increased up to four times (reaching 0.018 s-1) by the presence of phenylalanine, the phosphate content (mol/mol hydroxylase) increasing to 0.5 from the basal level (0.17) in 50 s. The half maximal effect of phenylalanine was obtained at a physiologically relevant concentration (110 microM). The synthetic phenylalanine hydroxylase cofactor dimethyltetrahydropterin also enhanced the cAMP-stimulated phosphorylation of phenylalanine hydroxylase, presumably by displacing the endogenous cofactor, tetrahydrobiopterin. Phenylalanine was a negative modulator of the phosphorylation of phenylalanine hydroxylase induced by incubating cells with vasopressin or with the phosphatase inhibitor okadaic acid. The same site on the phenylalanine hydroxylase was phosphorylated in response to these two agents as in response to elevated cAMP. The available evidence suggested that not only vasopressin, but also okadaic acid, acted by stimulating the multifunctional Ca2+/calmodulin-dependent protein kinase II or a kinase with closely resembling properties.  相似文献   

15.
alpha-Methylphenylalanine is a very weak competitive inhibitor of rat liver phenylalanine hydroxylase in vitro but a potent suppressor in vivo. The loss of the hepatic activity (the renal one is unaffected) becomes maximal (70-75% decrease; cf. control) 18h after the administration (per 10g body wt.) of 24 mumol of alpha-methylphenylalanine with or without 52 mumol of phenylalanine. Chronic suppression of hepatic phenylalanine hydroxylase was obtained by injections of alpha-methylphenylalanine plus phenylalanine to suckling rats, and by their addition to the diet after weaning. A series of comparisons of the effects of this treatment, and one with p-chlorophenylalanine, was then carried out. In both cases there was a rise (1.3-2-fold) in phenylalanine-pyruvate amino-transferase activity (but no change in four other enzyme activities) in the liver; in brain there was a rise in phosphoserine phosphatase activity, but the total activity and subcellular distribution of nine enzymes revealed no other abnormalities in cerebral development. Striking increases in the concentration of plasma phenylalanine during 26 of the 31 experimental days (with a transient fall at 18-22 days) were maintained by treatment with both analogues plus phenylalanine. However, p-chlorophenylalanine-treated animals had a 30-60% mortality rate and 27-52% decrease in body weight. Developing rats treated with alpha-methylphenylalanine, showing no growth deficit or signs of toxicity (e.g. cataracts), appear to be a more suitable model for the human disease of phenylketonuria. Their phenylalanine concentrations exhibited at least 20-40-fold increase during 50% of each of the first 18 days of life, and 30-fold after weaning.  相似文献   

16.
Dextrorotatory 1-amino-3',4'-dichlorobenzylphosphonic acid was found to be a potent inhibitor of the plant enzyme phenylalanine ammonia-lyase both in vitro and in vivo from among the ring-substituted 1-aminobenzylphosphonic acids and other analogues of phenylglycine. A structure activity relationship analysis of the results obtained permits predictions on the geometry of the pocket of the enzyme and is a basis in the strategy of better inhibitor synthesis.  相似文献   

17.
The bifunctional P protein (chorismate mutase: prephenate dehydratase) from Acinetobacter calcoaceticus has been purified. It was homogeneous in polyacrylamide gels and was more than 95% pure on the basis of the immunostaining of purified P protein with the antibodies raised against the P protein. The native enzyme is a homodimer (Mr = 91,000) composed of 45-kDa subunits. A twofold increase in the native molecular mass of the P protein occurred in the presence of L-phenylalanine (inhibitor of both activities) or L-tyrosine (activator of the dehydratase activity) during gel filtration. Chorismate mutase activity followed Michaelis-Menten kinetics with a Km of 0.55 mM for chorismate. L-Phenylalanine was a relatively poor non-competitive inhibitor of the mutase activity. The chorismate mutase activity was also competitively inhibited by prephenate (reaction product). Substrate-saturation curves for the dehydratase activity were sigmoidal showing positive cooperativity among the prephenate-binding sites. L-Tyrosine activated prephenate dehydratase strongly but did not abolish positive cooperativity with respect to prephenate. L-Phenylalanine inhibited the dehydratase activity, and the substrate-saturation curves became increasingly sigmoidal as phenylalanine concentrations were increased with happ values changing from 2.0 (no phenylalanine) to 4.0 (0.08 mM L-phenylalanine). A sigmoidal inhibition curve of the dehydratase activity by L-phenylalanine gave Hill plots having a slope of -2.9. Higher ionic strength increased the dehydratase activity by reducing the positive cooperative binding of prephenate, and the sigmoidal substrate-saturation curves were changed to near-hyperbolic form. The happ values decreased with increase in ionic strength. Antibodies raised against the purified P protein showed cross-reactivity with the P proteins from near phylogenetic relatives of A. calcoaceticus. At a greater phylogenetic distance, cross-reaction was superior with P protein from Neisseria gonorrhoeae than with that from the more closely related Escherichia coli.  相似文献   

18.
The substitution of amino acids in the reactive site of aprotinin, a bovine serine proteinase inhibitor with potent activity against trypsin, plasmin and tissue kallikrein, led to a change in specificity of the inhibitor. Twelve new aprotinin variants prepared by recombinant DNA technology and expressed in Escherichia coli clearly demonstrated that the neighbouring groups of the P1 residue, in particular P'2, contribute to the specificity of the inhibitor, while earlier investigations on semisynthetically prepared variants revealed the importance of the P1 residue in dominating the inhibitory specificity. Recombinant aprotinin variants which act specifically against chymotrypsin-like proteinases, were obtained by substitution of the amino acids in position P1 and P'2 by hydrophobic amino acids like phenylalanine, tyrosine and leucine. Some of these variants, particularly those with phenylalanine or leucine substitutions, were also found to exhibit inhibitory activity against cathepsin G with an equilibrium constant of dissociation Ki of 10(-8) M. Inhibitory specificity against cathepsin G was not found in any semisynthetic variant prepared earlier.  相似文献   

19.
Kynurenine pyruvate aminotransferase was purified from rat kidney. The purified enzyme had an isoelectric point of pH 5.2 and a pH optimum of 9.3. The enzyme was active with pyruvate as amino acceptor but not with 2-oxoglutarate, and utilized various aromatic amino acids as amino donors. L-Amino acids were effective in the following order of activity: histidine greather than phenylalanine greater than kynurenine greater than tyrosine greater than tryptophan greater than 5-hydroxytryptophan. The apparent Km values were about 0.63 mM, 1.4 mM and 0.09 mM for histidine, kynurenine and phenylalanine, respectively. Km values for pyruvate were 5.5 mM with histidine as amino donor, 1.3 mM with kynurenine and 8.5 mM with phenylalanine. Kynurenine pyruvate aminotransferase activity of the enzyme was inhibited by the addition of histidine or phenylalanine. The molecular weights determined by gel filtration and sucrose density gradient centrifugation were approximately 76000 and 79000, respectively. On the basis of purification ratio, substrate specificity, inhibition by common substrates, subcellular distribution, isoelectric focusing and polyacrylamide-gel electrophoresis, it is suggested that kynurenine pyruvate aminotransferase is identical with histidine pyruvate aminotransferase and also with phenylalanine pyruvate aminotransferase. The physiological significance of the enzyme is discussed.  相似文献   

20.
The effects of experimental hyperphenylalaninemia on catecholamine and serotonin synthesis in brain at a later stage of brain development were investigated. A group of 35-day-old rats treated with normal chow supplemented with 5% Phe + 0.4% alpha-methylphenylalanine, alpha MP, for the previous 10 days showed decreases in dopa, norepinephrine, and epinephrine versus controls. A group treated with a normal diet supplemented with 0.4% alpha MP showed similar decreases and these differences could be attributed to the presence of the phenylalanine hydroxylase and tyrosine hydroxylase inhibitor, alpha MP, rather than the hyperphenylalaninemia condition. No differences in dopamine were observed. Serotonin and 5-hydroxyindoleacetic acid (5HIAA) were decreased 50% in the HyPhe condition and were unaffected in the presence of alpha MP alone, indicating that the decreases in serotonin and 5HIAA were due to the increases in phenylalanine rather than the presence of the inhibitor. These abnormalities in serotonin metabolism at later stages of brain development may be relevant to early discontinuation of dietary therapy in the PKU patient and implies a role in tryptophan supplementation to increase intracerebral serotonin values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号