首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
—Tryptophan was found at higher concentration in the rat hypothalamus than in other brain regions. This difference was explicable neither by regional differences in blood content nor by differences in tryptophan recovery from different weights of tissue. It was not due to interference by other known brain indoles. After food deprivation or tryptophan injection the tryptophan concentration rose in all regions. Total 5-hydroxyindole increases showed regional differences but relative changes were similar after both procedures. Increases in 5-hydroxytryptamine were clearest in midbrain + hippocampus. In general, 5-hydroxyindolylacetic acid increased more markedly than 5-hydroxytryptamine. The hypothalamus appeared refractory with negligible increases of both 5-hydroxyindoles upon either food deprivation or tryptophan administration even though hypothalamic tryptophan concentration rose considerably. Results are discussed in relation to other evidence suggesting special characteristics of 5-HT regulation in the hypothalamus.  相似文献   

2.
Some serum and brain amino acid variations occurring in animals with short term streptozotocin-diabetes (24 h) are studied in this work. Diabetic animals showed an increase in serum of the three branched-chain amino acids as well as an increase in free tryptophan, besides a decrease in total serum tryptophan and in the tryptophan/competitor amino acids ratio. In brain, the three branched-chain amino acids increased, but there were no variation in whole brain tryptophan. Nevertheless, by studying levels of tryptophan in different brain regions, an increase in medulla-pons was recorded. This circumstance could be explained by the increase in free serum tryptophan levels, in agreement with several authors who assign this reason for brain tryptophan.  相似文献   

3.
4.
Sixty independent tryptophan auxotrophs of Pseudomonas acidovorans were isolated and characterized for nutritional response to intermediates of the pathway, accumulation of intermediates, and levels of tryptophan-synthetic enzymes. Mutants for each of the seven proteins catalyzing the five steps of tryptophan synthesis were obtained. Transductional analysis established three unlinked chromosomal regions: trpE, trpGDC, and trpFBA. The order of the genes within the two clusters was not determined. The levels and enzymatic activities of wild-type and mutant strains indicated that trpE and trpGDC were repressed by tryptophan. In contrast, trpFBA was not derepressed significantly by starvation for tryptophan. The trpG mutants had an additional requirement for p-aminobenzoate, which suggested that anthranilate synthase subunit II also served as glutamine-binding protein in the analogous reaction catalyzed by p-aminobenzoate synthase. In addition, trpD mutants revealed the ability of P. acidovorans to degrade anthranilate via the beta-ketoadipate pathway.  相似文献   

5.
—Three weeks after porto-caval anastomosis, tryptophan and 5-hydroxyindolylacetic acid concentrations were-greatly increased in rat brain regions. 5-Hydroxytryptamine showed smaller increases. Midbrain tyrosine and muscle tyrosine and tryptophan concentrations were also increased. Striatal dopa-mine concentration was not significantly changed. Unlike previous results from acute liver failure, brain tryptophan changes in this chronic study did not simply reflect plasma-free tryptophan changes. Midbrain tryptophan/plasma-free tryptophan ratio and midbrain tyrosine/plasma tyrosine ratio both rose, suggesting increased effectiveness of uptake of these amino acids from plasma by brain. Corresponding muscle/plasma ratios were unaltered by the porto-caval anastomosis. Uptake of tryptophan from buffer by cerebral cortex slices was unaffected. Results on control animals illustrate the importance of plasma-free tryptophan in the normal physiological control of brain tryptophan.  相似文献   

6.
In an earlier study, oxidation of tryptophan hydroxylase was implicated as its affinity was decreased with aging in rat brain. To establish any potential link between its oxidative damage and aging, we have determined the activities of antioxidant enzymes in midbrain, pons and medulla of 2, 12 and 24 month old Fisher 344 BNF1 rats. The results obtained suggest that the activities of antioxidant enzymes varied considerably with age and brain regions studied. Activities of Cu/Zn superoxide dismutase and glutathione peroxidase were found to increase from 2 to 12 months and then decrease in 24 month old rats. However catalase activity decreased consistently with the age. A parallel increase in the carbonyl content was observed in these brain regions indicating the oxidation of proteins. Reactive oxygen species when included in the incubation mixture decreased the activity of tryptophan hydroxylase in a concentration dependent manner. The loss of tryptophan hydroxylase activity induced by hydrogen peroxide and superoxide anion was prevented by catalase. However superoxide dismutase did not provide such protection. Sulfhydryl agents, cysteine, glutathione and dithiothreitol partially prevented the loss of activity. These studies suggest an involvement of reactive oxygen species for sulfhydryl oxidation of tryptophan hydroxylase in aging.  相似文献   

7.
Abstract— Streptozotocin-induced diabetes in rats reduces brain tryptophan but is without effect on the central levels of 5-hydroxytryptamine (5-HT) or 5-hydroxyindoleacetic acid (5-HIAA). The present work investigates the effect of diabetes on the accumulation of brain tryptophan, 5-HT and 5-HIAA in various brain regions following a systemic tryptophan load. The results indicate that diabetes severely restricts the uptake of tryptophan by brain but that the tryptophan that is accumulated is normally converted to 5-HT and 5-HIAA. Possible mechanisms which might explain the apparent resistance of 5-HT metabolism to decreased precursor levels in diabetics are discussed.  相似文献   

8.
Serum, liver and brain tryptophan concentrations and brain Na+K+-ATPase activity were studied in streptozotocin diabetic rats after an acute tryptophan load. Results show that tryptophan administration in the experimental diabetic group produces a generalized fall in tryptophan uptake in all the brain regions studied, though it does not increase serum and hepatic tryptophan concentrations. These parameters are normalized in insulin-treated diabetic rats. With regard to Na+K+-ATPase, diabetic animals showed a diminished and unchanged activity; whereas, the other two experimental groups showed a gradual decrease and a negative correlation with brain tryptophan uptake.  相似文献   

9.
PLASMA AND BRAIN TRYPTOPHAN CHANGES IN EXPERIMENTAL ACUTE HEPATIC FAILURE   总被引:12,自引:8,他引:4  
An experimental model for acute hepatic failure in man was obtained in pigs by hepatic devascularization. After operation, liver function was grossly impaired, movements became inco-ordinated and coma ensued. Most animals died 5½–8½ h after operation. Plasma unesteritied fatty acid and free (but not total) tryptophan concentrations rose markedly after operation and correlated significantly with each other. Brain tryptophan concentration increased and correlated significantly with plasma free tryptophan concentration. Increased tryptophan was found in the four brain regions studied (hypothalamus, thalamus, caudate and cortex) and was associated with raised 5-hydroxytryptamine turnover as indicated by raised 5-hydroxyindolylacetic acid concentration. Results are discussed in relation to altered tryptophan metabolism in human hepatic coma and to investigations of the influence of plasma unesterified fatty acid and free tryptophan changes on brain tryptophan metabolism in the rat.  相似文献   

10.
The effcts of short and long term lithium treatment on tryptophan uptake and on tissue levels of the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA) were studied in twelve brain regions of the cat. Tryptophan uptake and 5-HIAA were significantly correlated in control cats. Short term treatment caused parallel increases or decreases in tryptophan uptake and 5-HIAA. Long term treatment consistently increased tryptophan uptake without corresponding changes in 5-HIAA. Relatively low cumulative doses of lithium may reduce the degree to which tryptophan uptake is a limiting factor in the the regulation of serotonin synthesis.  相似文献   

11.
A J Dunn 《Life sciences》1988,42(19):1847-1853
Brain concentrations of tryptophan, serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) and plasma amino acids were measured after 15 or 30 minutes of intermittent footshock. Footshock treatment significantly decreased the content of 5-HT in prefrontal cortex and hypothalamus, but not brainstem at 15 min, but the decreases were reversed by 30 min. 5-HIAA, the major catabolite of 5-HT, increased in prefrontal cortex after 15 min, and in prefrontal cortex and hypothalamus after 30 min footshock. 5-HIAA:5-HT ratios were increased at both timepoints in all three brain regions. Concomitant changes in the ratios of 3,4-dihydroxyphenylacetic acid (DOPAC) to dopamine and 3-methoxy,-4-hydroxyphenylethyleneglycol (MHPG) to norepinephrine were also observed. Brain concentrations of tryptophan increased progressively during the footshock in all three brain regions. Plasma concentrations of both tryptophan and tyrosine were also significantly increased, while those of histidine and lysine were decreased. It is possible that the stress-related changes in 5-HT metabolism are due to increased plasma tryptophan, in turn causing increased brain tryptophan and 5-HT synthesis. However, the transient decreases in 5-HT suggest a footshock-induced increase of 5-HT release, depleting existing stores of 5-HT, that are replenished by the increased systemic availability of tryptophan.  相似文献   

12.
L C Yeh  P M Horowitz  J C Lee 《Biochimie》1992,74(11):1025-1030
The yeast ribosomal protein L1a contains two tryptophan residues located at positions 95 and 183. Spectrofluorometric analysis showed that the average tryptophan environment is moderately polar. Quenching studies of the yeast 5S rRNA-L1a protein complex (RNP) with acrylamide and iodide revealed tryptophan heterogeneity. The two tryptophan residues are located in the non-RNA-binding region of the L1a molecule. However, dissociation of the yeast 5S rRNA-L1a protein RNP complex to its components resulted in a decline of tryptophan fluorescence. The observation implied that the environment of the tryptophan-containing L1a regions which were not known to be involved in RNA binding was influenced by association with the 5S rRNA molecule.  相似文献   

13.
Tryptophan was substituted for residues in all four transmembrane domains of connexin32. Function was assayed using dual cell two-electrode voltage clamp after expression in Xenopus oocytes. Tryptophan substitution was poorly tolerated in all domains, with the greatest impact in TM1 and TM4. For instance, in TM1, 15 substitutions were made, six abolished coupling and five others significantly reduced function. Only TM2 and TM3 included a distinct helical face that lacked sensitivity to tryptophan substitution. Results were visualized on a comparative model of Cx32 hemichannel. In this model, a region midway through the membrane appears highly sensitive to tryptophan substitution and includes residues Arg-32, Ile-33, Met-34, and Val-35. In the modeled channel, pore-facing regions of TM1 and TM2 were highly sensitive to tryptophan substitution, whereas the lipid-facing regions of TM3 and TM4 were variably tolerant. Residues facing a putative intracellular water pocket (the IC pocket) were also highly sensitive to tryptophan substitution. Although future studies will be required to separate trafficking-defective mutants from those that alter channel function, a subset of interactions important for voltage gating was identified. Interactions important for voltage gating occurred mainly in the mid-region of the channel and focused on TM1. To determine whether results could be extrapolated to other connexins, TM1 of Cx43 was scanned revealing similar but not identical sensitivity to TM1 of Cx32.  相似文献   

14.
A comparative study of tryptophan conversion in different regions of the sunflower seedling indicates that the regions most active in converting tryptophan on a pathway to auxin are the root apical segments and young leaves; next highest in activity is the cotyledonary tissue. The stem apex proper with leaf primordia is less active than the above regions in converting the auxin precursor. Hypocotyl tissue was observed to be least active. Pre-treatment of the apical bud region of the stem with gibberellic acid (GA) gives rise to tryptophan conversion rates which are 2.1 times those in untreated seedlings. The enhanced tryptophan conversion in the apical bud is followed by an increased elongation rate of the 1st internode which is 2.2 times that in the 1st internode of untreated seedlings. Treatment of the seedlings with Cycocel [(2-chloroethyl)trimethylamnionium chloride] does not reduce tryptophan conversion in the apical bud region of the seedling although elongation of the stem is greatly retarded. Indoleacetic acid (IAA) destruction in cell free preparations as well as in whole sections of the elongating region of the seedling stem was studied. IAA-1-14C destruction rates with the release of 14CO2 in whole sections of 1st internode tissue were approximately 3 times those in cell free preparations of the same region. No significant changes in IAA destruction rates in seedlings pre-treated with GA or Cycocel were observed.  相似文献   

15.
In Escherichia coli, aroF, aroG, and aroH encode 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase isozymes that are feedback inhibited by tyrosine, phenylalanine, and tryptophan, respectively. In vitro chemical mutagenesis of the cloned aroG gene was used to identify residues and regions of the polypeptide essential for phenylalanine feedback inhibition.  相似文献   

16.
Abstract: The influences of total tryptophan concentration, albumin binding and amino acid competition on the rate of tryptophan influx into rat brain were compared using a single-pass injection technique with tritiated water as a freely diffusible reference. Omission of 3% bovine albumin from a bolus containing tryptophan in Krebs–Ringer bicarbonate buffer injected into the carotid artery increased non-albumin bound (free) tryptophan concentration threefold but tryptophan uptake by only 35% and 30% into forebrain and hypothalamus, respectively. However, tryptophan uptake from injected rat plasma was more markedly elevated when free tryptophan concentration was raised. Thus, when free tryptophan was doubled, but total tryptophan unchanged, by in vitro addition of clofibrate to a plasma bolus, uptake was increased by 53% and 28% into forebrain and hypothalamus respectively. When clofibrate was injected in vivo so that plasma total tryptophan concentration was decreased by 45% but neither free tryptophan nor competing amino acid concentrations were altered, then uptake from a bolus of the rat's own plasma was unchanged. Addition of competing amino acids at physiological concentrations to tryptophan in Krebs-Ringer buffer significantly reduced tryptophan influx into both brain regions, but did not increase the effect of albumin binding. The results indicate that tryptophan uptake into rat forebrain is substantially influenced by albumin binding and competition from other amino acids, but that hypothalamic uptake is less influenced by these factors.  相似文献   

17.
The effects of L-tryptophan (50 mg/kg i.p.) on extracellular concentrations of tryptophan and the 5-hydroxytryptamine (5-HT) metabolite 5-hydroxyindoleacetic acid (5-HIAA) were determined in the rat striatum and cerebellum, regions with rich and poor 5-HT innervation, respectively. Determinations were on perfusates from dialysis probes in the brains of conscious, freely moving rats. The pharmacokinetic profiles of dialysate tryptophan after tryptophan load (peak concentration, time to peak concentration, area under curve, and half-life) in the two regions did not differ significantly. The dialysate 5-HIAA concentration in the striatum rose two- to threefold after the administration of tryptophan. Therefore, as 5-HIAA was undetectable in the cerebellum either before or after the administration of tryptophan, the increase of 5-HIAA in the striatum is unlikely to depend appreciably on its production within the cerebral vasculature or outside the brain or on its entering the striatum through a blood-brain barrier damaged by placement of the dialysis probe. Overall, the findings strengthen previous evidence that extracellular 5-HIAA concentrations determined by cerebral dialysis are a valid measure of the metabolism of 5-HT of brain neuronal origin.  相似文献   

18.
REGIONAL TRANSPORT OF TRYPTOPHAN IN RAT BRAIN   总被引:8,自引:4,他引:4  
Abstract— Tryptophan uptake was studied in brain slices and synaptosomes prepared from regions known to vary in the numbers of serotoninergic cell bodies and nerve endings that they contain. The rate of tryptophan uptake was highest in hypothalamus for both types of preparation. Differences among the regions were much more pronounced in isolated nerve endings (synaptosomes). Loading with tryptophan did not affect the uptake into tissue slices. Tryptophan accumulation in hypothalamus synaptosomes was reduced after intraventricular injection of 5,7–dihydroxytryptamine whereas no change was observed in synaptosomes prepared from cerebellum under the same conditions; accumulation by synaptosomes prepared from the hypothalamic and hippocampal regions was reduced after raphe lesions.  相似文献   

19.
5,6-DIHYDROXYTRYPTAMINE has been shown to cause selective degeneration of serotonergic neurons in the central nervous sytem (BAUMGARTEN, LACHENMAYER and SCHLOSSBERGER, 1972b). This degeneration is accompanied by depletion of serotonin (BAUMGARTEN et al., 1971; 1972a) and loss of tryptophan hydroxylase activity (VICTOR, BAUMGARTEN and LOVENBERG, 1973) in certain regions of the brain. In the current experiments, the effect of 5,7-dihydroxytryptamine (another dihydroxylated tryptamine derivative) on tryptophan hydroxylase activity has been examined. Since tryptophan hydroxylase is the rate-limiting enzyme in serotonin biosynthesis and has a similar distribution to that of serotonin in the brain, it is used as a biochemical marker of serotonergic neurons, Recent experiments also indicate that 5,7-dihydroxytryptamine causes morphological damage to serotonergic neurons of the central nervous system (BAUMGARTEN and LACHENMAYER, 1972).  相似文献   

20.
To elucidate the details of pH-induced conformational transformation of ricin [I] in the region surrounding tryptophan residues, we studied parameters of fluorescence of the native toxin and its isolated A- and B-subunits at pH 4.0, 5.0 and 7.4. The studies were carried out using resolution of fluorescence spectra according to different degree of tryptophan accessibility to ionic (iodide) and non-ionic organic (acrylamide) quenchers. Application of the new method allowed to reveal three classes of tryptophan residues differing in their accessibility to quenchers alpha-residues are accessible neither to ions nor to organic molecules; beta-residues are accessible only to organic molecules; while surface gamma-residues are accessible to both types of quenchers. The fluorescence spectra were assessed for each class of tryptophan residues. The major part of them was shown to be localized in apolar rigid microenvironment. Fluorescence of ricin and especially of its isolated subunits proved to be strongly dependent on the pH value. At pH less than 5 the structure of B-chain loosens, this process being reflected by an increase in accessibility of tryptophan residues to quenchers. In acidic solution at least one out of seven tryptophan residues in the ricin molecule undergoes conformational transformation. Positive charge prevails in the regions surrounding quencher-accessible tryptophan residues. Binding of lactose leads to a slight compactization of the toxin structure that causes, in its turn, short-wave shifts of the fluorescence spectra and reduction of Stern-Volmer constants for intraglobular tryptophan residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号