首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have shown that overexpression of human apolipoprotein C-I (apoC-I) results in moderate hypercholesterolemia and severe hypertriglyceridemia in mice in the presence and absence of apoE. We assessed whether physiological endogenous apoC-I levels are sufficient to modulate plasma lipid levels independently of effects of apoE on lipid metabolism by comparing apolipoprotein E gene-deficient/apolipoprotein C-I gene-deficient (apoe-/-apoc1-/-), apoe-/-apoc1+/-, and apoe-/-apoc1+/+ mice. The presence of the apoC-I gene-dose-dependently increased plasma cholesterol (+45%; P < 0.001) and triglycerides (TGs) (+137%; P < 0.001), both specific for VLDL. Whereas apoC-I did not affect intestinal [3H]TG absorption, it increased the production rate of hepatic VLDL-TG (+35%; P < 0.05) and VLDL-[35S]apoB (+39%; P < 0.01). In addition, apoC-I increased the postprandial TG response to an intragastric olive oil load (+120%; P < 0.05) and decreased the uptake of [3H]TG-derived FFAs from intravenously administered VLDL-like emulsion particles by gonadal and perirenal white adipose tissue (WAT) (-34% and -25%, respectively; P < 0.05). As LPL is the main enzyme involved in the clearance of TG-derived FFAs by WAT, and total postheparin plasma LPL levels were unaffected, these data demonstrate that endogenous apoC-I suffices to attenuate the lipolytic activity of LPL. Thus, we conclude that endogenous plasma apoC-I increases VLDL-total cholesterol and VLDL-TG dose-dependently in apoe-/- mice, resulting from increased VLDL particle production and LPL inhibition.  相似文献   

2.
Adenovirus-mediated overexpression of human apolipoprotein E (apoE) induces hyperlipidemia by stimulating the VLDL-triglyceride (TG) production rate and inhibiting the LPL-mediated VLDL-TG hydrolysis rate. Because apoC-III is a strong inhibitor of TG hydrolysis, we questioned whether Apoc3 deficiency might prevent the hyperlipidemia induced by apoE overexpression in vivo. Injection of 2 x 10(9) plaque-forming units of AdAPOE4 caused severe combined hyperlipidemia in Apoe-/- mice [TG from 0.7 +/- 0.2 to 57.2 +/- 6.7 mM; total cholesterol (TC) from 17.4 +/- 3.7 to 29.0 +/- 4.1 mM] that was confined to VLDL/intermediate density lipoprotein-sized lipoproteins. In contrast, Apoc3 deficiency resulted in a gene dose-dependent reduction of the apoE4-associated hyperlipidemia (TG from 57.2 +/- 6.7 mM to 21.2 +/- 18.5 and 1.5 +/- 1.4 mM; TC from 29.0 +/- 4.1 to 16.4 +/- 9.8 and 2.3 +/- 1.8 mM in Apoe-/-, Apoe-/-.Apoc3+/-, and Apoe-/-.Apoc3-/- mice, respectively). In both Apoe-/- mice and Apoe-/-.Apoc3-/- mice, injection of increasing doses of AdAPOE4 resulted in up to a 10-fold increased VLDL-TG production rate. However, Apoc3 deficiency resulted in a significant increase in the uptake of TG-derived fatty acids from VLDL-like emulsion particles by white adipose tissue, indicating enhanced LPL activity. In vitro experiments showed that apoC-III is a more specific inhibitor of LPL activity than is apoE. Thus, Apoc3 deficiency can prevent apoE-induced hyperlipidemia associated with a 10-fold increased hepatic VLDL-TG production rate, most likely by alleviating the apoE-induced inhibition of VLDL-TG hydrolysis.  相似文献   

3.
Mice that overexpress human apolipoprotein C-I (apoC-I) homozygously (APOC1(+/+) mice) are protected against obesity and show cutaneous abnormalities. Although these effects can result from our previous observation that apoC-I inhibits FFA generation by LPL, we have also found that apoC-I impairs the uptake of a FFA analog in adipose tissue. In this study, we tested the hypothesis that apoC-I interferes with cellular FFA uptake independent of LPL activity. The cutaneous abnormalities of APOC1(+/+) mice were not affected after transplantation to wild-type mice, indicating that locally produced apoC-I prevents lipid entry into the skin. Subsequent in vitro studies with apoC-I-deficient versus wild-type macrophages revealed that apoC-I reduced the cell association and subsequent esterification of [(3)H]oleic acid by approximately 35% (P < 0.05). We speculated that apoC-I binds FFA extracellularly, thereby preventing cell association of FFA. We showed that apoC-I was indeed able to mediate the binding of oleic acid to otherwise protein-free VLDL-like emulsion particles involving electrostatic interaction. We conclude that apoC-I binds FFA in the circulation, thereby reducing the availability of FFA for uptake by cells. This mechanism can serve as an additional mechanism behind the resistance to obesity and the cutaneous abnormalities of APOC1(+/+) mice.  相似文献   

4.
The Hyplip2 congenic mouse strain contains part of chromosome 15 from MRL/MpJ on the BALB/cJ background. Hyplip2 mice show increased plasma levels of cholesterol and predominantly triglycerides (TGs) and are susceptible to diet-induced atherosclerosis. This study aimed at elucidation of the mechanism(s) explaining the hypertriglyceridemia. Hypertriglyceridemia can result from increased intestinal or hepatic TG production and/or by decreased LPL-mediated TG clearance. The intestinal TG absorption and chylomicron formation were studied after intravenous injection of Triton WR1339 and an intragastric load of olive oil containing glycerol tri[(3)H]oleate. No difference was found in intestinal TG absorption. Moreover, the hepatic VLDL-TG production rate and VLDL particle production, after injection of Triton WR1339, were also not affected. To investigate the LPL-mediated TG clearance, mice were injected intravenously with glycerol tri[(3)H]oleate-labeled VLDL-like emulsion particles. In Hyplip2 mice, the particles were cleared at a decreased rate (half-life of 25 +/- 6 vs. 11 +/- 2 min; P < 0.05) concomitant with a decreased uptake of emulsion TG-derived (3)H-labeled fatty acids by the liver and white adipose tissue. The increased plasma TG levels in Hyplip2 mice do not result from an enhanced intestinal absorption or increased hepatic VLDL production but are caused by decreased LPL-mediated TG clearance.  相似文献   

5.
Apolipoprotein E2 (apoE2)-associated hyperlipidemia is characterized by a disturbed clearance of apoE2-enriched VLDL remnants. Because excess apoE2 inhibits LPL-mediated triglyceride (TG) hydrolysis in vitro, we investigated whether direct or indirect stimulation of LPL activity in vivo reduces the apoE2-associated hypertriglyceridemia. Here, we studied the role of LPL and two potent modifiers, the LPL inhibitor apoC-III and the LPL activator apoA-V, in APOE2-knockin (APOE2) mice. Injection of heparin in APOE2 mice reduced plasma TG by 53% and plasma total cholesterol (TC) by 18%. Adenovirus-mediated overexpression of LPL reduced plasma TG by 85% and TC by 40%. Both experiments indicate that the TG in apoE2-enriched particles is a suitable substrate for LPL. Indirect activation of LPL activity via deletion of Apoc3 in APOE2 mice did not affect plasma TG levels, whereas overexpression of Apoa5 in APOE2 mice did reduce plasma TG by 81% and plasma TC by 41%. In conclusion, the hypertriglyceridemia in APOE2 mice can be ameliorated by the direct activation of LPL activity. Indirect activation of LPL via overexpression of apoA-V does, whereas deletion of apoC-III does not, affect the plasma TGs in APOE2 mice. These data indicate that changes in apoA-V levels have a dominant effect over changes in apoC-III levels in the improvement of APOE2-associated hypertriglyceridemia.  相似文献   

6.
The VLDL receptor (VLDLr) is involved in tissue delivery of VLDL-triglyceride (TG)-derived FFA by facilitating the expression of lipoprotein lipase (LPL). However, vldlr-/- mice do not show altered plasma lipoprotein levels, despite reduced LPL expression. Because LPL activity is crucial in postprandial lipid metabolism, we investigated whether the VLDLr plays a role in chylomicron clearance. Fed plasma TG levels of vldlr-/- mice were 2.5-fold increased compared with those of vldlr+/+ littermates (1.20 +/- 0.37 mM vs. 0.47 +/- 0.18 mM; P < 0.001). Strikingly, an intragastric fat load led to a 9-fold increased postprandial TG response in vldlr-/- compared with vldlr+/+ mice (226 +/- 188 mM/h vs. 25 +/- 11 mM/h; P < 0.05). Accordingly, the plasma clearance of [3H]TG-labeled protein-free chylomicron-mimicking emulsion particles was delayed in vldlr-/- compared with vldlr+/+ mice (half-life of 12.0 +/- 2.6 min vs. 5.5 +/- 0.9 min; P < 0.05), with a 60% decreased uptake of label into adipose tissue (P < 0.05). VLDLr deficiency did not affect the plasma half-life and adipose tissue uptake of albumin-complexed [14C]FFA, indicating that the VLDLr facilitates postprandial LPL-mediated TG hydrolysis rather than mediating FFA uptake. We conclude that the VLDLr plays a major role in the metabolism of postprandial lipoproteins by enhancing LPL-mediated TG hydrolysis.  相似文献   

7.
CD36 is involved in high-affinity peripheral FFA uptake. CD36-deficient (cd36(-)(/)(-)) mice exhibit increased plasma FFA and triglyceride (TG) levels. The aim of the present study was to elucidate the cause of the increased plasma TG levels in cd36(-)(/)(-) mice. cd36(-)(/)(-) mice showed no differences in hepatic VLDL-TG production or intestinal [(3)H]TG uptake compared with wild-type littermates. cd36(-)(/)(-) mice showed a 2-fold enhanced postprandial TG response upon an intragastric fat load (P < 0.05), with a concomitant 2.5-fold increased FFA response (P < 0.05), suggesting that the increased FFA in cd36(-/-) mice may impair LPL-mediated TG hydrolysis. Postheparin LPL levels were not affected. However, the in vitro LPL-mediated TG hydrolysis rate as induced by postheparin plasma of cd36(-)(/)(-) mice in the absence of excess FFA-free BSA was reduced 2-fold compared with wild-type plasma (P < 0.05). This inhibition was relieved upon the addition of excess FFA-free BSA. Likewise, increasing plasma FFA in wild-type mice to the levels observed in cd36(-)(/)(-) mice by infusion prolonged the plasma half-life of glycerol tri[(3)H]oleate-labeled VLDL-like emulsion particles by 2.5-fold (P < 0.05). We conclude that the increased plasma TG levels observed in cd36(-)(/)(-) mice are caused by decreased LPL-mediated hydrolysis of TG-rich lipoproteins resulting from FFA-induced product inhibition of LPL.  相似文献   

8.
Apolipoprotein C-I (apoC-I) has been proposed to act primarily via interference with apoE-mediated lipoprotein uptake. To define actions of apoC-I that are independent of apoE, we crossed a moderately overexpressing human apoC-I transgenic, which possesses a minimal phenotype in the WT background, with the apoE-null mouse. Surprisingly, apoE-null/C-I mice showed much more severe hyperlipidemia than apoE-null littermates in both the fasting and non-fasting states, with an almost doubling of cholesterol, primarily in IDL+LDL, and a marked increase in triglycerides; 3-fold in females to 260 +/- 80 mg/dl and 14-fold in males to 1409 +/- 594 mg/dl. HDL lipids were not significantly altered but HDL were apoC-I-enriched and apoA-II-depleted. Production rates of VLDL triglyceride were unchanged as was the clearance of post-lipolysis remnant particles. Plasma post-heparin hepatic lipase and lipoprotein lipase levels were undiminished as was the in vitro hydrolysis of apoC-I transgenic VLDL. However, HDL from apoC-I transgenic mice had a marked inhibitory effect on hepatic lipase activity, as did purified apoC-I. LPL activity was minimally affected. Atherosclerosis assay revealed significantly increased atherosclerosis in apoE-null/C-I mice assessed via the en face assay. Inhibition of hepatic lipase may be an important mechanism of the decrease in lipoprotein clearance mediated by apoC-I.  相似文献   

9.
KK/Snk mice (previously KK/San) possessing a recessive mutation (hypl) of the angiopoietin-like 3 (Angptl3) gene homozygously exhibit a marked reduction of VLDL due to the decreased Angptl3 expression. Recently, we proposed that Angptl3 is a new class of lipid metabolism modulator regulating VLDL triglyceride (TG) levels through the inhibition of lipoprotein lipase (LPL) activity. In this study, to elucidate the role of Angptl3 in atherogenesis, we investigated the effects of hypl mutation against hyperlipidemia and atherosclerosis in apolipoprotein E knockout (apoEKO) mice. ApoEKO mice with hypl mutation (apoEKO-hypl) exhibited a significant reduction of VLDL TG, VLDL cholesterol, and plasma apoB levels compared with apoEKO mice. Hepatic VLDL TG secretion was comparable between both apoE-deficient mice. Turnover studies revealed that the clearance of both [3H]TG-labeled and 125I-labeled VLDL was significantly enhanced in apoEKO-hypl mice. Postprandial plasma TG levels also decreased in apoEKO-hypl mice. Both LPL and hepatic lipase activities in the postheparin plasma increased significantly in apoEKO-hypl mice, explaining the enhanced lipid metabolism. Furthermore, apoEKO-hypl mice developed 3-fold smaller atherogenic lesions in the aortic sinus compared with apoEKO mice. Taken together, the reduction of Angptl3 expression is protective against hyperlipidemia and atherosclerosis, even in the absence of apoE, owing to the enhanced catabolism and clearance of TG-rich lipoproteins.  相似文献   

10.
The peroxisome proliferator-activated receptor alpha (PPARα) activator fenofibrate efficiently decreases plasma triglycerides (TG), which is generally attributed to enhanced very low density lipoprotein (VLDL)-TG clearance and decreased VLDL-TG production. However, because data on the effect of fenofibrate on VLDL production are controversial, we aimed to investigate in (more) detail the mechanism underlying the TG-lowering effect by studying VLDL-TG production and clearance using APOE*3-Leiden.CETP mice, a unique mouse model for human-like lipoprotein metabolism. Male mice were fed a Western-type diet for 4 weeks, followed by the same diet without or with fenofibrate (30 mg/kg bodyweight/day) for 4 weeks. Fenofibrate strongly lowered plasma cholesterol (−38%) and TG (−60%) caused by reduction of VLDL. Fenofibrate markedly accelerated VLDL-TG clearance, as judged from a reduced plasma half-life of glycerol tri[3H]oleate-labeled VLDL-like emulsion particles (−68%). This was associated with an increased post-heparin lipoprotein lipase (LPL) activity (+110%) and an increased uptake of VLDL-derived fatty acids by skeletal muscle, white adipose tissue, and liver. Concomitantly, fenofibrate markedly increased the VLDL-TG production rate (+73%) but not the VLDL-apolipoprotein B (apoB) production rate. Kinetic studies using [3H]palmitic acid showed that fenofibrate increased VLDL-TG production by equally increasing incorporation of re-esterified plasma fatty acids and liver TG into VLDL, which was supported by hepatic gene expression profiling data. We conclude that fenofibrate decreases plasma TG by enhancing LPL-mediated VLDL-TG clearance, which results in a compensatory increase in VLDL-TG production by the liver.  相似文献   

11.
LPL activity plays an important role in preceding the VLDL remnant clearance via the three major apolipoprotein E (apoE)-recognizing receptors: the LDL receptor (LDLr), LDL receptor-related protein (LRP), and VLDL receptor (VLDLr). The aim of this study was to determine whether LPL activity is also important for VLDL remnant clearance irrespective of these receptors and to determine the mechanisms involved in the hepatic remnant uptake. Administration of an adenovirus expressing LPL (AdLPL) into lrp(-)ldlr(-/-)vldlr(-/-) mice reduced both VLDL-triglyceride (TG) and VLDL-total cholesterol (TC) levels. Conversely, inhibition of LPL by AdAPOC1 increased plasma VLDL-TG and VLDL-TC levels. Metabolic studies with radiolabeled VLDL-like emulsion particles showed that the clearance and hepatic association of their remnants positively correlated with LPL activity. This hepatic association was independent of the bridging function of LPL and HL, since heparin did not reduce the liver association. In vitro studies demonstrated that VLDL-like emulsion particles avidly bound to the cell surface of primary hepatocytes from lrp(-)ldlr(-/-)vldlr(-/-) mice, followed by slow internalization, and involved heparin-releaseable cell surface proteins as well as scavenger receptor class B type I (SR-BI). Collectively, we conclude that hepatic VLDL remnant uptake in the absence of the three classical apoE-recognizing receptors is regulated by LPL activity and involves heparan sulfate proteoglycans and SR-BI.  相似文献   

12.
Apolipoprotein A-V (apoA-V) and apoC-III are exchangeable constituents of VLDL and HDL. ApoA-V counteracts the effect of apoC-III on triglyceride (TG) metabolism with poorly defined mechanisms. To better understand the effects of apoA-V on TG and cholesterol metabolism, we delivered apoA-V cDNA into livers of hypertriglyceridemic APOC3 transgenic mice by adenovirus-mediated gene transfer. In response to hepatic apoA-V production, plasma TG levels were reduced significantly as a result of enhanced VLDL catabolism without alternations in VLDL production. This effect was associated with reduced apoC-III content in VLDL. Increased apoA-V production also resulted in decreased apoC-III and increased apoA-I content in HDL. Furthermore, apoA-V-enriched HDL was associated with enhanced LCAT activity and increased cholesterol efflux. This effect, along with apoE enrichment in HDL, contributed to HDL core expansion and alpha-HDL formation, accounting for significant increases in both the number and size of HDL particles. As a result, apoA-V-treated APOC3 transgenic mice exhibited decreased VLDL-cholesterol and increased HDL-cholesterol levels. ApoA-V-mediated reduction of apoC-III content in VLDL represents an important mechanism by which apoA-V acts to ameliorate hypertriglyceridemia in adult APOC3 transgenic mice. In addition, increased apoA-V levels accounted for cholesterol redistribution from VLDL to larger HDL particles. These data suggest that in addition to its TG-lowering effect, apoA-V plays a significant role in modulating HDL maturation and cholesterol metabolism.  相似文献   

13.
14.
Postprandial hyperlipidemia (lipemia) is a risk factor for atherosclerosis. However, mouse models of postprandial hyperlipidemia have not been reported. Here, we report that ddY mice display marked postprandial hypertriglyceridemia in response to dietary fat. In ddY mice, the fasting serum total triacylglyceride (TG) concentration was 134 mg/dl, which increased to 571 mg/dl after an intragastric safflower oil load (0.4 ml/mouse). In C57BL/6J mice, these concentrations were 57 and 106 mg/dl, respectively. By lipoprotein analysis, ddY mice showed increases in chylomicron- and VLDL-sized TG fractions (remnants and VLDL) after fat load. In C57BL/6J mice, post-heparin plasma LPL activity after fat load was increased 4.8-fold relative to fasting. However, in ddY mice, the increase of LPL activity after fat load was very small (1.2-fold) and not significant. High fat feeding for 10 weeks led to obesity in ddY mice. A difference in LPL amino acid composition between C57BL/6J and ddY mice was detected but was deemed unlikely to cause hypertriglyceridemia because hypertriglyceridemia was not evident in other strains harboring the ddY-type LPL sequence. These findings indicate that postprandial hypertriglyceridemia in ddY mice is induced by decreased LPL activity after fat load and is associated with obesity induced by a high-fat diet.  相似文献   

15.
Apolipoprotein A5 (APOA5) is associated with differences in triglyceride levels and familial combined hyperlipidemia. In genetically engineered mice, apoAV plasma levels are inversely correlated with plasma triglycerides. To elucidate the mechanism by which apoAV influences plasma triglycerides, metabolic studies and in vitro assays resembling physiological conditions were performed. In human APOA5 transgenic mice (hAPOA5tr), catabolism of chylomicrons and very low density lipoprotein (VLDL) was accelerated due to a faster plasma hydrolysis of triglycerides by lipoprotein lipase (LPL). Hepatic VLDL and intestinal chylomicron production were not affected. The functional interplay between apoAV and LPL was further investigated by cross-breeding a human LPL transgene with the apoa5 knock-out and the hAPOA5tr to an lpl-deficient background. Increased LPL activity completely normalized hypertriglyceridemia of apoa5-deficient mice; however, overexpression of human apoAV modulated triglyceride levels only slightly when LPL was reduced. To reflect the physiological situation in which LPL is bound to cell surface proteoglycans, we examined hydrolysis in the presence or absence of proteoglycans. Without proteoglycans, apoAV derived either from triglyceride-rich lipoproteins, hAPOA5tr high density lipoprotein, or a recombinant source did not alter the LPL hydrolysis rate. In the presence of proteoglycans, however, apoAV led to a significant and dose-dependent increase in LPL-mediated hydrolysis of VLDL triglycerides. These results were confirmed in cell culture using a proteoglycan-deficient cell line. A direct interaction between LPL and apoAV was found by ligand blotting. It is proposed, that apoAV reduces triglyceride levels by guiding VLDL and chylomicrons to proteoglycan-bound LPL for lipolysis.  相似文献   

16.
Human data suggest that reconstituted HDL (rHDL) infusion can induce atherosclerosis regression. Studies in mice indicated that rHDL infusion adversely affects VLDL levels, but this effect is less apparent in humans. This discrepancy may be explained by the fact that humans, in contrast to mice, express cholesteryl ester transfer protein (CETP). The aim of this study was to investigate the role of CETP in the effects of rHDL on VLDL metabolism by using APOE*3-Leiden (E3L) mice, a well-established model for human-like lipoprotein metabolism. At 1 h after injection, rHDL increased plasma VLDL-C and TG in E3L mice, but not in E3L mice cross-bred onto a human CETP background (E3L.CETP mice). This initial raise in VLDL, caused by competition between rHDL and VLDL for LPL-mediated TG hydrolysis, was thus prevented by CETP. At 24 h after injection, rHDL caused a second increase in VLDL-C and TG in E3L mice, whereas rHDL had even decreased VLDL in E3L.CETP mice. This secondary raise in VLDL was due to increased hepatic VLDL-TG production. Collectively, we conclude that CETP protects against the rHDL-induced increase in VLDL. We anticipate that studies evaluating the anti-atherosclerotic efficacy of rHDL in mice that are naturally deficient for CETP should be interpreted with caution, and that treatment of atherogenic dyslipidemia by rHDL should not be combined with agents that aggressively reduce CETP activity.  相似文献   

17.
Previous studies with hypertriglyceridemic APOC3 transgenic mice have suggested that apolipoprotein C-III (apoC-III) may inhibit either the apoE-mediated hepatic uptake of TG-rich lipoproteins and/or the lipoprotein lipase (LPL)-mediated hydrolysis of TG. Accordingly, apoC3 knockout (apoC3(-/-)) mice are hypotriglyceridemic. In the present study, we attempted to elucidate the mechanism(s) underlying these phenomena by intercrossing apoC3(-/-) mice with apoE(-/-) mice to study the effects of apoC-III deficiency against a hyperlipidemic background. Similar to apoE(+/+) apoC3(-/-) mice, apoE(-/-)apoC3(-/-) mice exhibited a marked reduction in VLDL cholesterol and TG, indicating that the mechanism(s) by which apoC-III deficiency exerts its lipid-lowering effect act independent of apoE. On both backgrounds, apoC3(-/-) mice showed normal intestinal lipid absorption and hepatic VLDL TG secretion. However, turnover studies showed that TG-labeled emulsion particles were cleared much more rapidly in apoC3(-/-) mice, whereas the clearance of VLDL apoB, as a marker for whole particle uptake by the liver, was not affected. Furthermore, it was shown that cholesteryl oleate-labeled particles were also cleared faster in apoC3(-/-) mice. Thus the mechanisms underlying the hypolipidemia in apoC3(-/-) mice involve both a more efficient hydrolysis of VLDL TG as well as an enhanced selective clearance of VLDL cholesteryl esters from plasma. In summary, our studies of apoC3(-/-) mice support the concept that apoC-III is an effective inhibitor of VLDL TG hydrolysis and reveal a potential regulating role for apoC-III with respect to the selective uptake of cholesteryl esters.  相似文献   

18.
Prior studies have suggested that FAs liberated in the small intestine from ingested 1,3-diacylglycerol (DAG) are inefficiently incorporated into triglyceride (TG) in enterocytes, with less chylomicron TG entering the circulation postprandially. We found less TG, but more monacylglyerol and DAG, with similar total acylglycerol in newly secreted chylomicrons after oral DAG or triacylglycerol (TAG). However, clearance of DAG-chylomicrons was more rapid than that of TAG-chylomicrons; this was associated with more efficient in vitro LPL-mediated lipolysis of DAG-derived chylomicrons. Intravenously infused DAG was also cleared faster than TAG in normal mice, via both LPL-mediated lipolysis and apolipoprotein E (apoE)-dependent hepatic uptake. Infusions of TAG, but not DAG, increased plasma TG levels. Greater delivery of DAG-derived FA to the liver during infusion of DAG led to greater TG secretion versus TAG; this allowed the maintenance of similar hepatic TG levels after DAG and TAG infusions. Of note, apoB secretion was similar after DAG versus TAG, indicating the assembly of larger very low density lipoproteins after DAG. In conclusion, reduced plasma TG levels, after oral or intravenous DAG, result from more efficient clearance of DAG by both LPL lipolysis and apoE-mediated hepatic endocytosis. DAG emulsions may by useful for intravenous nutrition in people with preexisting hypertriglyceridemia.  相似文献   

19.
Lipoprotein lipase (LPL)-mediated hydrolysis of triglycerides (TG) contained in chylomicrons requires the presence of a cofactor, apolipoprotein (apo) C-II. The physiological mechanism by which chylomicrons gain apoC-II necessary for LPL activation in whole plasma is not known. Using a gum arabic stabilized TG emulsion, activation of LPL by lipoprotein apoC-II was studied. Hydrolysis of TG by LPL was greater in the presence of serum than with addition of either high density lipoproteins (HDL) or very low density lipoproteins (VLDL). LPL activation by either VLDL or HDL increased with addition of the lipoprotein-free fraction of plasma. A similar increase in LPL activity by addition of the lipoprotein-free fraction together with HDL or VLDL was observed when another TG emulsion (Intralipid) or TG-rich lipoproteins from an apoC-II deficient subject were used as a substrate. Human apoA-IV, apoA-I, apoE, and cholesteryl ester transfer protein were assessed for their ability to increase LPL activity in the presence of VLDL. At and below physiological concentrations, only apoA-IV increased LPL activity. One hundred percent of LPL activity measured in the presence of serum was achieved using VLDL plus apoA-IV. In the absence of an apoC-II source, apoA-IV had no effect on LPL activity. Removal of greater than 80% of the apoA-IV from the nonlipoprotein-containing fraction of plasma by incubation with Intralipid markedly reduced its ability to activate LPL in the presence of VLDL or HDL. Gel filtration chromatography demonstrated that incubation of the nonlipoprotein-containing fraction of plasma with HDL and the TG emulsion caused increased transfer of apoC-II to the emulsion and association of apoA-IV with HDL. Our studies demonstrate that apoA-IV increases LPL activation in the presence of lipoproteins. We hypothesize that apoA-IV is required for efficient release of apoC-II from either HDL or VLDL, which then allows for LPL-mediated hydrolysis of TG in nascent chylomicrons.  相似文献   

20.
We have recently shown that the predominant hypertriglyceridemia in human apolipoprotein C1 (APOC1) transgenic mice is mainly explained by apoCI-mediated inhibition of the lipoprotein lipase (LPL)-dependent triglyceride (TG)-hydrolysis pathway. Since the very-low-density lipoprotein receptor (VLDLr) and apoCIII are potent modifiers of LPL activity, our current aim was to study whether the lipolysis-inhibiting action of apoCI would be dependent on the presence of the VLDLr and apoCIII in vivo. Hereto, we employed liver-specific expression of human apoCI by using a novel recombinant adenovirus (AdAPOC1). In wild-type mice, moderate apoCI expression leading to plasma human apoCI levels of 12-33 mg/dl dose-dependently and specifically increased plasma TG (up to 6.6-fold, P < 0.001), yielding the same hypertriglyceridemic phenotype as observed in human APOC1 transgenic mice. AdAPOC1 still increased plasma TG in vldlr(-/-) mice (4.1-fold, P < 0.001) and in apoc3(-/-) mice (6.8-fold, P < 0.001) that were also deficient for the low-density lipoprotein receptor (LDLr) and LDLr-related protein (LRP) or apoE, respectively. Thus, irrespective of receptor-mediated remnant clearance by the liver, liver-specific expression of human apoCI causes hypertriglyceridemia in the absence of the VLDLr and apoCIII. We conclude that apoCI is a powerful and direct inhibitor of LPL activity independent of the VLDLr and apoCIII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号