首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 865 毫秒
1.
H Garty  S R Caplan    D Cahen 《Biophysical journal》1982,37(2):405-415
Enthalpy changes associated with intermediates of the photocycle of bacteriorhodopsin (bR) in light-adapted Halobacterium halobium purple membranes, and decay times of these intermediates, are obtained from photoacoustic measurements on purple membrane fragments. Our results, mainly derived from modulation frequency spectra, show changes in the amount of energy stored in the intermediates and in their decay times as a function of pH and/or salt concentration. Especially affected are the slowest step (endothermic) and a spectroscopically unidentified intermediate (both at pH 7). This effect is interpreted in terms of cation binding to the protein, conformational changes of which are thought to be connected with the endothermic process. Wavelength spectra are used to obtain heat dissipation spectra, which allow identification of wavelength regions with varying photoactivity, and estimation of the amounts of enthalpy stored in the photointermediates. Because of bleaching and accumulation of intermediates, however, and because of the small fraction of light energy stored during photocycle, quantitative information cannot be obtained. From photoacoustic wavelength spectra of purple membrane fragments equilibrated at 63% relative humidity, rise and decay times of the bR570 and M412 intermediates are calculated.  相似文献   

2.
Photoacoustic spectroscopy was applied to study the energetics and the kinetics of the slow intermediates of the bacteriorhodopsin photocycle. An analysis of the modulation frequency dependence of the photoacoustic signal allowed us to estimate the enthalpy changes and the kinetic parameters associated with those intermediates. The effects of pH, salt concentration, and protein aggregation were studied. Three photoacoustic transitions were found. The two low frequency transitions were attributed to O660 and M412, respectively. The third transition was interpreted as resulting from a protein conformational change undetected spectrophotometrically. The frequency spectra were simulated between 5 and 180 Hz at pH's 5.1, 7.0, and 8.9 assuming a branching in the bacteriorhodopsin photocycle at the M412 level. The enthalpy changes associated with M412 and O660 were computed and compared with the experimental values.  相似文献   

3.
The auditory system of horseshoe bats is narrowly tuned to the sound of their own echoes. During flight these bats continuously adjust the frequency of their echolocation calls to compensate for Doppler-effects in the returning echo. Horseshoe bats can accurately compensate for changes in echo frequency up to 5 kHz, but they do so through a sequence of small, temporally-independent, step changes in call frequency. The relationship between an echo's frequency and its subsequent impact on the frequency of the very next call is fundamental to how Doppler-shift compensation behavior works. We analyzed how horseshoe bats control call frequency by measuring the changes occurring between many successive pairs of calls during Doppler-shift compensation and relating the magnitude of these changes to the frequency of each intervening echo. The results indicate that Doppler-shift compensation is mediated by a pair of (echo)frequency-specific sigmoidal functions characterized by a threshold, a slope, and an upper limit to the maximum change in frequency that may occur between successive calls. The exact values of these parameters necessarily reflect properties of the underlying neural circuitry of Doppler-shift compensation and the motor control of vocalization, and provide insight into how neural feedback can accommodate the need for speed without sacrificing stability.  相似文献   

4.
The secondary structural changes of the membrane protein, bacteriorhodopsin, are studied during the premelting reversible transition by using laser-induced temperature jump technique and nanosecond time-resolved Fourier transform infrared spectroscopy. The helical structural changes are triggered by using a 15 degrees C temperature jump induced from a preheated bacteriorhodopsin in D2O solution at a temperature of 72 degrees C. The structural transition from alphaII- to alphaI-helices is observed by following the change in the frequency of the amide I band from 1667 to 1651 cm-1 and the shift in the frequency of the amide II vibration from 1542 cm-1 to 1436 cm-1 upon H/D exchange. It is found that although the amide I band changes its frequency on a time scale of <100 ns, the H/D exchange shifts the frequency of the amide II band and causes a complex changes in the 1651-1600 cm-1 and 1530-1430 cm-1 frequency region on a longer time scale (>300 ns). Our result suggests that in this "premelting transition" temperature region of bacteriorhodopsin, an intrahelical conformation conversion of the alphaII to alphaI leads to the exposure of the hydrophobic region of the protein to the aqueous medium.  相似文献   

5.
Heat emitted during non-radiative de-excitation was determined in vivo by the photoacoustic method. The dependence of the photoacoustic signal on the length of the pulses (modulation frequency) of the excitation light and the effect of continuous light, which saturates photosynthesis but does not directly contribute to the signal, are described. The induction kinetic of heat emission measured with intact leaves differed only slightly from the induction kinetic of fluorescence (Kautsky effect) detected in parallel. The photoacoustic signal at high modulation frequencies (279 Hz), which represents the signal of heat emission, and the photoacoustic signal at low modulation frequencies (17 Hz), interpreted as a signal of pulsed oxygen evolution superimposed on the heat emission, were measured with leaves before and after photoinhibition. It was demonstrated that after photoinhibition the decrease in fluorescence yield and in photosynthetic activity (here detected as photoacoustic signal at 17 Hz) are paralleled by an increase in the yield of non-radiative deexcitation (photoacoustic signal at 279 Hz). The increase of heat emission, which has been hypothized for photoinhibited leaves, could now be proved by measuring the induction kinetics of the photoacoustic signal.  相似文献   

6.
The effect of leaf desiccation on the photosynthetic activities in vivo was probed by the photoacoustic method. The aim of this research was: (a) To study the photoacoustic signal per se in varied conditions in order to develop this tool as a probe for stress conditions in vivo. (b) To obtain results pertaining to electron transport activities in vivo, and confirm conclusions based on work with isolated chloroplasts, which could otherwise be the result of nonspecific damage occurring during their isolation. Leaf discs from tobacco (Nicotiana tabacum L.) were routinely used, with other species tested also for comparison. Rapid leaf desiccation caused changes in the low frequency photoacoustic signal, attributed both to the mechanism of signal transduction, influenced by changes in the structural parameters of the leaf, and to the direct (nonstomatal) inhibition of gross photosynthesis. The dependence of the photothermal part of the signal on the frequency indicated the presence of two photothermal components, one of which persisted only at low modulation frequencies (below about 100 Hz) and which largely increased with the desiccation treatment. This component was ascribed to a thermal wave which reaches the leaf surface. The other nonvariable photothermal component was ascribed to a thermal wave propagating from the chloroplasts to the surface of the mesophyll cell. Only this component is considered in the ratio of the O2 signal to the photothermal signal, which is used to estimate the quantum yield of photosynthesis. The specific dependence of the latter ratio on the frequency yielded a comparative quantum yield parameter from its extrapolation to zero frequency, and also indicated stress induced changes in the diffusion of O2 through the mesophyll cell, reflected by changes in its characteristic slope. The (zero frequency extrapolated) quantum yield was markedly reduced with the progression of the water stress, indicating the inhibition of (gross) phototosynthetic electron transport in vivo. This result was expressed even more emphatically by the stronger inhibition of the photochemical energy storage, obtained by photoacoustic measurements at a high modulation frequency.  相似文献   

7.
K Marr  K S Peters 《Biochemistry》1991,30(5):1254-1258
The enthalpy and volume changes for the conversion of rhodopsin and isorhodopsin to lumirhodopsin have been investigated by time-resolved photoacoustic calorimetry. The conversion of rhodopsin to lumirhodopsin is endothermic by 3.9 +/- 5.9 kcal/mol and is accompanied by an increase in volume of 29.1 +/- 0.8 mL/mol. The lumirhodopsins produced from rhodopsin and isorhodopsin are energetically equivalent.  相似文献   

8.
We report the first Fourier transform infrared difference spectra of purple membrane. Evidence is presented that alterations in the vibrations of both the retinylidene chromophore and the protein groups of bacteriorhodopsin associated with photocycling can be detected. This method provides a new tool for probing the conformational changes occurring in bacteriorhodopsin during the proton pump cycle.  相似文献   

9.
Liu Y  Edens GJ  Grzymski J  Mauzerall D 《Biochemistry》2008,47(29):7752-7761
The volume and enthalpy changes associated with proton translocation steps during the bacteriorhodopsin (BR) photocycle were determined by time-resolved photopressure measurements. The data at 25 degrees C show a prompt increase in volume followed by two further increases and one decrease to the original state to complete the cycle. These volume changes are decomposed into enthalpy and inherent volume changes. The positive enthalpy changes support the argument for inherent entropy-driven late steps in the BR photocycle [Ort, D. R., and Parson, W. M. (1979) Enthalpy changes during the photochemical cycle of bacteriorhodopsin. Biophys. J. 25, 355-364]. The volume change data can be interpreted by the electrostriction effect as charges are canceled and formed during the proton transfers. A simple glutamic acid-glutamate ion model or a diglutamate-arginine-protonated water charge-delocalized model for the proton-release complex (PRC) fit the data. A conformational change with a large positive volume change is required in the slower rise (M --> N of the optical cycle) step and is reversed in the decay (N --> O --> BR) steps. The large variation in the published values for both the volume and enthalpy changes is greatly ameliorated if the values are presented per absorbed photon instead of per mole of BR. Thus, it is the highly differing assumptions about the quantum or reaction yields that cause the variations in the published results.  相似文献   

10.
Abstract

The structure of bacteriorhodopsin was used as a template to generate a model for G-protein coupled receptors. However, these receptors and the template are not related by sequence homology. Therefore a pragmatic and reproducible approach was developed to achieve an energetically favourable accommodation of receptor sequences to the backbone structure of bacteriorhodopsin. Improved interaction energy differences are used in a two step procedure analogous to a hypothetical folding mechanism for integral membrane proteins. The resulting model is in good agreement with existing data from structure-function studies.  相似文献   

11.
The tertiary structural changes occurring during the photocycle of bacteriorhodopsin (BR) are assigned by X-ray diffraction to distinct M states, M1 and M2. Purple membranes (PM) of the mutant Asp96Asn at 15, 57, 75 and 100% relative humidity (r.h.) were studied in a parallel X-ray diffraction and Fourier transform infrared (FTIR) spectroscopic investigation. Light-dependent conformational changes of BR-Asp96Asn are observed at high hydration levels (100 and 75% r.h.) but not in partially dehydrated samples (57 and 15% r.h.). The FTIR spectra of continuously illuminated samples at low and high hydration, despite some differences, are characteristic of the M intermediate. The changes in diffraction patterns of samples in the M2 state are of the same magnitude as those of wild-type samples trapped with GuaHCl in the M(G) state. Additional large changes in the amide bands of the FTIR spectra occur between M2 and M(G). This suggests, that the tertiary structural changes between M1 and M2 are responsible for the switch opening the cytoplasmic half-channel of BR for reprotonation to complete the catalytic cycle. These tertiary structural changes seem to be triggered by a charge redistribution which might be a common feature of retinal proteins also in signal transduction.  相似文献   

12.
Biogenesis of the light-driven proton pump bacteriorhodopsin in the archaeon Halobacterium salinarum requires coordinate synthesis of the bacterioopsin apoprotein and carotenoid precursors of retinal, which serves as a covalently bound cofactor. As a step towards elucidating the mechanism and regulation of carotenoid metabolism during bacteriorhodopsin biogenesis, we have identified an H. salinarum gene required for conversion of lycopene to beta-carotene, a retinal precursor. The gene, designated crtY, is predicted to encode an integral membrane protein homologous to lycopene beta-cyclases identified in bacteria and fungi. To test crtY function, we constructed H. salinarum strains with in-frame deletions in the gene. In the deletion strains, bacteriorhodopsin, retinal, and beta-carotene were undetectable, whereas lycopene accumulated to high levels ( approximately 1.3 nmol/mg of total cell protein). Heterologous expression of H. salinarum crtY in a lycopene-producing Escherichia coli strain resulted in beta-carotene production. These results indicate that H. salinarum crtY encodes a functional lycopene beta-cyclase required for bacteriorhodopsin biogenesis. Comparative sequence analysis yields a topological model of the protein and provides a plausible evolutionary connection between heterodimeric lycopene cyclases in bacteria and bifunctional lycopene cyclase-phytoene synthases in fungi.  相似文献   

13.
Bacteriorhodopsin is a light-driven hydrogen-ion pump whose structure is known to about 6.0 A in three dimensions and 2.8 A in projection. It consists of seven transmembrane helices surrounding the chromophore, retinal. Halorhodopsin is a second member of the same family of membrane proteins, both of them from the cell membrane of halobacteria. Halorhodopsin is a light-driven chloride-ion pump but has very close homology to bacteriorhodopsin, especially around the retinal. In contrast, the visual opsins that are responsible for the primary step in visual transduction in all eukaryotes from Drosophila upwards, form a separate family with no direct sequence homology to the bacteriorhodopsin family. The visual opsin family now includes about 15 other receptor proteins, all of which active G-protein cascades, including the beta-adrenergic receptor as well as several others. Despite the lack of clear relations at the level of amino acid sequence, there are topographical similarities between the bacteriorhodopsin and the visual opsin families in the nature and site of chromophore attachment, the number of transmembrane helices and the positions of the amino and carboxyl termini in the membrane. These suggest that if the two were at one time closely related, they have diverged too far to have sequences that are detectably similar.  相似文献   

14.
Light-induced heat produced by the non-radiative decay represents one way of de-excitation after excitation by light absorption. It was detected in vivo with cotyledons of radish seedlings (Raphanus sativus L.) by measuring the photoacoustic signal at a modulation frequency of 279 Hz. During the induction kinetic of photosynthesis the photoacoustic signal, the chlorophyll fluorescence as well as the photochemical and the non-photochemical quenching of fluorescence were simultaneously determined in order to get information about the correlation of heat production, fluorescence and its quenching mechanisms. Our results demonstrate that the changes of the photoacoustic signal can in most cases be related directly or indirectly to changes in the photochemical activity. However the kinetic of the photoacoustic signal differs from that of the fluorescence and from that of the non-photochemical quenching. This indicates that the sum of energy dissipation processes resulting in the production of light-induced heat and measured by the high-frequency photoacoustic signal must be taken into account when judging photosynthetic activity.Abbreviations LED light-emitting diode - PA photoacoustic - PAM pulse-amplitude-modulated  相似文献   

15.
Dihydrofolate reductase from Mycobacterium tuberculosis (MtDHFR) catalyzes the NAD(P)H-dependent reduction of dihydrofolate, yielding NAD(P)(+) and tetrahydrofolate, the primary one-carbon unit carrier in biology. Tetrahydrofolate needs to be recycled so that reactions involved in dTMP synthesis and purine metabolism can be maintained. Previously, steady-state studies revealed that the chemical step significantly contributes to the steady-state turnover number, but that a step after the chemical step was likely limiting the reaction rate. Here, we report the first pre-steady-state investigation of the kinetic sequence of the MtDHFR aiming to identify kinetic intermediates, and the identity of the rate-limiting steps. This kinetic analysis suggests a kinetic sequence comprising two parallel pathways with a rate-determining product release. Although product release is likely occurring in a random fashion, there is a slight preference for the release of THF first, a kinetic sequence never observed for a wild-type dihydrofolate reductase of any organism studied to date. Temperature studies were conducted to determine the magnitude of the energetic barrier posed by the chemical step, and the pH dependence of the chemical step was studied, demonstrating an acidic shift from the pK(a) observed at the steady state. The rate constants obtained here were combined with the activation energy for the chemical step to compare energy profiles for each kinetic sequence. The two parallel pathways are discussed, as well as their implications for the catalytic cycle of this enzyme.  相似文献   

16.
By means of time-resolved electron paramagnetic resonance (EPR) spectroscopy, the photoexcited structural changes of site-directed spin-labeled bacteriorhodopsin are studied. A complete set of cysteine mutants of the C-D loop, positions 100-107, and of the E-F loop, including the first alpha-helical turns of helices E and F, positions 154-171, was modified with a methanethiosulfonate spin label. The EPR spectral changes occurring during the photocycle are consistent with a small movement of helix C and an outward tilt of helix F. These helix movements are accompanied by a rearrangement of the E-F loop and of the C-terminal turn of helix E. The kinetic analysis of the transient EPR data and the absorbance changes in the visible spectrum reveals that the conformational change occurs during the lifetime of the M intermediate. Prominent rearrangements of nitroxide side chains in the vicinity of D96 may indicate the preparation of the reprotonation of the Schiff base. All structural changes reverse with the recovery of the bacteriorhodopsin initial state.  相似文献   

17.
The photoacoustic signal from an intact leaf was analyzed as a vectorial summation of photothermal and photosynthetic oxygen-evolution contributions. A method is outlined to estimate each contribution separately. The amplitude of the oxygen-evolution component relative to that of the photothermal singnal decreases as the modulation frequency increases due to two processes which specifically damp the oxygen-evolution modulation: (1) diffusion of oxygen from the chloroplasts to the cell boundary, and (2) electron-transfer reactions occurring between the photochemical act and oxygen evolution. The effects of the two processes are well separated and are observed over different ranges of modulation frequency. Analysis of the data leads to a consistent estimation of the oxygen diffusion coefficient and also to a preliminary idea on the limiting time constant on the donor side of Photosystem II. The dependence of the photoacoustic oxygen-evolution signal on the intensity of added nonmodulated background light is used to construct the light saturation curve of (gross) Photsynthesis, with an estimation of the ratio maximal rate / maximal quantum yield. The photoacoustic method is distinguished by its sensitivity and rapidity (a single measurement takes approx. 1 s), far better than any other method to measure gross photosynthesis. The only disadvantage is in the fact that the quantum yield of oxygen evolution is determined in a relative basis only. Attempts to calibrate the photoacoustic measurements in an absolute sense are underway.  相似文献   

18.
We report a protein conformational change following carbon monoxide photodetachment from fully reduced bovine cytochrome c oxidase that is hypothesized to be associated with changes in ligand mobility through a dioxygen access channel in the protein. Although not resolved by earlier photoacoustic or optical studies on this adduct, utilization of slightly lower temperatures revealed a process with a kinetic lifetime of about 70 ns at 10 degrees C. We measure an enthalpy change of about 8 kcal/mol in 0.050 M HEPES buffer that becomes less endothermic (DeltaH approximately 2 kcal/mol) at higher ionic strength. The volume contraction of about -0.7 mL/mol associated with the process almost doubles in higher ionic strength buffer systems. Measurements of samples in phosphate buffer systems are similar and appear to display the same subtle ionic strength dependence. Both the isolation of this photoacoustic signal component and the possible dependence on ionic strength of the thermodynamic parameters derived from its analysis appear analogous to and consistent with prior photoacoustic results monitoring CO photodetachment from the camphor complex of cytochrome P-450. Accordingly, we consider a similar model in which a conformational change results in movement of an exposed charged group or groups towards the interior of the protein, out of contact with solvent, as in the closing of a salt bridge.  相似文献   

19.
The visual pigment rhodopsin has been purified and depleted of detergent. Under these conditions, the pigment strongly aggregates. When dried, a significant fraction of these aggregates appear insensitive to light. We have characterized them by means of absorption and photoacoustic spectroscopies and we find that their photochemical behavior is best explained by a limited activity that does not reach photointermediates beyond the lumirhodopsin step in the bleaching sequence of rhodopsin. We interpret this result as an indication of a significant conformational change of the protein during the transition from lumi- to meta-rhodopsin.  相似文献   

20.
The combination of absorption spectroscopy and extraction techniques was applied to study the effect of high pressure on the dark-adapted state of bacteriorhodopsin, 14-(12-,10-)fluoro-bacteriorhodopsin, a D96N bacteriorhodopsin mutant, and 14-(12-,10-)fluoro-D96N. Evidence is presented that, at high pressure, the isomers' equilibrium is shifted from all- trans isomers towards the 13-cis isomers. Two groups of values for calculated molar volume changes indicate that there are at least two different processes leading to a stable all-trans and 13-cis isomers' equilibrium called the dark-adapted bacteriorhodopsin. The first process may be attributed to changes in the distances and rearrangement of functionally important residues and a retinal Schiff base. It is suggested that the moved residues (probably Asp-212 with the contribution of Tyr-185 and/or Asp-85) closer to the chromophore could catalyse its trans-cis isomerization. These changes require smaller pressure changes and induce larger volume changes (large-volume-change process). The second process may be attributed to the formation of the three hydrogen bonds that additionally decrease the volume and strengthen further stabilization of the 13-cis isomer. To induce these changes, larger changes of pressure are required and the final molar volume changes are smaller (small-volume-change process). The total molar volume change between all-trans bacteriorhodopsin and 13-cis bacteriorhodopsin in the dark-adapted state of native bacteriorhodopsin was found to be about -28 mL/mol, which is much higher than the value of about -7 mL/mol obtained previously (Tsuda and Ebrey 1980, Schulte and Bradley 1995). The data provide a novel insight into factors leading to stable isomer equilibrium in dark-adapted bacteriorhodopsin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号