共查询到20条相似文献,搜索用时 15 毫秒
1.
Spatio-temporal characteristics of evapotranspiration and water use efficiency in grasslands of Xinjiang北大核心CSCD 下载免费PDF全文
Aims: Xinjiang is located in the hinterland of the Eurasian arid areas, with grasslands widely distributed. Grasslands in Xinjiang provide significant economic and ecological benefits. However, research on evapotranspiration (ET) and water use efficiency (WUE) of the grasslands is still relatively weak. This study aimed to explore the spatio-temporal characteristics on ET and WUE in the grasslands of Xinjiang in the context of climate change. Methods: The Biome-BGC model was used to determine the spatio-temporal characteristics of ET and WUE of the grasslands over the period 1979-2012 across different seasons, areas and grassland types in Xinjiang. Important findings: The average annual ET in the grasslands of Xinjiang was estimated at 245.7 mm, with interannual variations generally consistent with that of precipitation. Overall, the value of ET was lower than that of precipitation. The higher values of ET mainly distributed in the Tianshan Mountains, Altai Mountains, Altun Mountains and the low mountain areas on the northern slope of Kunlun Mountains. The lower values of ET mainly distributed in the highland areas of Kunlun Mountains and the desert plains. Over the period 1979-2012, average annual ET was 183.2 mm in the grasslands of southern Xinjiang, 357.9 mm in the grasslands of the Tianshan Mountains, and 221.3 mm in grasslands of northern Xinjiang. In winter, ET in grasslands of northern Xinjiang was slightly higher than that of Tianshan Mountains. Average annual ET ranked among grassland types as: mid-mountain meadow < swamp meadow < typical grassland < desert grassland < alpine meadow < saline meadow. The highest ET value occurred in summer, and the lowest ET value occurred in winter, with ET in spring being slightly higher than that in autumn. The higher WUE values mainly distributed in the areas of Tianshan Mountains and Altai Mountains. The lower WUE values mainly distributed in the highland areas of Kunlun Mountains and part of the desert plains. The average annual WUE in the grasslands of Xinjiang was 0.56 g kg-1, with the seasonal values of 0.43 g kg-1 in spring, 0.60 g kg-1 in summer, and 0.48 g kg-1 in autumn, respectively. Over the period 1979-2012, the values of WUE displayed significant regional differences: the average values were 0.73 g kg-1 in northern Xinjiang, 0.26 g kg-1 in southern Xinjiang, and 0.69 g kg-1 in Tianshan Mountains. There were also significant differences in WUE among grassland types. The values of WUE ranked in the order of mid-mountain meadow < typical grassland < swamp meadow < saline meadow < alpine meadow < desert grassland. 相似文献
2.
Decomposition of different root branch orders and its dominant controlling factors in four temperate tree species北大核心CSCD 下载免费PDF全文
Gu W.-P. Liu R.-P. Li X.-H. Sun T. Zhang Z.-J. Zan P. Wen L.-N. Ma P.-Y. Mao Z.-J. 《植物生态学报》2018,(9):955-962
Aims Fine root decomposition is the major pathway of carbon and nutrient input to the soil in forest ecosystems. However, the patterns and controlling factors of the decomposition of these roots, especially the finest roots, are poorly understood. Methods Using a root branch-order classification, we separated the first four orders of fine root systems of Pinus koraiensis, Larix gmelinii, Fraxinus mandschurica and Betula platyphylla into two classes: first- and second-order roots combined into lower-order; third- and fourth-order roots combined into higher-order. We conducted a four-year field litterbag study on decomposition of these four root orders of four temperate tree species in northeast China. Important findings The results showed that the lower-order and higher-order roots had a decomposition rate constant of 0.342 and 0.461 for Pinus koraiensis, 0.304 and 0.436 for Larix gmelinii, 0.450 and 0.555 for Fraxinus mandschurica, and 0.441 and 0.579 for Betula platyphylla, respectively. We observed slower decay rates in lower-order than in higher-order roots in all four studied tree species. The root decay constants (k) was significantly correlated with both acid-unhydrolyzable fraction (AUF) and total non-structural carbohydrate (TNC). We concluded that slow decomposition of lower-order roots was mainly driven by their high AUF and low TNC concentrations. © Chinese Journal of Plant Ecology. 相似文献
3.
Characteristics of nutrients in two dominant plant species and rhizospheric soils in alpine desert of the Qinghai-Xizang Plateau under contrasting climates北大核心CSCD 下载免费PDF全文
Aims This study was conducted to determine the responses of nutrients in plants and rhizospheric soils to climate in alpine-cold desert on the Qinghai-Xizang Plateau. Methods Tissue samples for two dominant plant species, Hippophae rhamnoides subsp. sinensis and Artemisia desertorum, and associated rhizospheric soil samples were collected from sites representing semi-Arid and sub-humid climates in the alpine-cold desert on the Qinghai-Xizang Plateau. Measurements were made on the contents of carbon, nitrogen and phosphorus in roots and shoots, as well as on organic carbon, total nitrogen, total phosphate, ammonium nitrogen, nitrate nitrogen and available phosphate in rhizospheric soils in the 0-10 cm and 10-20 cm layer. The relationship between nutrients in plant tissues and rhizospheric soils and the influencing factors were analyzed. Important findings There were significant differences between the semi-Arid and the sub-humid sites in tissue nutrients and rhizospheric soil nutrients for the two specie. Specifically, the contents of carbon, nitrogen, phosphorus in plant tissues differed significantly between the semi-Arid and the sub-humid sites. Soil organic carbon, total nitrogen, ammonium nitrogen, nitrate nitrogen and available phosphate for the rhizosphere of A. desertorum were significantly higher on site under sub-humid climate than that under semi-Arid climate; whereas the trend was reversed for the rhizosphere of H. rhamnoides subsp. sinensis. We found significant relationships between the tissue nutrients and soil nutrients, and significantly different plant nutrient ratios between the two species. There were negative correlations between tissues and rhizosheric soils in N:P ratio for A. desertorum and C:N ratio for H. rhamnoides subsp. sinensis under different climates. © 2018 Editorial Office of Chinese Journal of Plant Ecology. All rights reserved. 相似文献
4.
Experimental warming changed plants' phenological sequences of two dominant species in an alpine meadow,western of Sichuan北大核心CSCD 下载免费PDF全文
Aims We studied phenological sequences of two dominant plants (Polygonum viviparum and Potentilla leuconota) in an alpine meadow of the Hengduan Mt., western of Sichuan to explore the alpine plants responses on climate change. Methods Open-Top chambers (OTCs) chosen by ITEX were used to monitor the warming in the field. After a four-year experimental warming, in the 5th growing season we recorded the phenological sequences of two dominant species, focusing on plant responses on warming. The sequence was divided into four stages: budding, flowering, withering and ripe seeds. Each stage had three events: first, peak, and last. Important findings Our results showed that: 1) For P. viviparum, experimental warming elicited a shortening of the duration of each stage, advanced all of the phenological events but the first of withering and ripe seeds, shortened the period of each stage and reduced the duration of entire reproduction. 2) For P. leuconota, experimental warming extended the duration of every stage. All phenological events before the end of withering occurred earlier on experimental warming but the peak of flowering. The period of each stage had inconsistent responses on warming and warming prolonged the duration of entire reproduction. The present results indicated that not all phenological events were equally responsive to experimental warming and an entire sequence could be a more accurate way to evaluate the responses on environmental variation. Therefore, the plastic responses to warming of different species would have effects on community composition and structure. © 2018 Editorial Office of Chinese Journal of Plant Ecology. All rights reserved. 相似文献
5.
Effects of exotic-native species relationship on naturalization and invasion of exotic plant species北大核心CSCD 下载免费PDF全文
Zheng S.-S.Chen X.-B.Xu W.-N.Luo Z.-R.Xia G.-S. 《植物生态学报》2018,(10):990-999
Aims: Darwin's naturalization conundrum describes the paradox that the relationship of exotic species to native residents could either promote or hinder invasion success through opposing mechanisms: niche pre-adaptation or competitive interactions. Previous Darwin's naturalization studies have showed invasion success could vary at stages, sites, and spatial and phylogenetic scales. Our objective was to assess the effects of exotic-native species relationship on invasion process of exotic plant species in China, where related research is still lacking. Methods: Generalized linear mixed models were used to examine relationship between exotic-native species relationship and performance of exotic species at different spatial scale (provincial, municipal and community) and invasion stages (naturalization, dispersal and invasion). At community scale, we measured environmental factors of communities we investigated to control the effect of habitat heterogeneity among them. Important findings: At the provincial and municipal scales, exotic species closely related to native flora were more likely to be naturalized and distributed, which is more consistent with the expectation of the pre-adaptation hypothesis. On the community scale, the exotic-native species relationship was not related to establishment and abundance of exotic species in the community. The results suggested that exotic species did not strongly compete with their close native relatives in communities, but were better adapted to areas where their close relatives had lived. Considering their high potential of naturalization and invasion, special attention should be paid to those exotic species that closely related to the native flora in the management of invasive species. © Editorial Office of Chinese Journal of Plant Ecology. All rights reserved. 相似文献
6.
Greenhouse gas fluxes of typical northern subtropical forest soils: Impacts of land use change and reduced precipitation北大核心CSCD 下载免费PDF全文
Aims: It is important to study the effects of land use change and reduced precipitation on greenhouse gas fluxes (CO2, CH4 and N2O) of forest soils. Methods: The fluxes of CO2, CH4 and N2O and their responses to environmental factors of primary forest soil, secondary forest soil and artificial forest soil under a reduced precipitation regime were explored using the static chamber and gas chromatography methods during the period from January to December in 2014. Important findings: Results indicate that CH4 uptake of primary forest soil ((-44.43 ± 8.73) μg C·m-2·h-1) was significantly higher than that of the secondary forest soil ((-21.64 ± 4.86) μg C·m-2·h-1) and the artificial forest soil ((-10.52 ± 2.11) μg C·m-2·h-1). CH4 uptake of the secondary forest soil ((-21.64 ± 4.86) μg C·m-2·h-1) was significantly higher than that of the artificial forest ((-10.52 ± 2.11) μg C·m-2·h-1). CO2 emissions of the artificial forest soil ((106.53 ± 19.33) μg C·m-2·h-1) were significantly higher than that of the primary forest soil ((49.50 ± 8.16) μg C·m-2·h-1) and the secondary forest soil ((63.50 ± 5.35) μg C·m-2·h-1) (p < 0.01). N2O emissions of the secondary forest soil ((1.91 ± 1.22) ug N·m-2·h-1) were higher than that of the primary forest soil ((1.40 ± 0.28) μg N·m-2·h-1) and the artificial forest soil ((1.01 ± 0.86) μg N·m-2·h-1). Reduced precipitation (-50%) had a significant inhibitory effect on CH4 uptake of the artificial forest soil, while it enhanced CO2 emissions of the primary forest soil and the secondary forest soil. Reduced precipitation had a significant inhibitory effect on CO2 emissions of the artificial forest soil and N2O emissions of the secondary forest (p < 0.01). Reduced precipitation promotes N2O emissions of the primary forest soil and the artificial forest soil. CH4 uptake of the primary forest and the secondary forest soil increased significantly with the increase of soil temperature under natural and reduced precipitation. CO2 and N2O emission fluxes of the primary forest soil, secondary forest soil and artificial forest soil were positively correlated with soil temperature (p < 0.05). Soil moisture inhibited CH4 uptake of the secondary forest soil and the artificial forest soil (p < 0.05). CO2 emissions of the primary forest soil were significantly positively correlated with soil moisture (p < 0.05). N2O emissions of primary forest soil and secondary forest soil were significantly correlated with the nitrate nitrogen content (p < 0.05). It was implied that reduced precipitation and land use change would have significant effects on greenhouse gas emissions of subtropical forest soils. 相似文献
7.
Aims Accurate estimation of forest transpiration in the upper reach of the watershed is vital to the management of water resources in arid region. The objective of this study was to provide a systematic method for calculating the forest evapotranspiration at different scales. Methods In this study we measured the whole-tree transpiration using the heat ratio method technology and estimated the stand- and catchment-transpiration employing the upscaling methods. Important findings The main results and conclusions were as follows: First, the diameter at breast height (DBH) exhibited significant correlations with sapwood area, and the correlation was characterized by the exponential function (R2 = 0.94, p < 0.000 1). Second, in the weighted calculation of sap-flux measurements based on two-point thermocouples and sapwood area of Picea crassifolia, the correction coefficient between the true value and the observation value was 1.09. Third, when calculating sap-fluxes based on the average-sap-flux and total sapwood area of stand-transpiration, ignoring sap-flux velocity heterogeneities of trees led to transpiration rates being overestimated or underestimated by nearly one third; Fourth, the stand-transpiration estimation method based on the relationship between DBH and sap-flux can give a more reasonable prediction of Picea crassifolia transpiration. The results indicated that the probe-based sap-flux measuring technology would perform well for the transpiration scaling-up calculation at the catchment with only one single tree species, and the calculation methodology can be applied to other watersheds. © 2018 Editorial Office of Chinese Journal of Plant Ecology. All rights reserved. 相似文献
8.
Tan K.Dong S.-P.Lu T.Zhang Y.-J.Xu S.-T.Ren M.-X. 《植物生态学报》2018,(8):806-817
Samara (winged fruit) can be dispersed easily by wind and may be a crucial factor for angiosperm spread and diversification. In a narrow sense, a samara is an indehiscent dry fruit with wing(s) developed from fruit pericarp, while in a broad sense samaras also include all winged fruits with wings developed from both pericarp and peri-anth or bracts. According to the wing shape and growth patterns of samaras, we divided samaras into six types, i.e. single-winged, lanceolate-winged, rib-winged, sepal-winged, bract-winged, and perigynous samaras. Perigynous samaras can be further classified into two forms, i.e. round-winged and butterfly-winged samaras. Accordingly, the aerodynamic behavior of samaras can be classified into five types, autogyro, rolling autogyro, undulator, helicopter, and tumbler. The rib-winged and round-winged samaras can be found in Laurales, a basal angiosperm, and may represent the primitive type of early samaras. In the derived clades, samaras evolved enlarged but unequal wings and decreased wing loading (the ratio of fruit weight to wing size), which is likely an adaptation to gentle wind and secondary dispersal through water or ground wind. The wings of some samaras (such as sepal-winged and bract-winged samaras) may have multiple functions including wind dispersal, physical defense for the seeds, and adjust seed germination strategy. The pantropical family Malpighiaceae is extraordinarily rich in samara types, which is likely related to its multiple inter-continent dispersal in history, which is known as “Malpighiaceae Route”. Therefore, Malpighiaceae can be used as a model system for the studies on samara adaptation and evolution. We identified the following issues that deserve further examination in future studies using both ecological and evo-devo methods: 1) the adaption of different types of samaras in dispersal processes, 2) the molecular and developmental mechanism of sepal- and bract-wings, and 3) the evolution of samara types and their effects on angiosperm diversification. © 2018 Editorial Office of Chinese Journal of Plant Ecology. All rights reserved. 相似文献
9.
Effects of short-Term experimental warming on soil microbes in a typical alpine steppe北大核心CSCD 下载免费PDF全文
Wang J. Wang G.-Q. Li F. Peng Y.-F. Yang G.-B. Yu J.-C. Zhou G.-Y. Yang Y.-H. 《植物生态学报》2018,(1):116-125
Aims Soil microbe plays key role in mediating terrestrial carbon cycles. It has been suggested that climate warming may affect the microbial community, which may accelerate carbon release and induce a positive feedback to soil climate warming. However, there is still controversy on how microbial community responds to experimental warming, especially in cold and drought environment. Methods We conducted an open top chambers (OTCs) experiment to explore the effects of warming on soil microbial community in an alpine steppe on Qinghai-Xizang Plateau. During the maximum of the growing seasons (August) of 2015 and 2016, we monitored the biomass and structure of soil microbial community in warming and control plots using phospholipid fatty acids (PLFA) as biomarkers. Important findings Short-Term warming treatment significantly increased the soil temperature by 1.6 and 1.6 C and decreased soil moisture by 3.4% and 2.4% (volume fraction) respectively, but did not alter either soil properties or normalized difference vegetation index (NDVI) during the growing season (from May to October) in 2015 and 2016. During the maximum of growing seasons (August) of 2015 and 2016, the magnitude of microbial biomass carbon (MBC) were 749.0 and 844.3 mg·kg-1, microbial biomass nitrogen (MBN) were 43.1 and 102.1 mg·kg-1, and the microbial biomass C:N ranged between 17.9 and 8.4. Moreover, all three showed no significant differences between warming and control treatments. The abundance of bacteria was the most in microbial community, while arbuscular mycorrhizal fungi was the least, and warming treatment did not alter the abundance of different microbial group and the microbial community structure. Nonetheless, our result revealed that warming-induced changes in MBC had significant positive correlation with changes in soil temperature and soil moisture. These patterns indicate that, microbial community in this alpine steppe may not respond substantially to future climate warming due to the limitation of soil drought. Therefore, estimation of microbial community response to climate change calls for consideration on the combined effect of warming and drought. © 2018 Editorial Office of Chinese Journal of Plant Ecology. All rights reserved. 相似文献
10.
Characteristics of soil water distribution and evaluation of recharge rate under different grazing history in the Xilin Gol Steppe北大核心CSCD 下载免费PDF全文
Aims In the Xilin Gol Steppe, human-induced grassland degradation and land desertification are becoming increasingly severe. Critical evaluation of its impact on soil water and recharge rate is important for sustainable management of soil health and water resources in the region. Methods In order to determine the effect of different grazing history on dynamics of deep soil moisture contents and precipitation infiltration in the Xilin Gol Steppe, three sites with different grazing history (ungrazed since 1979 or UG79, ungrazed since 1999 or UG99, and continuously grazed or CG) were selected with two sampling spots for each site. The precipitation infiltration was estimated using the chloride mass balance method. Important findings The results showed that: 1) Average soil water content of 0–5 m was 7.1%, 6.9%, and 6.3% for UG79, UG99, and CG, respectively, with no significant difference. In the soil layer of 0–2 m, the soil water content of UG79 was 26.6% and 33.7% higher than that of UG99 and CG, respectively. The soil water content of UG79 was significantly higher than that of UG79 and UG99 (p < 0.05) with no significant difference between UG99 and CG. The soil water storage capacity of UG79 was 87.19 mm higher than UG99 and 82.52 mm higher than CG. In the deep layer of 2–5 m, no significant difference in the soil water content and the water storage among different grazing history. 2) The factors influencing soil water differed among different grazing treatments. The soil water content was mainly affected by the vegetation conditions and soil properties for the 0–2 m soil layer, but by the composition of soil particles for the 2–5 m soil layer. The effect of soil organic matter (SOM) content on soil water increased with time without grazing. Soil water content of the entire soil profile of UG79 was significantly correlated with soil texture and SOM content (p < 0.01). Soil water content of 0–2 m was significantly correlated with SOM content (p < 0.01), soil water content of 2–5 m was significantly correlated with the soil texture (p <0.01), but soil moisture content of UG99 and CG had no significant correlation with SOM content. 3) Annual recharge rate was 5.64, 3.54, and 2.45 mm·a –1 for UG79, UG99 and CG, respectively. The recharge rate increased by 44.5% and 130.2% for the site without grazing for 15 and 35 years, respectively. The recharge rate in the study area ranged from 1.95 to 7.61 mm·a –1 , accounting for only 0.55%–2.13% of the precipitation. In summary, ungrazing treatment can increase soil water retention, total water storage capacity, and recharge. © 2018 Editorial Office of Chinese Journal of Plant Ecology. All Rights Reserved. 相似文献
11.
Sebastián R. Zeballos Melisa A. Giorgis Ana M. Cingolani Marcelo Cabido Juan I. Whitworth‐Hulse Diego E. Gurvich 《Austral ecology》2014,39(8):984-991
In this study we assessed the water transport strategies and the abundance of alien and native tree species at a regional scale in Córdoba Mountains, Central Argentina. The aims of this study were: (i) to analyse whether alien and native tree species show divergent water transport strategies; and (ii) to explore whether species abundances of alien and natives are associated with specific trait attributes. Eight alien species and 12 native species were recorded in 50 complete vascular plant vegetation relevés. Water transport strategies were assessed through the following functional traits: minimum leaf water potential, potential water content of wood, effective leaf area, leaf area per sapwood area and wood density. Also, resource use strategies were assessed throughout the measurement of specific leaf area. We found that alien species had a higher efficiency in water transport (i.e. higher minimum leaf water potential and lower wood density values) and faster resource acquisition and use (higher specific leaf area values) than native species. We did not find evidence suggesting that the relative abundance of species was associated to water transport strategies and faster resource acquisition and use. Alien species seem to differ from natives in specific functional attributes that are absent in the resident community and might allow aliens to use more resources and at a higher rate than native species. Finally, our results show the potential of a trait‐based predictive framework for alien species, and the possible effects on ecosystem functions. 相似文献
12.
How do climate warming and plant species richness affect water use in experimental grasslands? 总被引:2,自引:0,他引:2
H. J. De Boeck C. M. H. M. Lemmens H. Bossuyt S. Malchair M. Carnol R. Merckx I. Nijs R. Ceulemans 《Plant and Soil》2006,288(1-2):249-261
Climate warming and plant species richness loss have been the subject of numerous experiments, but studies on their combined impact are lacking. Here we studied how both warming and species richness loss affect water use in grasslands, while identifying interactions between these global changes. Experimental ecosystems containing one, three or nine grassland species from three functional groups were grown in 12 sunlit, climate-controlled chambers (2.25 m2 ground area) in Wilrijk, Belgium. Half of these chambers were exposed to ambient air temperatures (unheated), while the other half were warmed by 3°C (heated). Equal amounts of water were added to heated and unheated communities, so that warming would imply drier soils if evapotranspiration (ET) was higher. After an initial ET increase in response to warming, stomatal regulation and lower above-ground productivity resulted in ET values comparable with those recorded in the unheated communities. As a result of the decreased biomass production, water use efficiency (WUE) was reduced by warming. Higher complementarity and the improved competitive success of water-efficient species in mixtures led to an increased WUE in multi-species communities as compared to monocultures, regardless of the induced warming. However, since the WUE of individual species was affected in different ways by higher temperatures, compositional changes in mixtures seem likely under climatic change due to shifts in competitiveness. In conclusion, while increased complementarity and selection of water-efficient species ensured more efficient water use in mixtures than monocultures, global warming will likely decrease this WUE, and this may be most pronounced in species-rich communities. 相似文献
13.
Community characteristics and population structure of Ferrocalamus strictus,a rare species in Mojiang,Yunnan, China北大核心CSCD 下载免费PDF全文
Yu D.-X.Du F.Shi M.Yang C.Dai J. 《植物生态学报》2018,(9):938-945
Aims As an endangered wild species with extremely small populations, Ferrocalamus strictus is narrowly distributed in South Yunnan with a small number of individuals. The survey of population structure and community characteristics of the wild population of F. strictus can facilitate understanding its endangered system and mechanisms and provide preliminary research basis for its protection. Methods We investigated the community and population structure of F. strictus, including species composition, population density, population survivorship curve and death factors by plot surveying and sampling. Important findings The community in which population of F. strictus is located in Mojiang has some characteristics of mountain rainforests in terms of appearance and species composition. The population density of F. strictus was 2.04 ind.·m–2. The survivorship curve of F. strictus was between Deevey-I and Deevey-II. The net proliferation rate (R0) of F. strictus population was 1.10, which indicates an expanding population of F. strictus. The death of F. strictus is caused by human logging, natural death, shoot degradation and insects feeding. Among them, artificial cutting accounts for the largest proportion. Ferrocalamus strictus is a species of forest bamboos distributed in the South Asian subtropics, which is a medium-sized bamboo species. Its internode length change suddenly from the base 3–4 nodes. The longest ones exceed 1 m, which ranks at the top of all bamboo species and is closely related to its adaptation to the tropical mountain rainforest environment. © Chinese Journal of Plant Ecology. 相似文献
14.
《Fungal Ecology》2019
The distribution of different Epichloë species within eight natural populations of Lolium perenne was studied. In total, 40.2% of the asymptomatic plants were infected by Epichloë festucae var. lolii or by Epichloë typhina. Both species occurred in sympatry in seven grass populations, and some plants had dual infections by both taxa. No hybrid taxa such as Epichloë hybrida were detected. Epichloë festucae strains were classified into two morphotypes, M1 and M3, according to culture characters, both morphotypes occurred in sympatry in seven populations. Plants bearing stromata produced by Epichloë typhina were observed, but asymptomatic plants infected by this species also occurred in seven populations. The alkaloid profile of Lolium perenne plants was related to the morphotype of their infecting strains: most plants infected by M3-strains were characterized by lolitrem, and those with M1-strains contained either ergovaline or lolitrem. Plants infected by Epichloë typhina were characterized by high peramine content. 相似文献
15.
Phenotypic plasticity and genetic differentiation of quantitative traits in genotypes of Leymus chinensis北大核心CSCD 下载免费PDF全文
Yang X.Shen J.-F.Zhao N.-X.Gao Y.-B. 《植物生态学报》2017,(3):359-368
Aims Adaptation mechanisms of plants to environment can be classified as genetic differentiation and phenotypic plasticity (environmental modification). The strategy and mechanism of plant adaptation is a hot topic in the field of evolutionary ecology. Leymus chinensis is one of constructive species in the Nei Mongol grassland. Particularly, Leymus chinensis is a rhizomatous and clonally reproductive grass, a genotype that can play an important role in the community. In this study, we aimed to (1) investigate the phenotypic plasticity of L. chinensis under different conditions, and (2) test the genetic differentiation and reaction norms (the relationship between the environment and the phenotype of an individual or a group of individuals) under four environmental conditions among different genotypes of L. chinensis. Methods Ten genotypes of L. chinensis were randomly selected. Under the control condition, we studied the effects of genotype, defoliation, drought and their interactions on 11 quantitative traits of growth (8 traits including photochemical efficiency of photosystem II, maximum net photosynthetic rate, transpiration rate, specific leaf area, relative growth rate, the number of tillers increased, aboveground and underground biomass growth), defense (total phenol concentration of leaf) and tolerance (non-structural carbohydrate content of root, root/shoot ratio) of L. chinensis. We studied the phenotypic plasticity, genetic differentiation and reaction norms mainly through tested the effect of environment and genotype on these traits. Important findings First, all 11 traits showed obvious phenotypic plasticity (i.e., significant effect of drought, defoliation and their interactions). The expression of 10 genotypes of L. chinensis was divergent under different environmental conditions. Interactions of genotype and environment significantly affected the maximum net photosynthetic rate, transpiration rate, specific leaf area, relative growth rate, total phenolic concentration of leaf, and total non-structural carbohydrate content of root. This indicated that the phenotypic plasticity of these five traits exhibited genetic differentiation. Second, the increase of number of tillers, belowground biomass and non-structural carbohydrate content of root did not show genetic differentiation under the same condition. The other eight traits showed significantly genetic differentiation, and the heritabilities (H2) of six traits related to growth were higher than 0.5. The leaf total phenol concentration and root/shoot ratio showed genetically differentiation only under the drought and defoliation condition, with the heritabilities being 0.145 and 0.201, respectively. These results explained why L. chinensis widely distributed in the Nei Mongol grassland, and provided genetic and environmental basis for related application and species conservation in this grassland ecosystem. 相似文献
16.
Trade-offs between water yield and carbon sequestration for sub-alpine catchments in western Sichuan,China北大核心CSCD 下载免费PDF全文
Aims: There is increasing concern on the trade-off between carbon sequestration and water yield of forest ecosystems. Our objective was to explore the effects of vegetation composition on water and carbon trade-off in the sub-alpine watersheds of western Sichuan during 1982-2006. Methods: The WaSSI-C, which is an eco-hydrological model with coupled water and carbon cycles, was employed to calculate the key components in water balance and carbon sequestration for the 22 sub-catchments in the upper reaches of Zagunao River. Spearman's Rho trend analysis was used to examine the trends in runoff and net ecosystem productivity. Important findings: Compared with either subalpine meadow or mixed forest dominated catchments, the conifer-dominated catchments had much higher water loss due to high evapotranspiration, and the loss was not offset by its higher soil water infiltration during the growing season. The change in soil water storage for subalpine meadow, mixed forest and coniferous forest are -44 mm, -18 mm and -5 mm, respectively, which indicated significant decline in soil water storage and thus water yield particularly in alpine meadow catchments. Significant negative relationship was found between runoff and net ecosystem productivity, the alpine meadow as the dominant vegetation type showed high water yield and low carbon sequestration, and the conifer-dominant and mixed forest vegetation showed low water yield and high carbon sequestration, moreover, the higher the forest coverage, the lower the water yield. Upward trends in net ecosystem productivity were observed in the three vegetation types during the study period and the alpine meadow type was significant. 相似文献
17.
18.
19.
With increasing data availability in the big data era, many traditional statistical analyses based on the mean or median are insufficient or inappropriate to elucidate the complex patterns of variation. This is particularly the case when multiple factors are involved and the bivariate scatter occurs as scatter clouds. In such circumstances, constraint line (or envelope) method could be an alternative and effective tool to extract the data boundaries, thus improves our understanding of the complex relationships between limiting factor and response factor. Here, we synthesize the major findings and achievements in the field of applying the constraint line method in ecology. Specifically, we first describe the history and development of the constraint line method. We then discuss the techniques to establish the constraint lines with examples, and discuss the applications and implications of the constraint lines in species distribution, population performance, and optimization problem. We suggest simultaneously application of both constraint lines and regression techniques to the same datasets to achieve a comprehensive understanding of ecological process and underlying mechanisms. Such combined methods should be used with special attention to the role of spatial heterogeneity and scale dependency. We also discuss in detail the potential applicability of the constraint line method in studying the linkages between ecosystem services, and land system design. 相似文献
20.
Michail I. Gladyshev Nadezhda N. Sushchik Andzhela A. Kolmakova Galina S. Kalachova Elena S. Kravchuk Elena A. Ivanova Olesia N. Makhutova 《Aquatic Ecology》2007,41(1):9-23
The elemental and fatty acid composition of seston was studied for 3 years, from May to October, in a small Reservoir. Under
comparatively low C:P ratio, multivariate canonical analysis revealed no straightforward simple correlations between phosphorus
and single ω3 PUFA species, but complex significant interaction between elemental composition (stoichiometry) of seston and
total sestonic ω3 PUFA as a whole. Since sestonic C, P and N were found to originate mostly from phytoplankton, the contents
of particulate elements and PUFA were attributed to single species in periods of their pronounced dominance. Phytoplankton
species of genera of Stephanodiscus, Peridinium, Gomphosphaeria, Planktothrix and Anabaena in periods of their pronounced dominance had relatively constant species-specific elemental and PUFA composition. Phytoplankton
species significantly differed in their elemental and PUFA composition, as well as in ratios of C:N, N:P, PUFA:P and partly
C:P that indicate food quality for zooplankton. Hence, there were no phytoplankton species of clearly high or low nutritional
value. All of phytoplankters, or at least detritus, that originated from them, may meet specific elemental and biochemical
requirements of specific groups of zooplankton. Dividing phytoplankton on basis of their elemental and biochemical composition,
i.e., nutrition quality, into large taxa (cyanobacteria, diatoms, etc.) appeared to be too coarse for assessing nutritional
value for zooplankton. 相似文献