首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
HKT1 is a high affinity K(+) transporter protein that is a member of a large superfamily of transporters found in plants, bacteria, and fungi. These transporters are primarily involved in K(+) uptake and are energized by Na(+) or H(+). HKT1 is energized by Na(+) but also mediates low affinity Na(+) uptake and may therefore be a pathway for Na(+) uptake, which is toxic to plants. The aim of this study was to identify regions of HKT1 that are involved in K(+)/Na(+) selectivity and alter the amino acid composition in those regions to increase the ionic selectivity of the transporter. A highly charged loop was identified, and two deletions were created that resulted in the removal of charged and uncharged amino acids. The functional changes caused by the deletions were studied in yeast and Xenopus oocytes. The deletions improved the K(+)/Na(+) selectivity of the transporter and increased the salt tolerance of the yeast cells in which they were expressed. In light of recent structural models of members of this symporter superfamily, it was necessary to determine the orientation of this highly charged loop. Introduction of an epitope tag allowed us to demonstrate that this loop faces the outside of the membrane where it is likely to facilitate the interaction with cations such as K(+) and Na(+). This study has identified an important structural feature in HKT1 that in part determines its K(+)/Na(+) selectivity. Understanding the structural basis of the functional characteristics in transporters such as HKT1 may have important implications for increasing the salt tolerance of higher plants.  相似文献   

2.
Members of class II of the HKT transporters, which have thus far only been isolated from grasses, were found to mediate Na(+)-K(+) cotransport and at high Na(+) concentrations preferred Na(+)-selective transport, depending on the ionic conditions. But the physiological functions of this K(+)-transporting class II of HKT transporters remain unknown in plants, with the exception of the unique class II Na(+) transporter OsHKT2;1. The genetically tractable rice (Oryza sativa; background Nipponbare) possesses two predicted K(+)-transporting class II HKT transporter genes, OsHKT2;3 and OsHKT2;4. In this study, we have characterized the ion selectivity of the class II rice HKT transporter OsHKT2;4 in yeast and Xenopus laevis oocytes. OsHKT2;4 rescued the growth defect of a K(+) uptake-deficient yeast mutant. Green fluorescent protein-OsHKT2;4 is targeted to the plasma membrane in transgenic plant cells. OsHKT2;4-expressing oocytes exhibited strong K(+) permeability. Interestingly, however, K(+) influx in OsHKT2;4-expressing oocytes did not require stimulation by extracellular Na(+), in contrast to other class II HKT transporters. Furthermore, OsHKT2;4-mediated currents exhibited permeabilities to both Mg(2+) and Ca(2+) in the absence of competing K(+) ions. Comparative analyses of Ca(2+) and Mg(2+) permeabilities in several HKT transporters, including Arabidopsis thaliana HKT1;1 (AtHKT1;1), Triticum aestivum HKT2;1 (TaHKT2;1), OsHKT2;1, OsHKT2;2, and OsHKT2;4, revealed that only OsHKT2;4 and to a lesser degree TaHKT2;1 mediate Mg(2+) transport. Interestingly, cation competition analyses demonstrate that the selectivity of both of these class II HKT transporters for K(+) is dominant over divalent cations, suggesting that Mg(2+) and Ca(2+) transport via OsHKT2;4 may be small and would depend on competing K(+) concentrations in plants.  相似文献   

3.
The Na(+)-K(+) co-transporter HKT1, first isolated from wheat, mediates high-affinity K(+) uptake. The function of HKT1 in plants, however, remains to be elucidated, and the isolation of HKT1 homologs from Arabidopsis would further studies of the roles of HKT1 genes in plants. We report here the isolation of a cDNA homologous to HKT1 from Arabidopsis (AtHKT1) and the characterization of its mode of ion transport in heterologous systems. The deduced amino acid sequence of AtHKT1 is 41% identical to that of HKT1, and the hydropathy profiles are very similar. AtHKT1 is expressed in roots and, to a lesser extent, in other tissues. Interestingly, we found that the ion transport properties of AtHKT1 are significantly different from the wheat counterpart. As detected by electrophysiological measurements, AtHKT1 functioned as a selective Na(+) uptake transporter in Xenopus laevis oocytes, and the presence of external K(+) did not affect the AtHKT1-mediated ion conductance (unlike that of HKT1). When expressed in Saccharomyces cerevisiae, AtHKT1 inhibited growth of the yeast in a medium containing high levels of Na(+), which correlates to the large inward Na(+) currents found in the oocytes. Furthermore, in contrast to HKT1, AtHKT1 did not complement the growth of yeast cells deficient in K(+) uptake when cultured in K(+)-limiting medium. However, expression of AtHKT1 did rescue Escherichia coli mutants carrying deletions in K(+) transporters. The rescue was associated with a less than 2-fold stimulation of K(+) uptake into K(+)-depleted cells. These data demonstrate that AtHKT1 differs in its transport properties from the wheat HKT1, and that AtHKT1 can mediate Na(+) and, to a small degree, K(+) transport in heterologous expression systems.  相似文献   

4.
The family of plant membrane transporters named HKT (for high-affinity K(+) transporters) can be subdivided into subfamilies 1 and 2, which, respectively, comprise Na(+)-selective transporters and transporters able to function as Na(+)-K(+) symporters, at least when expressed in yeast (Saccharomyces cerevisiae) or Xenopus oocytes. Surprisingly, a subfamily 2 member from rice (Oryza sativa), OsHKT2;4, has been proposed to form cation/K(+) channels or transporters permeable to Ca(2+) when expressed in Xenopus oocytes. Here, OsHKT2;4 functional properties were reassessed in Xenopus oocytes. A Ca(2+) permeability through OsHKT2;4 was not detected, even at very low external K(+) concentration, as shown by highly negative OsHKT2;4 zero-current potential in high Ca(2+) conditions and lack of sensitivity of OsHKT2;4 zero-current potential and conductance to external Ca(2+). The Ca(2+) permeability previously attributed to OsHKT2;4 probably resulted from activation of an endogenous oocyte conductance. OsHKT2;4 displayed a high permeability to K(+) compared with that to Na(+) (permeability sequence: K(+) > Rb(+) ≈ Cs(+) > Na(+) ≈ Li(+) ≈ NH(4)(+)). Examination of OsHKT2;4 current sensitivity to external pH suggested that H(+) is not significantly permeant through OsHKT2;4 in most physiological ionic conditions. Further analyses in media containing both Na(+) and K(+) indicated that OsHKT2;4 functions as K(+)-selective transporter at low external Na(+), but transports also Na(+) at high (>10 mm) Na(+) concentrations. These data identify OsHKT2;4 as a new functional type in the K(+) and Na(+)-permeable HKT transporter subfamily. Furthermore, the high permeability to K(+) in OsHKT2;4 supports the hypothesis that this system is dedicated to K(+) transport in the plant.  相似文献   

5.
6.
7.
Potassium is an essential macronutrient in higher plants. It plays an important physiological role in stoma movements, osmoregulation, enzyme activation and cell expansion. The demand for potassium can be substantial, especially when the plant concerned is a Eucalyptus tree in excess of 50 m tall. We have isolated two cDNAs, EcHKT1 and EcHKT2, from Eucalyptus camaldulensis (river red gum) which are expressed in leaves, stems and roots. These encode potassium transporter polypeptides with homology to the wheat K+-Na+ symporter, HKT1. EcHKT1 and EcHKT2 both complemented the K+-limited growth of an Escherichia coli K+-uptake-deficient triple mutant. EcHKT1 and EcHKT2also mediated Na+ and K+ uptake when expressed in Xenopus oocytes. A comparison of the EcHKT1 and EcHKT2 sequences and their transport properties indicated that these cDNAs represent two K+ transporters with distinct functional characteristics. The functional and structural conservation between these two E. camaldulensis genes and the wheat HKT1 suggests that they play an important, albeit elusive, physiological role.  相似文献   

8.
Mouse GABA transporters belong to the family of Na(+) and Cl(-) dependent neurotransmitter transporter. GABA transport, by these family members, was shown to be electrogenic and driven by sodium ions. It was demonstrated that, as in several other transporters, sodium binding and release by GAT1, GAT3 and BGT-1, the canine homolog of GAT2, resulted in the appearance of presteady-state currents. In this work we show that each of the four GABA transporters exhibit unique presteady-state currents when expressed in Xenopus oocytes. The properties of the presteady-state currents correspond to the transporters affinities to Na(+). At 100 mM GAT1 exhibited symmetric presteady-state currents at all imposed potentials, whereas GAT2 exhibited asymmetric presteady-state currents exclusively at negative imposed potentials, GAT3 or GAT4 exhibited presteady-state currents predominantly at positive imposed potentials. GABA uptake by GAT2 and GAT4 was much more sensitive to external pH than GAT1 and GAT3. Reducing the external Na(+) concentration rendered the GABA uptake activity by GAT1 and GAT3 to be sensitive to pH. Lowering the external pH reduced the Na(+) affinity of GAT1. Substitution of the external Na(+) to Li(+) resulted in the appearance of leak currents exclusively at negative potentials in Xenopus oocyte expressing GAT1 and GAT3. Low Na(+) concentrations inhibited the leak currents of GAT1 but Na(+) had little effect on the leak currents of GAT3. Washing of occluded Na(+) in GAT1 enhanced the leak currents. Similarly addition of GABA in the presence of 80 mM Li(+), that presumably accelerated the release of the bound Na(+), also induced the leak currents. Conversely, addition of GABA to GAT3 expressing oocytes, in the presence of 80 mM Li(+), inhibited the leak currents.  相似文献   

9.
10.
11.
Fully grown oocytes of Xenopus laevis undergo resumption of the meiotic cycle when treated with the steroid hormone progesterone. Previous studies have shown that meiotic maturation results in profound downregulation of specific endogenous membrane proteins in oocytes. To determine whether the maturation impacts the functional properties of exogenously expressed membrane proteins, we used cut-open recordings from Xenopus oocytes expressing several types of Na(+) and K(+) channels. Treatment of oocytes with progesterone resulted in a downregulation of heterologously expressed Na(+) and K(+) channels without a change in the kinetics of the currents. The time course of progesterone-induced ion channel inhibition was concentration dependent. Complete elimination of Na(+) currents temporally coincided with development of germinal vesicle breakdown, while elimination of K(+) currents was delayed by approximately 2 h. Coexpression of human beta(1)-subunit with rat skeletal muscle alpha-subunit in Xenopus oocytes did not prevent progesterone-induced downregulation of Na(+) channels. Addition of 8-bromo-cAMP to oocytes or injection of heparin before progesterone treatment prevented the loss of expressed currents. Pharmacological studies suggest that the inhibitory effects of progesterone on expressed Na(+) and K(+) channels occur downstream of the activation of cdc2 kinase. The loss of channels is correlated with a reduction in Na(+) channel immunofluorescence, pointing to a disappearance of the ion channel-forming proteins from the surface membrane.  相似文献   

12.
It is thought that Na+ and K+ homeostasis is crucial for salt-tolerance in plants. To better understand the Na+ and K+ homeostasis in important crop rice (Oryza sativa L.), a cDNA homologous to the wheat HKT1 encoding K+-Na+ symporter was isolated from japonica rice, cv Nipponbare (Ni-OsHKT1). We also isolated two cDNAs homologous to Ni-OsHKT1 from salt-tolerant indica rice, cv Pokkali (Po-OsHKT1, Po-OsHKT2). The predicted amino acid sequence of Ni-OsHKT1 shares 100% identity with Po-OsHKT1 and 91% identity with Po-OsHKT2, and they are 66-67% identical to wheat HKT1. Low-K+ conditions (less than 3 mM) induced the expression of all three OsHKT genes in roots, but mRNA accumulation was inhibited by the presence of 30 mM Na+. We further characterized the ion-transport properties of OsHKT1 and OsHKT2 using an expression system in the heterologous cells, yeast and Xenopus oocytes. OsHKT2 was capable of completely rescuing a K+-uptake deficiency mutation in yeast, whereas OsHKT1 was not under K+-limiting conditions. When OsHKTs were expressed in Na+-sensitive yeast, OsHKT1 rendered the cells more Na+-sensitive than did OsHKT2 in high NaCl conditions. The electrophysiological experiments for OsHKT1 expressed in Xenopus oocytes revealed that external Na+, but not K+, shifted the reversal potential toward depolarization. In contrast, for OsHKT2 either Na+ or K+ in the external solution shifted the reversal potential toward depolarization under the mixed Na+ and K+ containing solutions. These results suggest that two isoforms of HKT transporters, a Na+ transporter (OsHKT1) and a Na+- and K+-coupled transporter (OsHKT2), may act harmoniously in the salt tolerant indica rice.  相似文献   

13.
Elevated sodium (Na(+)) decreases plant growth and, thereby, agricultural productivity. The ion transporter high-affinity K(+) transporter (HKT)1 controls Na(+) import in roots, yet dysfunction or overexpression of HKT1 fails to increase salt tolerance, raising questions as to HKT1's role in regulating Na(+) homeostasis. Here, we report that tissue-specific regulation of HKT1 by the soil bacterium Bacillus subtilis GB03 confers salt tolerance in Arabidopsis thaliana. Under salt stress (100 mM NaCl), GB03 concurrently down- and upregulates HKT1 expression in roots and shoots, respectively, resulting in lower Na(+) accumulation throughout the plant compared with controls. Consistent with HKT1 participation in GB03-induced salt tolerance, GB03 fails to rescue salt-stressed athkt1 mutants from stunted foliar growth and elevated total Na(+) whereas salt-stressed Na(+) export mutants sos3 show GB03-induced salt tolerance with enhanced shoot and root growth as well as reduced total Na(+). These results demonstrate that tissue-specific regulation of HKT1 is critical for managing Na(+) homeostasis in salt-stressed plants, as well as underscore the breadth and sophistication of plant-microbe interactions.  相似文献   

14.
Yeast membrane proteins SMF1, SMF2, and SMF3 are homologues of the DCT1 metal ion transporter family. Their functional characteristics and the implications of these characteristics in vivo have not yet been reported. Here we show that SMF1 expressed in Xenopus oocytes mediates H(+)-dependent Fe(2+) transport and uncoupled Na(+) flux. SMF1-mediated Fe(2+) transport exhibited saturation kinetics (K(m) = 2.2 microM), whereas the Na(+) flux did not, although both processes were electrogenic. SMF1 is also permeable to Li(+), Rb(+), K(+), and Ca(2+), which likely share the same uncoupled pathway. SMF2 (but not SMF3) mediated significant increases in both Fe(2+) and Na(+) transport compared with control oocytes. These data are consistent with the concept that uptake of divalent metal ions by SMF1 and SMF2 is essential to yeast cell growth. Na(+) inhibited metal ion uptake mediated by SMF1 and SMF2 expressed in oocytes. Consistent with this, we found that increased sensitivity of yeast to EGTA in the high Na(+) medium is due to inhibition of SMF1- and SMF2-mediated metal ion transport by uncoupled Na(+) pathway. Interestingly, DCT1 also mediates Fe(2+)-activated uncoupled currents. We propose that uncoupled ion permeabilities in metal ion transporters protect cells from metal ion overload.  相似文献   

15.
Sodium-dependent dicarboxylate transporters located in the basolateral membrane (NaDC-3) of renal proximal tubule cells maintain the driving force for exchange of organic anions and drugs against alpha-ketoglutarate via organic anion transporters OAT1 and OAT3. So far, information on direct interaction of drugs with the cloned NaDC-3 was missing. Here we tested the interaction of non-steroidal anti-inflammatory drugs (NSAIDs) and benzylpenicillin with NaDC-3 cloned from winter flounder (fNaDC-3) and human (hNaDC-3) kidneys. Flufenamate and benzylpenicillin inhibited [14C]succinate uptake in oocytes expressing fNaDC-3. Flufenamate elicited Na(+)-dependent currents in oocytes expressing fNaDC-3 with a reversal potential around -60 mV. Raising extracellular K+ concentration depolarized fNaDC3-expressing oocytes more in the presence of flufenamate than in its absence, an effect not seen with water-injected control oocytes. These findings suggest that flufenamate via interaction with fNaDC-3 increased the K+ conductance. Acetylsalicylate, indomethacin, and salicylate showed small potential-dependent inward currents in fNaDC-3 but not in hNaDC-3 expressing oocytes. Benzylpenicillin induced voltage-dependent inward currents which were Na(+)-dependent in oocytes expressing fNaDC-3. The currents were, however, much smaller than those induced by succinate, reflecting probably a low fit of the monovalent benzylpenicillin to the dicarboxylate binding site. The data show hitherto unknown effects of monovalent anionic drugs on a transporter for divalent di- and tricarboxylates.  相似文献   

16.
Grossman TR  Nelson N 《FEBS letters》2002,527(1-3):125-132
Mouse GABA transporters belong to the family of Na(+)- and Cl(-)-dependent neurotransmitter transporters. The four GABA transporters exhibit unique presteady-state currents when expressed in Xenopus oocytes. The properties of the presteady-state currents correspond to their different affinities to Na(+). In the presence of 20 microM GABA and at pH 7.5, the half-maximal uptake activity was 47, 120, 25 and 35 mM Na(+) for GAT1, GAT2, GAT3 and GAT4, respectively. The appearance of presteady-state currents at positive or negative imposed potentials was in correlation with the affinity to Na(+). Changing the external pH differentially affected the GABA uptake and the presteady-state activities of the various GABA transporters. It is suggested that protons compete with Na(+) on its binding site; however, the proton binding is not productive and is unable to drive GABA uptake.  相似文献   

17.
Excitatory amino acid transporter 2 (EAAT2) is a high affinity glutamate transporter predominantly expressed in astroglia. Human EAAT2 encompasses eight transmembrane domains and a 74-amino acid C-terminal domain that resides in the cytoplasm. We examined the role of this region by studying various C-terminal truncations and mutations using heterologous expression in mammalian cells, whole-cell patch clamp recording and confocal imaging. Removal of the complete C terminus (K498X EAAT2) results in loss of function because of intracellular retention of truncated proteins in the cytoplasm. However, a short stretch of amino acids (E500X EAAT2) within the C terminus results in correctly processed transporters. E500X reduced glutamate transport currents by 90%. Moreover, the voltage and substrate dependence of E500X EAAT2 anion currents was significantly altered. WT and mutant EAAT2 anion channels are modified by external Na(+) in the presence as well as in the absence of L-glutamate. Whereas Na(+) stimulates EAAT2 anion currents in the presence of L-glutamate, increased [Na(+)] reduces such currents without glutamate. In cells internally dialyzed with Na(+), WT, and truncated EAAT2 display comparable Na(+) dependence. With K(+) as main internal cation, E500X drastically increased the apparent dissociation constant for external Na(+). The effects of E500X can be represented by a kinetic model that allows translocation of the empty transporter from the outward- to the inward-facing conformation and stabilization of the inward-facing conformation by internal K(+). Our results demonstrate that the C terminus modifies the glutamate uptake cycle, possibly affecting the movements of the translocation domain of EAAT2 glutamate transporter.  相似文献   

18.
HKT-type transporters appear to play key roles in Na(+) accumulation and salt sensitivity in plants. In Arabidopsis HKT1;1 has been proposed to influx Na(+) into roots, recirculate Na(+) in the phloem and control root : shoot allocation of Na(+). We tested these hypotheses using (22)Na(+) flux measurements and ion accumulation assays in an hkt1;1 mutant and demonstrated that AtHKT1;1 contributes to the control of both root accumulation of Na(+) and retrieval of Na(+) from the xylem, but is not involved in root influx or recirculation in the phloem. Mathematical modelling indicated that the effects of the hkt1;1 mutation on root accumulation and xylem retrieval were independent. Although AtHKT1;1 has been implicated in regulation of K(+) transport and the hkt1;1 mutant showed altered net K(+) accumulation, (86)Rb(+) uptake was unaffected by the hkt1;1 mutation. The hkt1;1 mutation has been shown previously to rescue growth of the sos1 mutant on low K(+); however, HKT1;1 knockout did not alter K(+) or (86)Rb(+) accumulation in sos1.  相似文献   

19.
The transport properties of the intestinal amino acid cotransporter KAAT1, heterologously expressed in Xenopus oocytes, were studied using simultaneous voltage-clamp and tritiated leucine uptake measurements. While addition of 1 mM leucine to oocytes kept at -80 mV in presence of Na(+) or K(+) caused an increase in holding current, in presence of Li(+) the current was reduced. Uptake measurements in voltage-clamp conditions showed that a comparable accumulation of amino acid occurred in all three ionic conditions and irrespective of the direction and amount of the current change. The ratio of moles of transferred charge to moles of transported amino acid ranges from 1.45 for K(+) to 3.52 for Li(+). A hypothetical interpretation involving the coexistence of two populations of transporters, one operating in the uncoupled mode and the other in the substrate transport mode is discussed.  相似文献   

20.
We have investigated the functional role of Cl(-) in the human Na(+)/Cl(-)/gamma-aminobutyric acid (GABA) and Na(+)/glucose cotransporters (GAT1 and SGLT1, respectively) expressed in Xenopus laevis oocytes. Substrate-evoked steady-state inward currents were examined in the presence and absence of external Cl(-). Replacement of Cl(-) by gluconate or 2-(N-morpholino)ethanesulfonic acid decreased the apparent affinity of GAT1 and SGLT1 for Na(+) and the organic substrate. In the absence of substrate, GAT1 and SGLT1 exhibited charge movements that manifested as pre-steady-state current transients. Removal of Cl(-) shifted the voltage dependence of charge movements to more negative potentials, with apparent affinity constants (K(0.5)) for Cl(-) of 21 and 115 mm for SGLT1 and GAT1, respectively. The maximum charge moved and the apparent valence were not altered. GAT1 stoichiometry was determined by measuring GABA-evoked currents and the unidirectional influx of (36)Cl(-), (22)Na(+), or [(3)H]GABA. Uptake of each GABA molecule was accompanied by inward movement of 2 positive charges, which was entirely accounted for by the influx of Na(+) in the presence or absence of Cl(-). Thus, the GAT1 stoichiometry was 2Na(+):1GABA. However, Cl(-) was transported by GAT1 because the inward movement of 2 positive charges was accompanied by the influx of one Cl(-) ion, suggesting unidirectional influx of 2Na(+):1Cl(-):1GABA per transport cycle. Activation of forward Na(+)/Cl(-)/GABA transport evoked (36)Cl(-) efflux and was blocked by the inhibitor SKF 89976A. These data suggest a Cl(-)/Cl(-) exchange mechanism during the GAT1 transport cycle. In contrast, Cl(-) was not transported by SGLT1. Thus, in both GAT1 and SGLT1, Cl(-) modulates the kinetics of cotransport by altering Na(+) affinity, but does not contribute to net charge transported per transport cycle. We conclude that Cl(-) dependence per se is not a useful criterion to classify Na(+) cotransporters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号