首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
Developmental instability (DI) as measured by fluctuating asymmetry (FA) has been proposed to reflect fitness and stress. Furthermore, the associated developmental buffering may reduce morphological variation, conceal the expression of genetic variation and as such play an important role in evolutionary biology. However, observed associations between FA and various forms of stress and quality appear very heterogeneous. Presently it is difficult to interpret the biological relevance of this heterogeneity because little is known about the link between FA and the underlying process of DI, casting doubt whether DI can be viewed as an individual property and how closely FA reflects the underlying process of DI. Therefore, studies that explicitly test the validity of assumptions of the proposed theoretical models and estimate between‐individual variations in DI are needed. We present data on Opuntia cacti floral traits confirming that the normal distribution can be viewed as an appropriate approximation of the distribution of DI and that the concept of hypothetical repeatability can provide useful insights into the interpretation of patterns in FA as a measure of DI. Furthermore, we detected significant between‐individual variation in DI. Measuring petals from several flowers within individual plants allowed making inference of individual DI.  相似文献   

4.
5.
Embryological research at the University of Wroclaw covers hormonal control of metamorphosis, primarily invertebrate embryology and gametogenesis, vertebrate myogenesis and the developmental impact of external factors. Developmental studies at the University of Wroclaw are a continuation of those conducted at the former Jan Kazimierz (Johannes Casimirus) University in Lwow before World War II. The Wroclaw embryological school is best characterized as comparative embryology which approaches embryonic development experimentally as well as through the analysis of its natural diversity.  相似文献   

6.
7.
I have taught developmental biology in Essen for 30 years. Since my department is named Zoophysiologie (Zoophysiology), besides Developmental Biology, I also have to teach General Animal Physiology. This explains why the time for teaching developmental biology is restricted to a lecture course, a laboratory course and several seminar courses. However, I also try to demonstrate in the lecture courses on General Physiology the close relationship between developmental biology, physiology, morphology, anatomy, teratology, carcinogenesis, evolution and ecology (importance of environmental factors on embryogenesis). Students are informed that developmental biology is a core discipline of biology. In the last decade, knowledge about molecular mechanisms in different organisms has exponentially increased. The students are trained to understand the close relationship between conserved gene structure, gene function and signaling pathways, in addition to or as an extension of, classical concepts. Public reports about the human genome project and stem cell research (especially therapeutic and reproductive cloning) have shown that developmental biology, both in traditional view and at the molecular level, is essential for the understanding of these complex topics and for serious and non-emotional debate.  相似文献   

8.
By adopting a longitudinal study design and through geometric morphometrics methods, we investigated individual and ontogenetic variation in size, shape and timing during larval development of the cabbage butterfly Pieris brassicae under laboratory conditions. We found that ontogenetic size progression departs modestly, but significantly, from growth at a constant rate and that size at hatching contributes considerably to determine the size of the individual at all subsequent stages. As for the shape, ontogenetic allometry is much more conspicuous than static allometry, the latter in many cases being close to isometry. Analysis of developmental timing revealed a stage of apparently more effective developmental control at stage 3, supported by both the relatively small variance in cumulative developmental time up to stage 3 and by the pattern of correlation between duration of single stages. While presenting detailed quantitative aspects of growth in P. brassicae, in particular with respect to individual variation, this study and the associated dataset can provide a basis for further explorations of the post‐embryonic development in this insect and contribute to the ongoing investigations on growth regulation and control in insects.  相似文献   

9.
The concept of a phylotypic stage, when all vertebrate embryos show low phenotypic diversity, is an important cornerstone underlying modern developmental biology. Many theories involving patterns of development, developmental modules, mechanisms of development including developmental integration, and the action of natural selection on embryological stages have been proposed with reference to the phylotypic stage. However, the phylotypic stage has never been precisely defined, or conclusively supported or disproved by comparative quantitative data. We tested the predictions of the 'developmental hourglass' definition of the phylotypic stage quantitatively by looking at the pattern of developmental-timing variation across vertebrates as a whole and within mammals. For both datasets, the results using two different metrics were counter to the predictions of the definition: phenotypic variation between species was highest in the middle of the developmental sequence. This surprising degree of developmental character independence argues against the existence of a phylotypic stage in vertebrates. Instead, we hypothesize that numerous tightly delimited developmental modules exist during the mid-embryonic period. Further, the high level of timing changes (heterochrony) between these modules may be an important evolutionary mechanism giving rise to the diversity of vertebrates. The onus is now clearly on proponents of the phylotypic stage to present both a clear definition of it and quantitative data supporting its existence.  相似文献   

10.
Patterns of beauty--omics meets plant development   总被引:1,自引:0,他引:1  
  相似文献   

11.
The objective of the courses which this syllabus describes is to expose developmental biologists to embryo culture and embryo manipulation techniques and applications in quantitative analyses. The laboratory program complements classroom teaching by exposure to both inductive and deductive methodologies. Developmental biology teaching requires good background in cell biology, molecular biology and genetics. Developmental biology research requires computer literacy and an aptitude for quantitative methodology and graphics.  相似文献   

12.
The Latin American Society for Developmental Biology (LASDB) is getting ready for their Sixth International Meeting, which will be held in Montevideo, Uruguay, from April 26th to 29th, 2012. To find out more about the society, and about developmental biology in Latin America, we talked to LASDB president José Xavier Neto, who studies heart morphogenesis at the Laboratório Nacional de Biociências in Sao Paulo, Brazil.  相似文献   

13.
Characterizing the relationships between genotype and phenotype for developmental adaptive traits is essential to understand the evolutionary dynamics underlying biodiversity. In holometabolous insects, the time to reach the reproductive stage and pupation site preference are two such traits. Here we characterize aspects of the genetic architecture for Developmental Time (decomposed in Larval and Pupal components) and Pupation Height using lines derived from three natural populations of Drosophila melanogaster raised at two temperatures. For all traits, phenotypic differences and variation in plasticity between populations suggest adaptation to the original thermal regimes. However, high variability within populations shows that selection does not exhaust genetic variance for these traits. This could be partly explained by local adaptation, environmental heterogeneity and modifications in the genetic architecture of traits according to environment and ontogenetic stage. Indeed, our results show that the genetic factors affecting Developmental Time and Pupation Height are temperature-specific. Varying relationships between Larval and Pupal Developmental Time between and within populations also suggest stage-specific modifications of genetic architecture for this trait. This flexibility would allow for a somewhat independent evolution of adaptive traits at different environments and life stages, favoring the maintenance of genetic variability and thus sustaining the traits’ evolvabilities.  相似文献   

14.
John W. Saunders Jr. is an outstanding contributor to the field of Developmental Biology. His analyses of the apical ectodermal ridge, discovery and study of the zone of polarizing activity, insights into cell death in development, and analytical studies of feather patterns are part of a legacy to developmental biology. The body of his published work remains central to the understanding of limb development and is a major reason for the premiere place that the developmental biology of limbs holds in our research and teaching today. Beyond these things known to nearly everyone, there is John's role as teacher that is equally impressive. His one-on-one style, in small groups or from the podium is engaging, encompassing, and above all else, enthusiastic about the study of the development of living things. His love of developmental biology comes through to students of all ages and is inspirational. And, of course, inimitable charm accompanies the substance of any interaction with John. He still teaches in the Embryology Course at MBL Woods Hole. Recent students say that hearing his lectures and his involvement in the laboratory are highlights of the course. His continued knowledge of science and delight in new advances is a model for students to follow and they recognize it. John Saunders is a scientist and educator par excellence. His contributions have stood the test of time. His personal interactions with colleagues and students have enriched their lives in innumerable ways, large and small. His is a lifetime of outstanding achievements. In this interview, he reflects on his six--going on seven--decades in science and his personal enjoyment of recent advances in Developmental Biology.  相似文献   

15.
Developmental modules are best conceptualized as homeostatic property cluster natural kinds. As is true in other fields of biology, an individual may instantiate properties of various natural kinds. Through their dissociability, developmental modules can be recruited to function as evolutionary modules. The proper analogy to developmental modules, atoms, or biological species depends on the scope over which specific developmental modules allow generalizations. The nature of the relationship between developmental modules, evolutionary modules, and taxic (phylogenetic) homology are explored. Similarity of gene expression patterns and developmental pathways as captured by biological homology may support hypotheses of taxic homology, but not the other way around.  相似文献   

16.
Avian feathers are a complex evolutionary novelty characterized by structural diversity and hierarchical development. Here, I propose a functionally neutral model of the origin and evolutionary diversification of bird feathers based on the hierarchical details of feather development. I propose that feathers originated with the evolution of the first feather follicle-a cylindrical epidermal invagination around the base of a dermal papilla. A transition series of follicle and feather morphologies is hypothesized to have evolved through a series of stages of increasing complexity in follicle structure and follicular developmental mechanisms. Follicular evolution proceeded with the origin of the undifferentiated collar (stage I), barb ridges (stage II), helical displacement of barb ridges, barbule plates, and the new barb locus (stage III), differentiation of pennulae of distal and proximal barbules (stage IV), and diversification of barbule structure and the new barb locus position (stage V). The model predicts that the first feather was an undifferentiated cylinder (stage I), which was followed by a tuft of unbranched barbs (stage II). Subsequently, with the origin of the rachis and barbules, the bipinnate feather evolved (stage III), followed then by the pennaceous feather with a closed vane (stage IV) and other structural diversity (stages Va-f). The model is used to evaluate the developmental plausibility of proposed functional theories of the origin of feathers. Early feathers (stages I, II) could have functioned in communication, defense, thermal insulation, or water repellency. Feathers could not have had an aerodynamic function until after bipinnate, closed pennaceous feathers (stage IV) had evolved. The morphology of the integumental structures of the coelurisaurian theropod dinosaurs Sinosauropteryx and Beipiaosaurus are congruent with the model's predictions of the form of early feathers (stage I or II). Additional research is required to examine whether these fossil integumental structures developed from follicles and are homologous with avian feathers. J. Exp. Zool. (Mol. Dev. Evol.) 285:291-306, 1999.Copyright 1999 Wiley-Liss, Inc.  相似文献   

17.
This contribution stems from the personal experience of the author regarding how he became acquainted with embryology and how he finally entered the field of developmental biology. It reports his feelings as a student of the Histology and Embryology course as it was taught in the late 1970s, and his present efforts in teaching developmental biology to university students. In the Developmental Biology course at Pisa University today, students are taught the tissue, molecular and genetic mechanisms that regulate development of several model systems. Drosophila is introduced at the beginning, because of the great knowledge that it has brought to the unraveling of the molecular aspects of development and because it allows several basic concepts to be introduced, and vertebrate systems follow. Other topics include the classic experiments on amphibian systems, which are explained in the light of recent molecular advances, as well as the genetically more versatile vertebrate systems such as the mouse.  相似文献   

18.
In classical evolutionary theory, genetic variation provides the source of heritable phenotypic variation on which natural selection acts. Against this classical view, several theories have emphasized that developmental variability and learning enhance nonheritable phenotypic variation, which in turn can accelerate evolutionary response. In this paper, I show how developmental variability alters evolutionary dynamics by smoothing the landscape that relates genotype to fitness. In a fitness landscape with multiple peaks and valleys, developmental variability can smooth the landscape to provide a directly increasing path of fitness to the highest peak. Developmental variability also allows initial survival of a genotype in response to novel or extreme environmental challenge, providing an opportunity for subsequent adaptation. This initial survival advantage arises from the way in which developmental variability smooths and broadens the fitness landscape. Ultimately, the synergism between developmental processes and genetic variation sets evolutionary rate.  相似文献   

19.
20.
The study of fossilized ontogenies in mammals is mostly restricted to postnatal and late stages of growth, but nevertheless can deliver great insights into life history and evolutionary mechanisms affecting all aspects of development. Fossils provide evidence of developmental plasticity determined by ecological factors, as when allometric relations are modified in species which invaded a new space with a very different selection regime. This is the case of dwarfing and gigantism evolution in islands. Skeletochronological studies are restricted to the examination of growth marks mostly in the cement and dentine of teeth and can provide absolute age estimates. These, together with dental replacement data considered in a phylogenetic context, provide life-history information such as maturation time and longevity. Palaeohistology and dental replacement data document the more or less gradual but also convergent evolution of mammalian growth features during early synapsid evolution. Adult phenotypes of extinct mammals can inform developmental processes by showing a combination of features or levels of integration unrecorded in living species. Some adult features such as vertebral number, easily recorded in fossils, provide indirect information about somitogenesis and hox-gene expression boundaries. Developmental palaeontology is relevant for the discourse of ecological developmental biology, an area of research where features of growth and variation are fundamental and accessible among fossil mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号