首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The 5' untranslated region (UTR) plays a central role in the regulation of mammalian translation initiation. Key components include RNA structure, upstream AUGs (uAUGs), upstream open reading frames (uORFs), and internal ribosome entry site elements that can interact to modulate the readout. We previously reported the characterization of two alternatively spliced 5' UTR isoforms of the human elk-1 gene. Both contain two uAUGs and a stable RNA stem-loop, but the long form (5' UTR(L)) was more repressive than the short form (5' UTR(S)) for initiation at the ELK-1 AUG. We now demonstrate that ELK-1 expression arises by a combination of leaky scanning and reinitiation, with the latter mediated by the small uORF2 conserved in both spliced isoforms. In HEK293T cells, a considerable fraction of ribosomes scans beyond the ELK-1 AUG in a reinitiation mode. These are sequestered by a series of out-of-frame AUG codons that serve to prevent access to a second in-frame AUG start site used to express short ELK-1 (sELK-1), an N-terminally truncated form of ELK-1 that has been observed only in neuronal cells. We present evidence that all these events are fine-tuned by the nature of the 5' UTR and the activity of the α subunit of eukaryotic initiation factor 2 and provide insights into the neuronal specificity of sELK-1 expression.  相似文献   

2.
A number of RNA-containing viruses such as hepatitis C (HCV) and poliovirus (PV) that infect human beings and cause serious diseases use a common mechanism for synthesis of viral proteins, termed internal ribosome entry site (IRES)-mediated translation. This mode of translation initiation involves entry of 40S ribosome internally to the 5' untranslated region (UTR) of viral RNA. Cap-dependent translation of cellular mRNAs, on the other hand, requires recognition of mRNA 5' cap by the translation machinery. In this review, we discuss two inhibitors that specifically inhibit viral IRES-mediated translation without interfering with cellular cap-dependent translation. We present evidence, which suggest that one of these inhibitors, a small RNA (called IRNA) originally isolated from the yeast Saccharomyces cerevisiae, inhibits viral IRES-mediated translation by sequestering both noncanonical transacting factors and canonical initiation factors required for IRES-mediated translation. The other inhibitor, a small peptide from the lupus autoantigen La (called LAP), appears to block binding of cellular transacting factors to viral IRES elements. These results suggest that it might be possible to target viral IRES-mediated translation for future development of therapeutic agents effective against a number of RNA viruses including HCV that exclusively use cap-independent translation for synthesis of viral proteins.  相似文献   

3.
Initiation of translation on poliovirus RNA occurs by internal binding of ribosomes to a region within the 5' untranslated region (UTR) of the mRNA. This region has been previously roughly mapped between nucleotides 140 and 631 of the 5' UTR and termed the ribosome landing pad. To identify cis-acting elements in the 5' UTR of poliovirus type 2 (Lansing strain) RNA that confer cap-independent internal initiation, we determined the in vitro translational efficiencies of a series of deletion and point mutations within the 5' UTR of the mRNA. The results demonstrate that the 3' border of the core poliovirus ribosome landing pad is located between nucleotides 556 and 585, whereas a region extending between nucleotides 585 and 612 confers enhanced translation. We studied two cis-acting elements within this region of the 5' UTR: a pyrimidine stretch which is critical for translation and an AUG (number 7 from the 5' end) that is located approximately 20 nucleotides downstream from the pyrimidine stretch and augments translation. We also show that the stem-loop structure which contains this AUG is not required for translation.  相似文献   

4.
L-Myc protein synthesis is initiated by internal ribosome entry   总被引:4,自引:1,他引:3  
An internal ribosome entry segment (IRES) has been identified in the 5' untranslated region (5' UTR) of two members of the myc family of proto-oncogenes, c-myc and N-myc. Hence, the synthesis of c-Myc and N-Myc polypeptides can involve the alternative mechanism of internal initiation. Here, we show that the 5' UTR of L-myc, another myc family member, also contains an IRES. Previous studies have shown that the translation of mRNAs containing the c-myc and N-myc IRESs can involve both cap-dependent initiation and internal initiation. In contrast, the data presented here suggest that internal initiation can account for all of the translation initiation that occurs on an mRNA with the L-myc IRES in its 5' UTR. Like many other cellular IRESs, the L-myc IRES appears to be modular in nature and the entire 5' UTR is required for maximum IRES efficiency. The ribosome entry window within the L-myc IRES is located some distance upstream of the initiation codon, and thus, this IRES uses a "land and scan" mechanism to initiate translation. Finally, we have derived a secondary structural model for the IRES. The model confirms that the L-myc IRES is highly structured and predicts that a pseudoknot may form near the 5' end of the mRNA.  相似文献   

5.
6.
The characterization of internal ribosome entry sites (IRESs) in virtually all lentiviruses prompted us to investigate the mechanism used by the feline immunodeficiency virus (FIV) to produce viral proteins. Various in vitro translation assays with mono- and bicistronic constructs revealed that translation of the FIV genomic RNA occurred both by a cap-dependent mechanism and by weak internal entry of the ribosomes. This weak IRES activity was confirmed in feline cells expressing bicistronic RNAs containing the FIV 5' untranslated region (UTR). Surprisingly, infection of feline cells with FIV, but not human immunodeficiency virus type 1, resulted in a great increase in FIV translation. Moreover, a change in the cellular physiological condition provoked by heat stress resulted in the specific stimulation of expression driven by the FIV 5' UTR while cap-dependent initiation was severely repressed. These results reveal the presence of a "dormant" IRES that becomes activated by viral infection and cellular stress.  相似文献   

7.
Plus-strand RNA viruses without 5' caps require noncanonical mechanisms for ribosome recruitment. A translational enhancer in the 3' untranslated region (UTR) of Turnip crinkle virus (TCV) contains an internal T-shaped structure (TSS) that binds to 60S ribosomal subunits. We now report that the 63-nucleotide (nt) 5' UTR of TCV contains a 19-nt pyrimidine-rich element near the initiation codon that supports translation of an internal open reading frame (ORF) independent of upstream 5' UTR sequences. Addition of 80S ribosomes to the 5' UTR reduced the flexibility of the polypyrimidine residues and generated a toeprint consistent with binding to this region. Binding of salt-washed 40S ribosomal subunits was reduced 6-fold when the pyrimidine-rich sequence was mutated. 40S subunit binding generated the same toeprint as 80S ribosomes but also additional ones near the 5' end. Generation of out-of-frame AUGs upstream of the polypyrimidine region reduced translation, which suggests that 5'-terminal entry of 40S subunits is followed by scanning and that the polypyrimidine region is needed for an alternative function that requires ribosome binding. No evidence for RNA-RNA interactions between 5' and 3' sequences was found, suggesting that TCV utilizes an alternative means for circularizing its genome. Combining 5' and 3' UTR fragments in vitro had no discernible effect on the structures of the RNAs. In contrast, when 80S ribosomes were added to both fragments, structural changes were found in the 5' UTR polypyrimidine tract that were not evident when ribosomes interacted with the individual fragments. This suggests that ribosomes can promote an interaction between the 5' and 3' UTRs of TCV.  相似文献   

8.
Ribosome recruitment to eukaryotic mRNAs is generally thought to occur by a scanning mechanism, whereby the 40S ribosomal subunit binds in the vicinity of the 5'cap structure of the mRNA and scans until an AUG codon is encountered in an appropriate sequence context. Study of the picornaviruses allowed the characterization of an alternative mechanism of translation initiation. Picornaviruses can initiate translation via an internal ribosome entry segment (IRES), an RNA structure that directly recruits the 40S ribosomal subunits in a cap and 5' end independent fashion. Since its discovery, the notion of IRESs has extended to a number of different virus families and cellular RNAs. This review summarizes features of both cap-dependent and IRES-dependent mechanisms of translation initiation and discusses the role of cis-acting elements, which include the 5' cap, the 5'-untranslated region (UTR) and the poly(A) tail as well as the possible roles of IRESs as part of a cellular stress response mechanism and in the virus replication cycle.  相似文献   

9.
10.
Upstream AUGs (uAUGs) and upstream open reading frames (uORFs) are common features of mRNAs that encode regulatory proteins and have been shown to profoundly influence translation of the main ORF. In this study, we employed a series of artificial 5′-untranslated regions (5′-UTRs) containing one or more uAUGs/uORFs to systematically assess translation initiation at the main AUG by leaky scanning and reinitiation mechanisms. Constructs containing either one or two uAUGs in varying contexts but without an in-frame stop codon upstream of the main AUG were used to analyse the leaky scanning mechanism. This analysis largely confirmed the ranking of different AUG contextual sequences that was determined previously by Kozak. In addition, this ranking was the same for both the first and second uAUGs, although the magnitude of initiation efficiency differed. Moreover, ~10% of ribosomes exhibited leaky scanning at uAUGs in the most favourable context and initiated at a downstream AUG. A second group of constructs containing different numbers of uORFs, each with optimal uAUGs, were used to measure the capacity for reinitiation. We found significant levels of initiation at the main ORF even in constructs containing four uORFs, with nearly 10% of ribosomes capable of reinitiating five times. This study shows that for mRNAs containing multiple uORFs/uAUGs, ribosome reinitiation and leaky scanning are efficient mechanisms for initiation at their main AUGs.  相似文献   

11.
12.
13.
Translation of the full-length messenger RNA (mRNA) of the human immunodeficiency virus type 1 (HIV-1) generates the precursor of the viral enzymes via a programmed -1 ribosomal frameshift. Here, using dual-luciferase reporters, we investigated whether the highly structured 5' untranslated region (UTR) of this mRNA, which interferes with translation initiation, can modulate HIV-1 frameshift efficiency. We showed that, when the 5' UTR of HIV-1 mRNA occupies the 5' end of the reporter mRNA, HIV-1 frameshift efficiency is increased about fourfold in Jurkat T-cells, compared with a control dual-luciferase reporter with a short unstructured 5' UTR. This increase was related to an interference with cap-dependent translation initiation by the TAR-Poly(A) region at the 5' end of the messenger. HIV-1 mRNA 5' UTR also contains an internal ribosome entry site (IRES), but we showed that, when the cap-dependent initiation mode is available, the IRES is not used or is weakly used. However, when the ribosomes have to use the IRES to translate the dual-luciferase reporter, the frameshift efficiency is comparable to that of the control dual-luciferase reporter. The decrease in cap-dependent initiation and the accompanying increase in frameshift efficiency caused by the 5' UTR of HIV-1 mRNA is antagonized, in a dose-dependent way, by the Tat viral protein. Tat also stimulates the IRES-dependent initiation and decreases the corresponding frameshift efficiency. A model is presented that accounts for the variations in frameshift efficiency depending on the 5' UTR and the presence of Tat, and it is proposed that a range of frameshift efficiencies is compatible with the virus replication.  相似文献   

14.
15.
16.
The complete division of labour between the reproductive and somatic cells of the green alga Volvox carteri is controlled by three types of genes. One of these is the regA gene, which controls terminal differentiation of the somatic cells. Here, we examined translational control elements located in the 5' UTR of regA, particularly the eight upstream start codons (AUGs) that have to be bypassed by the translation machinery before regA can be translated. The results of our systematic mutational, structural and functional analysis of the 5' UTR led us to conclude that a ribosome-shunting mechanism--rather than leaky scanning, ribosomal reinitiation, or internal ribosome entry site (IRES)-mediated initiation--controls the translation of regA mRNA. This mechanism, which involves dissociation of the 40S initiation complex from the message, followed by reattachment downstream, in order to bypass a secondary structure block in the mRNA, was validated by deleting the predicted ;landing site' (which prevented regA expression) and inserting a stable 64 nucleotide hairpin just upstream of this site (which did not prevent regA expression). We believe that this is the first report suggesting that translation of an mRNA in a green eukaryote is controlled by ribosome shunting.  相似文献   

17.
The mechanism by which internal ribosomal binding on the picornaviral RNA takes place is still not known. An important role has been suggested for eukaryotic initiation factors eIF-4A, eIF-4B, as well as for some not yet defined trans-acting factors like p52 for poliovirus and p58 for encephalomyocarditis virus (EMCV). In this paper we describe the competition between the 5' untranslated region (UTR) of EMCV and globin mRNA for the translational apparatus in rabbit reticulocyte lysates and show that the factor that is competed for is eIF-2/2B. The EMC 5' UTR is a very strong inhibitor of globin synthesis in the rabbit reticulocyte lysate because of a 30-fold higher eIF-2/2B binding capacity. Mutations 100 to 140 nucleotides upstream of the initiation codon led to a decreased efficiency to initiate translation and to a decreased ability to inhibit globin mRNA translation. The results suggest an important role for eIF-2/2B binding in EMC RNA translation and therefore in internal initiation.  相似文献   

18.
19.
Viruses have developed numerous mechanisms to usurp the host cell translation apparatus. Dengue virus (DEN) and other flaviviruses, such as West Nile and yellow fever viruses, contain a 5' m7GpppN-capped positive-sense RNA genome with a nonpolyadenylated 3' untranslated region (UTR) that has been presumed to undergo translation in a cap-dependent manner. However, the means by which the DEN genome is translated effectively in the presence of capped, polyadenylated cellular mRNAs is unknown. This report demonstrates that DEN replication and translation are not affected under conditions that inhibit cap-dependent translation by targeting the cap-binding protein eukaryotic initiation factor 4E, a key regulator of cellular translation. We further show that under cellular conditions in which translation factors are limiting, DEN can alternate between canonical cap-dependent translation initiation and a noncanonical mechanism that appears not to require a functional m7G cap. This DEN noncanonical translation is not mediated by an internal ribosome entry site but requires the interaction of the DEN 5' and 3' UTRs for activity, suggesting a novel strategy for translation of animal viruses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号