首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Animals should be able to adjust their behavior by tracking changes in predation risk level continuously. Many animals show a pattern of intermittent locomotion with short pauses that may increase detection and vigilance of predators. These locomotor patterns may depend on the microhabitat structure, which affect predation risk levels. We examined in detail in the laboratory the characteristics of spontaneous locomotion, scanning behavior, and the escape performance of Psammodromus algirus lizards moving in two different microhabitats (leaf litter patches and open sand areas). Results showed that in leaf litter, lizards moved at slower speed and had shorter bursts of locomotion both in distance and duration, than in sand substrates. This locomotor pattern allowed lizards to increase scanning rate and total time spent in vigilance behavior. When lizards were forced to flee, they escaped to longer distances and during more time in open sand areas, but lizards were able to attain similar escape speed in the two substrates. Lizards may be able to compensate the cost of moving between different microhabitats with different predation risk by behaviorally changing their locomotor and vigilance patterns. However, complex interactions between the visibility of lizards to predators and the ability of lizards to detect predators, together with the need of attending simultaneously to other conflicting demands, may lead to apparently non‐intuitive solutions in locomotor patterns and the rate of vigilance behavior.  相似文献   

2.
We studied effects of habitat structure on routine travel velocities, intermittent locomotion, and vigilance by the degu (Octodondegus), a diurnal rodent of central Chile. We predicted thattravel speed, pauses during locomotion, and vigilance wouldbe greater in open (riskier) than in shrub (safer) habitats.Video recordings of marked individuals in the wild were used to measure speed and other variables of spontaneous locomotionnot triggered by predatory attack or any other noticeable stimulusduring nonforaging periods. Time spent vigilant while foragingwas also measured. Because degus use bare-ground runways fordistant movements (e.g., between burrow openings and/or foodpatches), data on locomotion decisions were not confounded by effects of obstructive vegetation cover and/or resource abundance.When moving across the habitat between different feeding places,degus showed an intermittent pattern of locomotion, interruptingrunning events with short pauses. As predicted, travel speedand the duration of pauses between locomotion bursts were significantlygreater in open habitats. Further, the duration of locomotionbursts between feeding sites or between feeding sites and burrowswas significantly longer in open habitats. Our assumption that pauses and velocities are independent decisions was supportedby the lack of correlation between pauses and speeds duringlocomotion events. During foraging, degus devoted more timeto vigilance in open than in shrub habitats. The static positionadopted by degus during pauses, the speeds attained during movements, and the concordance between pausing behavior andvigilance across habitats suggest that pausing has an antipredatoryrole and is not limited to orientation and/or physiologicalrecovery. Our results support the view that degus perceivehigher predation risk in open areas and that flexible movement behavior reflects an adaptive antipredator response.  相似文献   

3.
Animal locomotion arises from complex interactions among sensory systems, processing of sensory information into patterns of motor output, the musculo-skeletal dynamics that follow motor stimulation, and the interaction of appendages and body parts with the environment. These processes conspire to produce motions and forces that permit stunning manoeuvres with important ecological and evolutionary consequences. Thus, the habitats that animals may exploit, their ability to escape predators or attack prey, their capacity to manoeuvre and turn, or the use of their available energy all depend upon the processes that determine locomotion. Here, we summarize a series of 10 papers focused on this integrative research topic.  相似文献   

4.
Buskey  Edward J. 《Hydrobiologia》1994,(1):447-453
Visual predation by fish on copepods involves prey encounter, attack and capture; during any of these processes prey selection can occur. Developmental changes in copepods, including increases in swimming speed, size and image contrast increase the encounter rate and distance at which they can be detected by predators. Copepods compensate for this increase vulnerability with age through diel vertical migration and improved escape capabilities. This study quantifies the changes in swimming speed and movement pattern with developmental stage of the copepod Acartia tonsa, using a video-computer system for motion analysis. Changes in visible size and image contrast with developmental stage were quantified under simulated natural illumination conditions using a video based image analysis system. The escape responses of the naupliar stages of the copepod Acartia tonsa were quantified in response to a stationary pipette sucking in water at a constant speed. Accurate quantification of the parameters that affect feeding selectivity of planktivorous fish will provide the basis for evaluation of their relative importance in future studies.  相似文献   

5.
1.  Locomotor performance can influence individual fitness through several ecological contexts, such as prey capture and predator escape. One means of determining which contexts act as significant selective forces on running speed is to quantify individual speed in each context. The underlying hypothesis is that animals will exhibit their highest speeds in contexts most crucial to fitness.
2.  We measured running speeds in three ecological contexts (prey capture, fleeing predators and territory defence) in lab-reared offspring of the funnel-web spider Agelenopsis aperta collected from two arid grassland and two riparian populations. Arid populations experience little predation pressure, are prey limited, and are highly territorial; riparian populations experience high predation, have high prey availability, and are less territorial in nature.
3.  The offspring of arid individuals exhibited their highest burst speeds in territory defence, and ran more slowly in response to predator threats. The offspring of riparian populations, however, ran fastest when responding to predatory threats and displayed lower velocities in prey capture and territory defence. Thus, our findings support the hypothesis that A. aperta are selected to exhibit their highest speeds in contexts most important to their fitness.
4.  Contextual use of running speed can differ among conspecific populations experiencing differing selective forces on locomotion.  相似文献   

6.
Lacerta vivipara moving across an open space at their normal activity temperature alternate bursts of locomotion with short pauses which tend to occur at the extremes of the limb cycle, i.e. when individual limbs are maximally adducted or retracted and the spinal cord is maximally flexed in the lateral plane. The movement bursts and pauses in adult lizards have mean durations of 0–30 and 012 s, respectively, and within bursts the lizards move at a mean speed of 14–6 cm s-1. Movement in juvenile lizards is 2–5 times faster (relative to body length) and the pauses are of longer duration (mean = 019 s), giving the locomotion of juveniles a more jerky appearance. Lizards which are chasing crickets increase the speed and the duration of locomo-tory bursts, although the pauses persist. Lizards which are searching for a previously perceived cricket increase pause duration (mean = 0–40 s). Lizards which are fleeing from a sudden disturbance move at almost twice (juveniles) or 3–7 times (adults) the speed of foraging animals: the pauses persist, although at much reduced frequency. Increases in speed result from increases in both stride length (Λ) and stride frequency (n); the ratio Λ/ n appears to remain constant at 006. The significance of these observations is discussed, although the functions of the pauses cannot yet be explained.  相似文献   

7.
Locomotion of lizards has clear morphological determinants and is important for developing activities such as feeding, social interaction and predator avoidance. Thus, morphological variation is believed to have fitness consequences through affecting locomotor performance. This paper firstly evaluates the dependence of burst speed on morphology, and secondly examines the movement patterns of free-ranging undisturbed wall lizards ( Podarcis muralis ) engaged in several kinds of activity. Body size was the most important correlate of burst speed as performed at the optimal temperature for running in the laboratory. After removing size effects from performance and morphological traits, the length of some particular limb segments had positive influence on burst speed, but these effects were weak, each trait explaining less than 16% of variance in burst speed. Free-ranging P. muralis exhibited intermittent locomotion, with movement sequences interrupted by frequent short pauses. Field movement patterns greatly differed depending upon the kind of activity and were in most aspects independent of the size and sex of the animal. P. muralis involved in thermoregulation performed short and low-speed displacements; exploratory activities were characterized by frequent, slow and short movements. On the contrary, lizards involved in intraspecific pursuits and predator escape developed comparatively high speeds, although only exceptionally did they attain the size-specific burst speed predicted from the laboratory trials. Speed of escape increased with distance to the refuge and the animals are able to assess predation risks to modulate approach distance, speed and pauses, so maximum exertion is seldom required. The evolution of locomotor capacities exceeding routine needs is discussed in the context of the principle of 'excessive construction'.  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 80 , 135–146.  相似文献   

8.
Predator–prey interactions are central to fitness as animals simultaneously avoid death and consume resources to ensure growth and reproduction. Along with direct effects, predators can also exert strong non-consumptive effects. For example, prey shift habitat use in the presence of predators, a potentially learned behavior. The impact of cognition on movement and predator interactions is largely unexplored despite evidence of learned responses to predation threat. We explore how learning and spatial memory influence predator–prey dynamics by introducing predators into a memory-driven movement modeling framework. To model various aspects of risk, we vary predator behavior: their persistence and spatial correlation with the prey’s resources. Memory outperforms simpler movement processes most in patchy environments with more predictable predators that are more easily avoided once learned. In these cases, memory aids foragers in managing the food–safety trade-off. For example, particular parameterizations of the predation memory reduce encounters while maintaining consumption. We found that non-consumptive effects are highest in landscapes of concentrated, patchy resources. These effects are intensified when predators are highly correlated with the forager’s resources. Smooth landscapes provide more opportunities for foragers to simultaneously consume resources and avoid predators. Predators are able to effectively guard all resources in very patchy landscapes. These non-consumptive effects are also seen with the shift away from the best quality habitat compared to foraging in a predator-free environment.  相似文献   

9.
The population-dispersal dynamics for predator–prey interactions and two competing species in a two patch environment are studied. It is assumed that both species (i.e., either predators and their prey, or the two competing species) are mobile and their dispersal between patches is directed to the higher fitness patch. It is proved that such dispersal, irrespectively of its speed, cannot destabilize a locally stable predator–prey population equilibrium that corresponds to no movement at all. In the case of two competing species, dispersal can destabilize population equilibrium. Conditions are given when this cannot happen, including the case of identical patches.  相似文献   

10.
Humans remove large amounts of biomass from natural ecosystems, and large bodied high trophic level animals are especially sensitive and vulnerable to exploitation. The effects of removing top-predators on food webs are often difficult to predict because of limited information on species interaction strengths. Here we used a three species predator-prey model to explore relationships between energetic properties of trophodynamic linkages and interaction strengths to provide heuristic rules that indicate observable energetic conditions that are most likely to lead to stable and strong top-down control of prey by predator species. We found that strong top-down interaction strengths resulted from low levels of energy flow from prey to predators. Strong interactions are more stable when they are a consequence of low per capita predation and when predators are subsidized by recruitment. Diet composition also affects stability, but the relationship depends on the form of the functional response. Our results imply that for generalist satiating predators, strong top-down control on prey is most likely for prey items that occupy a small portion of the diet and when density dependent recruitment is moderately high.  相似文献   

11.
1. This project seeks to identify determinants of the variation observed in the foraging behavior of predatory animals, especially in moonlight, using a lizard as a model. 2. Moonlight generally enhances the foraging efficiency of nocturnal visual predators and often depresses the locomotor activity of prey animals. Previous evidence has indicated for three different nocturnal species of smallish gecko lizards that they respond to moonlight by increasing their activity. 3. In this study some aspects of the foraging activity of the somewhat larger nocturnal psammophilous Teratoscincus scincus, observed near Repetek and Ashgabat, Turkmenistan, were significantly depressed by moonlight, while several confounding factors (sex, maturity, size, sand temperature, hour, prior handling and observer effect) were taken into account. 4. This behavioral difference may relate to the eye size of the various species. 5. Additionally, a novel method of analyzing foraging behavior shows that in this species the duration of moves increases the duration of subsequent stationary pauses. Measurement of locomotor speed, yielding an average speed of 220% of the maximum aerobic speed, indicates a need for these pauses. Secondarily, pause duration decreases the duration of subsequent moves, precluding escalation of move duration. 6. The results of this and related projects advocate the taking into account of physiological and environmental factors that may affect an animal's foraging behavior.  相似文献   

12.
Although many studies of vigilance examine head raising in foraging, grooming or resting animals, pauses during intermittent locomotion are rarely considered from the perspective of vigilance, and no studies have compared head raising and pausing in the same system. We videotaped central place foraging chipmunks, Tamias striatus, as they approached a patch, collected sunflower seeds, and left to return to their burrows. There was a strong similarity between head raising during foraging and pausing during intermittent locomotion. Chipmunks paused more frequently when moving towards the patch than when leaving the patch. Chipmunks in the patch raised their heads at an intermediate rate, which tended to decrease with time in the patch. Pauses and the duration of motionless periods during head raises were very short (∼0.4 s), and their frequency distributions were similar. Animals remained motionless during 22% of the time spent approaching the patch, 14% of the time spent in the patch and 7% of the time spent leaving the patch. Rates of pausing and head raising generally decreased with short-term familiarity (number of trips to the patch) and with long-term familiarity (proximity of the patch to the burrow). Trials with higher pause rates when approaching the patch had higher head-raising rates in the patch. Whether the focal individual was solitary, dominant or subordinate in a dyad, or competing with multiple chipmunks in the patch had no effect on pausing or head raising. In a separate experiment, exposure to a model hawk increased pause and head-raising rates. We conclude that head raising during foraging and pausing during locomotion serve a similar vigilance function, that this vigilance is directed towards detection of predators rather than conspecifics, and that time allocated to vigilance is sufficient to significantly reduce foraging rates and affect many space use and foraging decisions.  相似文献   

13.
Habitat specialists maximize their fitness by using a subset of the habitats that are potentially available to them and fare poorly if they move elsewhere. The factors that constrain habitat use are diverse and often difficult to identify, but are important to distinguish if we are to understand the trade-offs that drive species to become specialists. In the present study, we investigated habitat use in a fossorial skink, Lerista labialis , and explore the factors that confine it to the crests of sand dunes in the Simpson Desert, central Australia. Models positing that L. labialis selects dune crests because of their sparse cover of vegetation, more favourable temperatures, and greater abundance of preferred prey, received no support. Instead, a model positing that dune crests provide soft and less compacted sand that facilitates movement by L. labialis , was strongly supported. Sand on the crests was consistently softer that that on the sides and swales of the dunes; the skinks preferred soft rather than hard sand for movement in captivity, and were captured more often on experimentally softened sand than on compacted sand in the field. There was no evidence that L. labialis responds to attributes of the substrate other than softness because captive animals used loose sand from the dune crests, sides, and swales equally. We suggest that the dune crest environment allows L. labialis to reduce the energetic costs of locomotion, provides priority of access to the subterranean galleries of its termite prey, and also a secure refuge from surface-active predators and extreme surface temperatures.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 531–544.  相似文献   

14.
15.
Motility of zooplankton: fitness, foraging and predation   总被引:1,自引:0,他引:1  
The relative fitness of planktonic organisms foraging underthe risk of predation is examined in terms of their swimmingspeed, path geometry and jump frequency. Fitness is quantifiedin terms of encounter and ingestion of prey, respiration andenergy cost associated with swimming and mortality due to encounterswith predators. It is shown that a convoluted swimming pathin the form of meanders, zigzags or spirals confers greaterfitness than swimming along a straight path. Optimal path configurationis such that the length-scale of the path-meanders is commensuratewith an organism's detection radius to prey, which in turn scaleswith the size of the organism. Optimal swimming speed for acruise-feeding organism decreases with increasing prey concentrationand increasing risk due to ambush predators. For ambush feedingon motile prey, a benefit is gained by periodically moving toa new location. The time spent swimming is largely a functionof energetic costs, whereas the time spent feeding is stronglycontrolled by prey concentration and the risk posed, in turn,by ambush predators. These predictions are supported by observationsdrawn from the literature.  相似文献   

16.
Predator–prey arms races are widely speculated to underlie fast speed in terrestrial mammals. However, due to lack of empirical testing, both the specificity of any evolutionary coupling between particular predator and prey species, and the relevance of alternative food‐based hypotheses of speed evolution, remain obscure. Here I examine the ecological links between the sprint speed of African savannah herbivores, their vulnerability to predators, and their diet. I show that sprint speed is strongly predicted by the vulnerability of prey to their main predators; however, the direction of the link depends on the hunting style of the predator. Speed increases with vulnerability to pursuit predators, whereas vulnerability to ambush predators is associated with particularly slow speed. These findings suggest that differential vulnerability to specific predators can indeed drive interspecific variation in speed within prey communities, but that predator hunting style influences the intensity and consistency with which selection on speed is coupled between particular species.  相似文献   

17.
A lattice prey–predator model is studied. Transition rules applied sequentially describe processes such as reproduction, predation, and death of predators. The movement of predators is governed by a local particle swarm optimization algorithm, which causes the formation of swarms of predators that propagate through the lattice. Starting with a single predator in a lattice fully covered by preys, we observe a wavefront of predators invading the zones dominated by preys; subsequent fronts arise during the transient phase, where a monotonic approach to a fixed point is present. After the transient phase the system enters an oscillatory regime, where the amplitude of oscillations appears to be bounded but is difficult to predict. We observe qualitative similar behavior even for larger lattices. An empirical approach is used to determine the effects of the movement of predators on the temporal dynamics of the system. Our results show that the algorithm used to model the movement of predators increases the proficiency of predators.  相似文献   

18.
Ecosystems are fragmented by natural and anthropogenic processes that affect organism movement and ecosystem dynamics. When a fragmentation restricts predator but not prey movement, then the prey produced on one side of an ecosystem edge can subsidize predators on the other side. When prey flux is high, predator density on the receiving side increases above that possible by in situ prey productivity, and when low, the formerly subsidized predators can impose strong top-down control of in situ prey—in situ prey experience apparent competition from the subsidy. If predators feed on some evolutionary clades of in situ prey over others, then subsidy-derived apparent competition will induce phylogenetic structure in prey composition. Dams fragment the serial nature of river ecosystems by prohibiting movement of organisms and restricting flowing water. In the river tailwater just below a large central Mexican dam, fish density was high and fish gorged on reservoir-derived zooplankton. When the dam was closed, water flow and the zooplankton subsidy ceased, densely packed pools of fish formed, fish switched to feed on in situ prey, and the tailwater macroinvertebrate community was phylogenetic structured. We derived expectations of structure from trait-based community assembly models based on macroinvertebrate body size, tolerance to anthropogenic disturbance, and fish-diet selectivity. The diet-selectivity model best fit the observed tailwater phylogenetic structure. Thus, apparent competition from subsidies phylogenetically structures prey communities, and serial variation in phylogenetic community structure can be indicative of fragmentation in formerly continuous ecosystems.  相似文献   

19.
Structurally complex habitats provide cover and may hinder the movement of animals. In predator–prey relationships, habitat structure can decrease predation risk when it provides refuges for prey or hinders foraging activity of predators. However, it may also provide shelter, supporting structures and perches for sit-and-wait predators and hence increase their predation rates. We tested the effect of habitat structure on prey mortality in aquatic invertebrates in short-term laboratory predation trials that differed in the presence or absence of artificial vegetation. The effect of habitat structure on prey mortality was context dependent as it changed with predator and prey microhabitat use. Specifically, we observed an ‘anti-refuge’ effect of added vegetation: phytophilous predators that perched on the plants imposed higher predation pressure on planktonic prey, while mortality of benthic prey decreased. Predation by benthic and planktonic predators on either type of prey remained unaffected by the presence of vegetation. Our results show that the effects of habitat structure on predator–prey interactions are more complex than simply providing prey refuges or cover for predators. Such context-specific effects of habitat complexity may alter the coupling of different parts of the ecosystem, such as pelagic and benthic habitats, and ultimately affect food web stability through cascading effects on individual life histories and trophic link strengths.  相似文献   

20.
Many animals interrupt their moving with brief pauses, which appear to serve several different functions. We examined the function of such intermittent locomotion in wild living mustached tamarins (Saguinus mystax), small arboreal New World primates that form mixed-species groups with saddleback tamarins (Saguinus fuscicollis). We investigated how different environmental and social factors affect pausing during locomotion and used these data to infer the function of this behavior. As measures of intermittent locomotion, we used percentage of time spent pausing and pause rate. We considered 3 possible functions that are not mutually exclusive: increased endurance, route planning, and antipredator vigilance. Mustached tamarins spent on average (mean ± SE) 55.1 ± 1.0% of time pausing, which makes effective resource exploitation more time consuming and needs to be outweighed by correspondingly large benefits. Percentage of time spent pausing decreased in larger mixed-species groups vs. smaller mixed-species groups and decreased with height and in monkeys carrying infants. It was not affected by sex, age, spatial arrangement, or single-species group size. Pause rate increased in individuals traveling independently compared to those traveling in file, but was not affected by other factors. The group size effect in mixed-species groups lends support to the notion that pausing during locomotion is an antipredator tactic that can be reduced in the increased safety of larger groups, but other results suggest that additional functions, particularly route planning, are also of great importance. Benefits in terms of predator confusion and group movement coordination are also likely to play a role and remain a topic for further research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号