首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary This study presents the effects of Cr, Pb, Ni and Ag on growth, pigments, protein, DNA, RNA, heterocyst frequency, uptake of NH4 + and N03 , loss of electrolytes (Na+ and K+), nitrate reductase and glutamine synthetase activities ofNostoc muscorum. The statistical tests revealed a direct positive correlation between the metal concentration and inhibition of different processes. Ni was found to be more toxic against growth, pigments and heterocyst differentiation compared to the other metals. Inhibition of pigment showed the following trend: chlorophyll > phycocyanin > carotenoid. No generalized trend for inhibition of macromolecules was observed. The loss of K+ and Na+ as affected by Cr, Ni and Pb was similar but more pronounced for K+ than Na+. The inhibition of physiological variables depicted the following trend: Na+ loss > K+ loss > glutamine synthetase > NH4 uptake > growth > N03 uptake > nitrate reductase > heterocyst frequency. This study therefore suggests that loss of electrolytes can be used as a first signal of metal toxicity in cyanobacteria. However, further study is needed to confirm whether the abnormality induced by nickel (branch formation) is a physiological or genetic phenomenon.  相似文献   

2.
The dependence of substrate saturated uptake of 15NH4+, 15NO3?, 32PO43?, and 14CO2 on photosynthetic photon flux density (PPFD or photsynthetically active radiation, 400–700 nm) was characterized seasonally in oligotrophic Flathead Lake, Montana. PO43? uptake was not dependent upon PPFD at any time of the year, whereas NH4+, NO3?, and CO2 uptake were consistently dependent on PPFD over all seasons. Maximal rates of NH4+, NO3? and CO2 uptake usually occurred near 40% of surface PPFD, which corresponded to about 5 m in the lake; inhibition was evident at PPFD levels greater than 40%. NH4+, NO3? and PO43? were incorporated in the dark at measurable rates most of the year, whereas dark CO2 uptake was always near 0 relative to light uptake. CO2 and NO3? uptake were more strongly influenced by PPFD than was NH43? uptake. The PPFD dependence of PO43?, NH4+, NO3? and CO2 uptake may affect algal growth and nutrient status by influencing the balance in diel and seasonal C:N:P uptake ratios.  相似文献   

3.
This study reports physiological features of a N2-fixing cyanobacteriumAnabaena doliolum in response to metal mixtures. Exposure of the cyanobacterium to Cu, Ni and Fe individually, as well as in combinations (Cu + Ni, Cu + Fe, Ni + Fe), showed marked differences in growth inhibition, nutrient uptake (NH4 + and NO3 ), photosynthesis, ATP content, nitrate reductase, glutamine synthetase and urease activities. The response to metal combinations was also dependent upon the order in which the metals were added. The Cu-Ni combination resulted in synergistic interaction, in contrast to the antagonism of Cu-Fe and Ni-Fe. Pre-addition of Fe protected the cyanobacterium against Cu and Ni toxicity. Statistically significant (P < 0.005) inhibition of all the processes following metal supplementation was observed. This study suggests that carbon fixation is the most suitable variable for assessing heavy metal toxicity.  相似文献   

4.

Background and aims

Nickel (Ni) has become a major heavy metal contaminant. The form of nitrogen nutrition remarkably affects IRT1 expression in roots. IRT1 has an activity of transporting Ni2+ into root cells. Therefore, nitrogen-form may affect Ni accumulation and toxicity in plants. The assumption was investigated in this study.

Methods

The Arabidopsis plants were treated in Ni-contained growth solutions with either nitrate (NO3 ?) or ammonium (NH4 +) as the sole N source. After 7-day treatments, Ni concentration, IRT1 expression, Ni-induced toxic symptoms and oxidative stress in plants were analyzed.

Results

The NO3 ?-fed plants contained a higher Ni concentration, had a greater IRT1 expression in roots, and developed more severe toxic symptoms in the youngest fully expanded leaves, compared with the NH4 +-fed plants. The Ni-induced growth inhibition was also more significant in NO3 ?-fed plants. Interestingly, Ni exposure resulted in greater hydrogen peroxide (H2O2) and superoxide radical (O2 . ?) accumulations, more severe lipid peroxidation and more cell death in NO3 ?-fed plants, whereas the opposite was true for NH4 +-fed plants. Furthermore, the Ni-enhanced peroxidase (POD) and superoxide dismutase (SOD) activities were greater in NO3 ?-fed plants

Conclusion

NO3 ? nutrition promotes Ni uptake, and enhances Ni-induced growth inhibition and oxidative stress in plants compared with NH4 + nutrition.  相似文献   

5.
Atmospheric CO2 enrichment is expected to often benefit plant growth, despite causing global warming and nitrogen (N) dilution in plants. Most plants primarily procure N as inorganic nitrate (NO3?) or ammonium (NH4+), using membrane‐localized transport proteins in roots, which are key targets for improving N use. Although interactive effects of elevated CO2, chronic warming and N form on N relations are expected, these have not been studied. In this study, tomato (Solanum lycopersicum) plants were grown at two levels of CO2 (400 or 700 ppm) and two temperature regimes (30 or 37°C), with NO3? or NH4+ as the N source. Elevated CO2 plus chronic warming severely inhibited plant growth, regardless of N form, while individually they had smaller effects on growth. Although %N in roots was similar among all treatments, elevated CO2 plus warming decreased (1) N‐uptake rate by roots, (2) total protein concentration in roots, indicating an inhibition of N assimilation and (3) shoot %N, indicating a potential inhibition of N translocation from roots to shoots. Under elevated CO2 plus warming, reduced NO3?‐uptake rate per g root was correlated with a decrease in the concentration of NO3?‐uptake proteins per g root, reduced NH4+ uptake was correlated with decreased activity of NH4+‐uptake proteins and reduced N assimilation was correlated with decreased concentration of N‐assimilatory proteins. These results indicate that elevated CO2 and chronic warming can act synergistically to decrease plant N uptake and assimilation; hence, future global warming may decrease both plant growth and food quality (%N).  相似文献   

6.
Summary The toxicity of chromium and tin on growth, photosynthetic carbon-fixation, oxygen evolution, heterocyst differentiation and nitrogenase activity ofAnabaena doliolum and its interaction with bivalent cations has been studied. Some interacting cations, viz. Ca2+, Mg2+ and Mn2+, substantially antagonised the toxic effects of chromium and tin with reference to growth, heterocyst differentiation and nitrogenase activity in the following hierarchal sequence: Ca2+ > Mg2+ > Mn2+. However, the sequence of hierarchy was Mg2+ > Ca2+ > Mn2+ for carbon fixation and Mn2+ > Mg2+ > Ca2+ for photosynthetic oxygen evolution. Synergistically inhibitory patterns were noticed for all the parameters, viz. growth,14CO2 uptake, oxygen evolution, heterocyst differentiation and nitrogenase activity ofA. doliolum when Ni2+, Co2+ and Zn2+ were combined with the test metals in the growth medium. These cations followed the following sequence of synergistic inhibition: Ni2+ > Co2+ > Zn2+. Among all the interacting cations, Ca2+, Mg2+ and Mn2+ exhibited antagonistic effects which relieved the test cyanobacterium from metal toxicity. In contrast to this, Ni2+, CO2+ and Zn2+ showed synergistic inhibition which potentiating the toxicity of test metals in the N2-fixing cyanobacteriumA. doliolum. It is evident from the present study that bivalent cations, viz. Ca2+, Mg2+, Mn2+, Ni2+, Co2+ and Zn2+, may appreciably regulate the toxicity of heavy metals in N2-fixing cyanobacteria if present in aquatic media.  相似文献   

7.
Positive influences of high concentrations of dissolved inorganic carbon (DIC) in the growth medium of salinity-stressed plants are associated with carbon assimilation through phosphoenolpyruvate carboxylase (PEPc) activity in roots; and also in salinity-stressed tomato plants, enriched CO2 in the rhizosphere increases NO?3uptake. In the present study, wild-type and nitrate reductase-deficient plants of barley (Hordeum vulgare L. cv. Steptoe) were used to determine whether the influence of enriched CO2 on NO?3 uptake and metabolism is dependent on the activity of nitrate reductase (NR) in the plant. Plants grown in NH4+and aerated with ambient air, were transferred to either NO3? or NH4+ solutions and aerated with air containing between 0 and 6 500 μmol mol?1 CO2. Nitrogen uptake and tissue concentrations of NO3? and NH4+ were measured as well as activities of NR and PEPc. The uptake of NO?3 by the wild-type was increased by increasing CO2. This was associated with increased in vitro NR activity, but increased uptake of NO3? was found also in the NR-deficient genotype when exposed to high CO2 concentrations; so that the influence of CO2 on NO3? uptake was independent of the reduction of NO3? and assimilation into amino acids. The increase in uptake of NO3? in wild-type plants with enriched CO2 was the same at pH 7 as at pH 5, indicating that the relative abundance of HCO3? or CO2 in the medium did not influence NO3? uptake. Uptake of NH4+ was decreased by enriched CO2 in a pH (5 or 7) independent fashion. Thus NO3? and NH+4 uptakes are influenced by the CO2 component of DIC independently of anaplerotic carbon provision for amino acid synthesis, and CO2 may directly affect the uptake of NO3? and NH4+ in ways unrelated to the NR activity in the tissue.  相似文献   

8.
Similar NH4+ and NO3?.uptake kinetic patterns were observed in Neoagardhiella baileyi (Harvey ex Kiitzing) Wyinne & Taylor and Gracilaria foliifera (Forssk?l) Borgesen. NO3? was taken up in a rate-sturating fashion described by the Michaelis-Menten equation. NH4+ uptake was multicomponent: a saturable component was accompanied by a diffusive or a high K component showing no evidence of saturation (at ≤50 μM [NH4+]). Nitrogen starved plantsi(C/N atom ratios > ca. 10) showed higher transient rates of NH4+ uptake at a given concentration than plants not N-Iimited. Only plants with high N content exhibited diel changes inNH4+ uptake rates, and showed transient rates of NH4+ accumulation which did not greatly exceed the capacity to incorporate N in steady-state growth. NH4+ was preferred over NO3?even in plants preconditioned on NO3?as the sole N. source, NO3? uptake was suppressed at 5μM [NH4+], but simultaneous uptake occurred at unsurpressed rates at lower concentrations. Potential for N accumulation was greater via NH4+uptake than via NO3?uptake. Changing capacity for NH4+ uptake with N content appears to be a mechanism whereby excessive accumulation of N was avoided by N-.satiated plants but a large accumulation was possible for N-depleted plants.  相似文献   

9.
Despite the recognition that the capacity to acquire N is critical in plant response to CO2 enrichment, there is little information on how elevated CO2 affects root N uptake kinetics. The few available data indicate a highly variable pattern of response to elevated CO2, but it is presently unclear if the observed inconsistencies are caused by differences in experimental protocols or by true species differences. Furthermore, if there are interspecific variations in N uptake responses to elevated CO2, it is not clear whether these are associated with different functional groups. Accordingly, we examined intact root‐system NH4+ and NO3 uptake kinetic responses to elevated CO2 in seedlings of six temperate forest tree species, representing (i) fast‐ vs. slow‐growers and (ii) broad‐leaves vs. conifers, that were cultured and assayed in otherwise similar conditions. In general, the species tested had a higher uptake capacity (Vmax) for NH4+ than for NO3. Species substantially differed in their NO3 and NH4+ uptake capacities, but the interspecific differences were markedly greater for NO3 than NH4+ uptake. Elevated CO2 had a species‐dependent effect on root uptake capacity for NH4+ ranging from an increase of 215% in Acer negundo L. to a decrease of about 40% in Quercus macrocarpa Michx. In contrast, NO3 uptake capacity responded little to CO2 in all the species except A. negundo in which it was significantly down‐regulated at elevated CO2. Across species, the capacity for NH4+ uptake was positively correlated with the relative growth rate (RGR) of species; however, the CO2 effect on NH4+ uptake capacity could not be explained by changes in RGR. The observed variation in NH4+ uptake response to elevated CO2 was also inconsistent with life‐form differences. Other possible mechanisms that may explain why elevated CO2 elicits a species‐specific response in root N uptake kinetics are discussed. Despite the fact that the exact mechanism(s) for such interspecific variation remains unresolved, these differences may have a significant implication for competitive interactions and community responses to elevated CO2 environment. We suggest that differential species responses in nutrient uptake capacity could be one potential mechanism for the CO2‐induced shifts in net primary productivity and species composition that have been observed in experimental communities exposed to elevated levels of CO2.  相似文献   

10.
Distribution pattern and levels of nitrogenase (EC 1.7.99.2) and glutamine synthetase (GS, EC 6.3.1.2) were studied in N2-, NO3? and NH4+ grown Anabaena cylindrica (CCAP 1403/2a) using immunogold electron microscopy. In N2- and NO3? grown cultures, heterocysts were formed and nitrogenase activity was present. The nitrogenase antigen appeared within the heterocysts only and showed an even distribution. The level of nitrogenase protein in the heterocysts was identical with both nitrogen sources. In NO3? grown cells the 30% reduction in the nitrogenase activity was due to a corresponding decrease in the heterocyst frequency and not to a repressed nitrogenase synthesis. In NH4? grown cells, the nitrogenase activity was almost zero and new heterocysts were formed to a very low extent. The heterocysts found showed practically no nitrogenase protein throughout the cytoplasm, although some label occurred at the periphery of the heterocyst. This demonstrates that heterocyst differentiation and nitrogenase expression are not necessarily correlated and that while NH4+ caused repression of both heterocyst and nitrogenase synthesis, NO3? caused inhibition of heterocyst differentiation only. The glutamine synthetase protein label was found throughout the vegetative cells and the heterocysts of all three cultures. The relative level of the GS antigen varied in the heterocysts depending on the nitrogen source, whereas the GS level was similar in all vegetative cells. In N2- and NO3+ grown cells, where nitrogenase was expressed, the GS level was ca 100% higher in the heterocysts compared to vegetative cells. In NH4+ grown cells, where nitrogenase was repressed, the GS level was similar in the two cell types. The enhanced level of GS expressed in heterocysts of N2 and NO3? grown cultures apparently is related to nitrogenase expression and has a role in assimilation of N2derived ammonia.  相似文献   

11.

Aims

This study evaluated how different nitrogen forms affect growth and photosynthetic responses of cassava to CO2 concentration.

Methods

Cassava was grown in 14-L pots in a greenhouse at 390 or 750 ppm of CO2. Three nitrogen treatments were applied: (a) 12?mM NO3 ?, (b) 6?mM NO3 ??+?6?mM NH4 +, and (c) 12?mM NH4 +.

Results

Thirty-six days after treatments began, plants grown under elevated CO2 and fertilized only with NO3 ? (750_NO3 ?) had photosynthetic rates similar to plants grown under 390_NO3 ?, indicating significant photosynthetic acclimation to CO2. In contrast, photosynthetic rates at elevated CO2 increased as NH4 + increased in the nutrient solution, such that photosynthetic acclimation was reduced for plants fertilized with only NH4 +. However, this positive effect of NH4 + on photosynthesis was not observed in more advanced growth stages, and the toxic effects of NH4 + severely reduced total dry mass for these plants measured at the end of the experiment.

Conclusions

Our results indicate that cassava will respond with increased biomass accumulation in response to raising atmospheric CO2 levels, and that N form can have an important impact on the photosynthetic response. However, the positive effect of NH4 + fertilization on cassava photosynthetic CO2 response eventually led to a toxicity problem that reduced biomass production. The challenge is to determine how to manage NH4 + fertilization so that the photosynthetic benefit observed in the initial phase may persist throughout the crop cycle.  相似文献   

12.
Uptake of dissolved nitrogen (NH4+ + NO3- + urea + N2) by a cyanobacterial [Anabaena flos-aquae (Lyngb.)] De Brèb population in Smith Lake, Alaska, was measured every 2 to 4 days during the spring of 1990. Total dissolved nitrogen uptake ranged from 0.34 to 24.75 μmol liter-1 h-1, with a mean of 5.75 μmol liter-1 h-1; the euphotic zone accounted for 91% of the uptake. The mean turnover time for dissolved combined nitrogen (NH4+ + NO3- + urea) in the euphotic zone was less than 14 h, and that for NH4+ was only 3.6 h. The mean relative preference indices for NH4+ (2.4), NO3- (0.4), and urea (0.5) established NH4+ as the preferred nitrogenous nutrient. The uptake rates were apparently dependent on biomass, temperature, and light. Regeneration, probably due to zooplankton excretion and bacterial remineralization of dissolved organic nitrogen, was the main source of NH4+ for the cyanobacterial growth. The high half-saturation constant for NH4+ with low ambient NH4+ concentration nevertheless resulted in the simultaneous utilization of several forms of nitrogen.  相似文献   

13.
The nitrogen requirement of plants is predominantly supplied by NH4+ and/or NO3? from the soil solution, but the energetic cost of uptake and assimilation is generally higher for NO3? than for NH4+. We found that CO2 enrichment of the atmosphere enhanced the root uptake capacity for NO3?, but not for NH4+, in field-grown loblolly pine saplings. Increased preference for NO3? at the elevated CO2 concentration was accompanied by increased carbohydrate levels in roots. The results have important implications for the potential consequences of global climate change on plant-and ecosystem-level processes in many temperate forest ecosystems.  相似文献   

14.
Wang  Guoying  Li  Chunjian  Zhang  Fusuo 《Plant and Soil》2003,256(1):169-178
NH4 +-N can have inhibitory effects on plant growth. However, the mechanisms of these inhibitory effects are still poorly understood. In this study, effects of different N forms and a combination of ammonium + 6-benzylaminopurine (6-BA, a synthetic cytokinin) on growth, transpiration, uptake and flow of water and potassium in 88-days-old tobacco (Nicotiana tabacum L. K 326) plants were studied over a period of 12 days. Plants were supplied with equal amounts of N in different forms: NO3 , NH4NO3, NH4 + or NH4 ++6-BA (foliar spraying every 2 days after onset of the treatments). For determining flows and partitioning upper, middle and lower strata of three leaves each were analysed. During the 12 days study period, 50% replacement of NO3 -N by NH4 +-N (NH4NO3) did not change growth, transpiration, uptake and flow of water and K+ compared with the NO3 -N treatment. However, NH4 +-N as the sole N-source caused: (i) a substantial decrease in dry weight gain to 42% and 46% of the NO3 -N and NH4NO3 treatments, respectively; (ii) a marked reduction in transpiration rate, due to reduced stomatal conductance, illustrated by more negative leaf carbon-isotope discrimination (13C) compared with the NO3 treatment, especially in upper leaves; (iii) a strong reduction both in total water uptake, and in the rate of water uptake by roots, likely due to a decrease in root hydraulic conductivity; (iv) a marked reduction of K+ uptake to 10%. Under NH4 + nutrition the middle leaves accumulated 143%, and together with upper leaves 206% and the stem 227% of the K+ currently taken up, indicating massive mobilisation of K+ from lower leaves and even the roots. Phloem retranslocation of K+ from the shoot and cycling through the root contributed 67% to the xylem transport of K+, and this was 2.2 times more than concurrent uptake. Foliar 6-BA application could not suppress or reverse the inhibitory effects on growth, transpiration, uptake and flow of water and ions (K+) caused by NH4 +-N treatment, although positive effects by 6-BA application were observed, even when 6-BA (10–8 M) was supplied in nutrient solution daily with watering. Possible roles of cytokinin to regulate growth and development of NH4 +-fed plants are discussed.  相似文献   

15.

Key message

The total uptake of 15 NO 3 -N was twofold higher than that of 15 NH 4 -N when supplied with ammonium and/or nitrate in different seasons; the seedlings fertilized with NO 3 -N had good growth with high photosynthetic rate and total biomass.

Abstract

Appropriate fertilization is crucial for maximum plant growth and improving nitrogen use efficiency. Poplar is an important fast-growing tree species for biomass production, however, little is known about fertilizer management of poplar plantations growing on barren soil in different seasons. To understand nitrogen uptake and allocation of Populus simonii supplied with different forms of nitrogen in different seasons, we determined nitrogen uptake and allocation of P. simonii potted seedlings after a 4-day supply of 15NH4-N, 15NO3-N, 15NH4NO3, and NH 4 15 NO3 in May, July, and September. The total 15N uptake was twofold higher when supplied with sole 15NO3-N compared to sole 15NH4-N in all the investigated seasons. In the presence of ammonium nitrate (15NH4NO3 and NH 4 15 NO3), the total 15N uptake was two times higher when supplied with NH 4 15 NO3 compared to 15NH4NO3. Per unit biomass, the 15N-uptake ability of fine roots was higher in May and July compared to that in September. 15N was present mainly in leaves in May and July, and was mainly stored in roots and stems in autumn. The effect of nitrogen on the growth of P. simonii seedlings was studied by fertilizing with NH4-N, NO3-N, and NH4NO3 for 8 weeks. The seedlings fertilized with NO3-N had good growth with high photosynthetic rate and total biomass indicating that NO3-N is crucial for P. simonii growth. These data contribute to understand the nitrogen uptake in different seasons in trees supplied with different forms of nitrogen. This provides important theoretical bases for fertilizer management of poplar plantations.
  相似文献   

16.
Summary The toxicity of Cu, Ni and Fe individually, as well as in combination (Cu + Ni, Cu + Fe, Ni + Fe), on growth-rate depression, uptake of NO3 and NH4 +, photosynthesis, nitrate reductase and urease activity ofChlorella vulgaris has been studied. All the test metals when used individually showed pronounced toxicity on all the parameters studied. However, their interactive effect was mostly antagonistic except for Cu + Ni (synergism). Pre-addition of Fe offered more protection to the cells against copper and nickel toxicity. The data of statistical analysis reconfirmed that14C02 uptake is the most sensitive parameter (significant atP<0.005, both for time and treatment) than others in metal toxicity assessment. However, these results suggest further that exposure time and sequence of metal addition are very important in biomonitoring of heavy metal toxicity.  相似文献   

17.
Three-year-old Scots pine (Pinus sylvestris) trees were grown on a sandy forest soil in pots, with the objective to determine their NH4/NO3 uptake ratio and proton efflux. N was supplied in three NH4-N/NO3-N ratios, 3:1, 1:1 and 1:3, either as 15NH4+14NO3 or as 14NH4+15NO3. Total N and 15N acquisition of different plant parts were measured. Averaged over the whole tree, the NH4/NO3 uptake ratios throughout the growing season were found to be 4.2, 2.5, and 1.5 for the three application ratios, respectively. The excess cation-over-anion uptake value (Ca-Aa) appeared to be linearly related to the natural logarithm of the NH4/NO3 uptake ratio. Further, this uptake ratio was related to the NH4/NO3 ratio of the soil solution. From these relationship it was estimated that Scots pine exhibits an acidifying uptake pattern as long as the contribution of nitrate to the N nutrition is lower than 70%. Under field circumstances root uptake may cause soil acidification in the topsoil, containing the largest part of the root system, and soil alkalization in deeper soil layers.  相似文献   

18.
The uptake of 15NO3 - and 15NH4 + has been examined in 5-,10- and 28-day-old micropropagated strawberry (Fragaria x ananassa Duch. cv. Kent) shoots rooted in one-half strength Murashige and Skoog (MS) liquid medium on cellulose plugs (Sorbarods). The results indicated that the plantlets absorbed both NO3 - and NH4 + during the culture with a greater uptake of NH4 + at 5 days of culture. Furthermore, a pronounced reduction in NO3 - and NH4 + uptake at 10 and 28 days of culture was observed within 6 h of the short-term uptake study. This reduction could be explained by the low CO2 concentration in test tubes during the photoperiod, since no reduction in nitrogen uptake occurred in the CO2 enriched condition. The results are interpreted as an indication of the important role for photosynthetic CO2 fixation in the process of nitrogen uptake by the plantlets during the rooting stage.Contribution No. CRH 82, Centre de Recherche en Horticulture, F.S.A.A., Université Laval, Québec.  相似文献   

19.
NO3?-dependent O2 in synchronous Scenedesmus obtusiusculus Chod. in the absence of CO2 is stoichiometric with NH4+ excretion, indicating a close coupling of NO3? reduction to non-cyclic electron flow. Also in the presence of CO2, NO3? stimulates O2 evolution as manifested by an increase in the O2/CO2 ratio from 0.96 to 1.11. This quotient was increased to 1.36 by addition of NO2?, without competitive interaction with CO2 fixation, indicating that the capacity for non-cyclic electron transport at saturating light is non-limiting for simultaneous reduction of NO3? and CO2 at high rates. During incubation with NO3?+ CO2, no NH4+ is released to the outer medium, whereas during incubation with NO2?+ CO2, excess NH4+ is formed and excreted. NO3? uptake is stimulated by CO2, and this stimulation is also significant when the cellular energy metabolism is restricted by moderate concentrations of carbonyl cyanide-p-trifluoromethoxyphenylhydrazone, whereas NO3? uptake in the absence of CO2 is severely inhibited by the uncoupler. Also under energy-restricted conditions NO3? uptake is not competitive with CO2 fixation. Antimycin A is inhibitory for NO3? uptake in the absence of CO2, and there is no enhancement of NO3? uptake by CO2 in the presence of antimycin A. It is assumed that the energy demand for NO3? uptake is met by energy fixed as triosephosphates in the Calvin cycle. Antimycin A possibly affects the transfer of reduced triose phosphates from the chloroplast to the cytoplasm. Active carbon metabolism also seems to exert a control effect on NO3? assimilation, inducing complete incorporation of all NO3? taken up into amino acids. This control effect is not functional when NO2? is the nitrogen source. Active carbon metabolism thus seems to be essential both for provision of energy for NO3? uptake and for regulation of the process.  相似文献   

20.
The nitrogen (N) uptake kinetic parameters for Microcystis field assemblages collected from the San Francisco Bay Delta (Delta) in 2012 and non-toxic and toxic laboratory culture strains of M. aeruginosa were assessed. The 15N tracer technique was used to investigate uptake of ammonium (NH4+), nitrate (NO3), urea and glutamic acid over short-term incubations (0.5–1 h), and to study inhibition of NO3, NH4+ and urea uptake by NH4+, NO3 and NH4+, respectively. This study demonstrates that Delta Microcystis can utilize different forms of inorganic and organic N, with the greatest capacity for NH4+ uptake and the least for glutamic acid uptake, although N uptake did not always follow the classic Michaelis–Menten hyperbolic relationship at substrate concentrations up to 67 μmol N L−1. Current ambient N concentrations in the Delta may be at sub-saturating levels for N uptake, indicating that if N loading (especially NH4+) were to increase, Delta Microcystis assemblages have the potential for increased N uptake rates. Delta Microcystis had the highest specific affinity, α, for NH4+ and the lowest for NO3. In culture, N uptake by non-toxic and toxic M. aeruginosa strains was much higher than from the field, but followed similar N utilization trends to those in the field. Neither strain showed severe inhibition of NO3 uptake by NH4+ or inhibition of NH4+ uptake on NO3, but both strains showed some inhibition of urea uptake by NH4+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号