首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2,6-Dichlorobenzamide (BAM), a persistent metabolite from the herbicide 2,6-dichlorobenzonitrile (dichlobenil), is the pesticide residue most frequently detected in Danish groundwater. A BAM-mineralizing bacterial community was enriched from dichlobenil-treated soil sampled from the courtyard of a former plant nursery. A BAM-mineralizing bacterium (designated strain MSH1) was cultivated and identified by 16S rRNA gene sequencing and fatty acid analysis as being closely related to members of the genus Aminobacter, including the only cultured BAM degrader, Aminobacter sp. strain ASI1. Strain MSH1 mineralized 15 to 64% of the added [ring-U-(14)C]BAM to (14)CO(2) with BAM at initial concentrations in the range of 7.9 nM to 263.1 muM provided as the sole carbon, nitrogen, and energy source. A quantitative enzyme-linked immunoassay analysis with antibodies against BAM revealed residue concentrations of 0.35 to 18.05 nM BAM following incubation for 10 days, corresponding to a BAM depletion of 95.6 to 99.9%. In contrast to the Aminobacter sp. strain ASI1, strain MSH1 also mineralized the herbicide itself along with several metabolites, including ortho-chlorobenzonitrile, ortho-chlorobenzoic acid, and benzonitrile, making it the first known dichlobenil-mineralizing bacterium. Aminobacter type strains not previously exposed to dichlobenil or BAM were capable of degrading nonchlorinated structural analogs. Combined, these results suggest that closely related Aminobacter strains may have a selective advantage in BAM-contaminated environments, since they are able to use this metabolite or structurally related compounds as a carbon and nitrogen source.  相似文献   

2.
BAM (2,6-dichlorobenzamide) is a metabolite of the pesticide dichlobenil. Naturally occurring bacteria that can utilize BAM are rare. Often the compound cannot be degraded before it reaches the groundwater and therefore it poses a serious threat to drinking water supplies. The bacterial strain Aminobacter MSH1 is a BAM degrader and therefore a potential candidate to be amended to sand filters in waterworks to remediate BAM polluted drinking water. A common problem in bioremediation is that bacteria artificially introduced into new diverse environments often thrive poorly, which is even more unfortunate because biologically diverse environments may ensure a more complete decomposition. To test the bioaugmentative potential of MSH1, we used a serial dilution approach to construct microcosms with different biological diversity. Subsequently, we amended Aminobacter MSH1 to the microcosms in two final concentrations; i.e. 105 cells mL-1 and 107 cells mL-1. We anticipated that BAM degradation would be most efficient at “intermediate diversities” as low diversity would counteract decomposition because of incomplete decomposition of metabolites and high diversity would be detrimental because of eradication of Aminobacter MSH1. This hypothesis was only confirmed when Aminobacter MSH1 was amended in concentrations of 105 cells mL-1.Our findings suggest that Aminobacter MSH1 is a very promising bioremediator at several diversity levels.  相似文献   

3.
The Aminobacter sp. strain MSH1 has potential for pesticide bioremediation because it degrades the herbicide metabolite 2,6-dichlorobenzamide (BAM). Production of the BAM-degrading bacterium using aerobic bioreactor fermentation was investigated. A mineral salt medium limited for carbon and with an element composition similar to the strain was generated. The optimal pH and temperature for strain growth were determined using shaker flasks and verified in bioreactors. Glucose, fructose, and glycerol were suitable carbon sources for MSH1 (μ?=?0.1 h?1); slower growth was observed on succinate and acetic acid (μ?=?0.01 h?1). Standard conditions for growth of the MSH1 strain were defined at pH 7 and 25 °C, with glucose as the carbon source. In bioreactors (1 and 5 L), the specific growth rate of MSH1 increased from μ?=?0.1 h?1 on traditional mineral salt medium to μ?=?0.18 h?1 on the optimized mineral salt medium. The biomass yield under standard conditions was 0.47 g dry weight biomass/g glucose consumed. An investigation of the catabolic capacity of MSH1 cells harvested in exponential and stationary growth phases showed a degradation activity per cell of about 3?×?10?9 μg BAM h?1. Thus, fast, efficient, large-scale production of herbicide-degrading Aminobacter was possible, bringing the use of this bacterium in bioaugmentation field remediation closer to reality.  相似文献   

4.
In soil the herbicide 2,6-dichlorobenzonitrile (dichlobenil) is degraded to the persistent metabolite 2,6-dichlorobenzamide (BAM) which has been detected in 19% of samples taken from Danish groundwater. We tested if common soil bacteria harbouring nitrile-degrading enzymes, nitrile hydratases or nitrilases, were able to degrade dichlobenil in vitro. We showed that several strains degraded dichlobenil stoichiometrically to BAM in 1.5–6.0 days; formation of the amide intermediate thus showed nitrile hydratase rather than nitrilase activity, which would result in formation of 2,6-dichlorobenzoic acid. The non-halogenated␣analogue benzonitrile was also degraded, but here the benzamide intermediate accumulated only transiently showing nitrile hydratase followed by amidase activity. We conclude that a potential for dichlobenil degradation to BAM is found commonly in soil bacteria, whereas further degradation of the BAM intermediate could not be demonstrated.  相似文献   

5.
Micropollutants in groundwater are given significant attention by water companies and authorities due to an increasing awareness that they might be present even above the legal threshold values. As part of our investigations of the possibility to remove the common groundwater pollutant 2,6-dichlorobenzamide (BAM) by introducing the efficient BAM degrader Aminobacter sp. MSH1 into biologically active sand filters, we investigated if the strain adheres to filters containing various filter materials and if the initial adherence and subsequent degradation of BAM could be optimized. We found that most of the inoculated MSH1 cells adhered fast and that parameters like pH and ionic strength had only a minor influence on the adhesion despite huge influence on cell surface hydrophobicity. At the given growth protocol, the MSH1 strain apparently developed a subpopulation that had lost its ability to adhere to the filter materials, which was supported by attempted reinoculation of non-adhered cells. Analysis by quantitative PCR showed that most cells adhered in the top of the filters and that some of these were lost from the filters during initial operation, while insignificant losses occurred after 1 day of operation. The inoculated filters were found to degrade 2.7 μg/L BAM to below 0.1 μg/L at a 1.1-h residence time with insignificant formation of known degradation products. In conclusion, most filter materials and water types should be feasible for inoculation with the MSH1 strain, while more research into degradation at low concentrations and temperatures is needed before this technology is ready for use at actual waterworks.  相似文献   

6.
Degradation and mineralisation of the groundwater contaminant 2,6-dichloro-benzamide (BAM) was investigated in two Aminobacter strains focussing on the induction of BAM degradation and mineralisation and occurrence of intermediate metabolites. The BAM degradation rate was independent of whether the cells were pre-grown in the absence or presence of BAM, thus indicating that the first step in the degradation pathway was constitutively expressed. In contrast, 14CO2 production was stimulated when cells were pre-grown in the presence of BAM, suggesting that one or more of the subsequent steps in the degradation pathway were inducible. Accumulation of 2,6-dichlorobenzoate (DCBA) during degradation of BAM demonstrated that the first step involved amidase activity. Mass balance calculations and thin-layer chromatography coupled with autoradiographic detection indicated that degradation of DCBA and at least one unknown metabolite may comprise a bottleneck for BAM mineralisation by Aminobacter spp. The study thus provides novel information about the BAM degradation pathway and points to the involvement of unknown intermediate metabolites in degradation of this important groundwater contaminant.  相似文献   

7.
In groundwater subsurface deposits and a topsoil from five aquifers having 2,6-dichlorobenzamide (BAM) in water, we determined the most-probable-number (MPN) of 2,6-dichlorobenzonitrile (dichlobenil) and metabolite BAM degrading microorganisms. Dichlobenil and BAM were combined nitrogen sources in the MPN tubes, which were scored positive at concentrations <75% after 1 month incubation. Aerobic and anaerobic microbes degrading dichlobenil and BAM were common in samples in low numbers of 3.6–210 MPN g dw−1. Additional degradation occurred in high MPN dilutions of some samples, the microbial numbers being 0.11–120 × 105 MPN g dw−1. The strains were isolated from low and high dilutions of one deposit, and degradation in pure cultures was confirmed by HPLC. According to the 16S rDNA sequencing, strains were from genera Zoogloea, Pseudomonas, Xanthomonas, Rhodococcus, Nocardioides, Sphingomonas, and Ralstonia. Dichlobenil (45.5 ± 18.3%) and BAM (37.6 ± 14%) degradation was low in the MPN tubes. Despite of microbial BAM degradation activity in subsurface deposits, BAM was measured from groundwater.  相似文献   

8.
A new aerobic bacterium was isolated from the sediment of a freshwater pond close to a contaminated site at Amponville (France). It was enriched in a fixed-bed reactor fed with 2,6-dichlorophenol (2,6-DCP) as the sole carbon and energy source at pH 7.5 and room temperature. The degradation of 2,6-DCP followed Monod kinetics at low initial concentrations. At concentrations above 300 μM (50 mg · liter−1), 2,6-DCP increasingly inhibited its own degradation. The base sequence of the 16S ribosomal DNA allowed us to assign the bacterium to the genus Ralstonia (formerly Alcaligenes). The substrate spectrum of the bacterium includes toluene, benzene, chlorobenzene, phenol, and all four ortho- and para-substituted mono- and dichlorophenol isomers. Substituents other than chlorine prevented degradation. The capacity to degrade 2,6-DCP was examined in two fixed-bed reactors. The microbial population grew on and completely mineralized 2,6-DCP at 2,6-DCP concentrations up to 740 μM in continuous reactor culture supplied with H2O2 as an oxygen source. Lack of peroxide completely stopped further degradation of 2,6-DCP. Lowering the acid-neutralizing capacity of the medium to 1/10th the original capacity led to a decrease in the pH of the effluent from 7 to 6 and to a significant reduction in the degradation activity. A second fixed-bed reactor successfully removed low chlorophenol concentrations (20 to 26 μM) with hydraulic residence times of 8 to 30 min.  相似文献   

9.
The s-triazine herbicide atrazine was rapidly mineralized (i.e., about 60% of 14C-ring-labelled atrazine released as 14CO2 within 21 days) by an agricultural soil from the Nile Delta (Egypt) that had been cropped with corn and periodically treated with this herbicide. Seven strains able to degrade atrazine were isolated by enrichment cultures of this soil. DNA fingerprint and phylogenetic studies based on 16S rRNA analysis showed that the seven strains were identical and belonged to the phylogeny of the genus Arthrobacter (99% similarity with Arthrobacter sp. AD38, EU710554). One strain, designated Arthrobacter sp. strain TES6, degraded atrazine and mineralized the 14C-chain-labelled atrazine. However, it was unable to mineralize the 14C-ring-labelled atrazine. Atrazine biodegradation ended in a metabolite that co-eluted with cyanuric acid in HPLC. This was consistent with its atrazine-degrading genetic potential, shown to be dependent on the trzN, atzB, and atzC gene combination. Southern blot analysis revealed that the three genes were located on a large plasmid of about 175 kb and clustered on a 22-kb SmaI fragment. These results reveal for the first time the adaptation of a North African agricultural soil to atrazine mineralization and raise interesting questions about the pandemic dispersion of the trzN, atzBC genes among atrazine-degrading bacteria worldwide.  相似文献   

10.
Metabolism of the phenylurea herbicide isoproturon by Sphingomonas sp. strain SRS2 was significantly enhanced when the strain was grown in coculture with a soil bacterium (designated strain SRS1). Both members of this consortium were isolated from a highly enriched isoproturon-degrading culture derived from an agricultural soil previously treated regularly with the herbicide. Based on analysis of the 16S rRNA gene, strain SRS1 was assigned to the β-subdivision of the proteobacteria and probably represents a new genus. Strain SRS1 was unable to degrade either isoproturon or its known metabolites 3-(4-isopropylphenyl)-1-methylurea, 3-(4-isopropylphenyl)-urea, or 4-isopropyl-aniline. Pure culture studies indicate that Sphingomonas sp. SRS2 is auxotrophic and requires components supplied by association with other soil bacteria. A specific mixture of amino acids appeared to meet these requirements, and it was shown that methionine was essential for Sphingomonas sp. SRS2. This suggests that strain SRS1 supplies amino acids to Sphingomonas sp. SRS2, thereby leading to rapid metabolism of 14C-labeled isoproturon to 14CO2 and corresponding growth of strain SRS2. Proliferation of strain SRS1 suggests that isoproturon metabolism by Sphingomonas sp. SRS2 provides unknown metabolites or cell debris that supports growth of strain SRS1. The role of strain SRS1 in the consortium was not ubiquitous among soil bacteria; however, the indigenous soil microflora and some strains from culture collections also stimulate isoproturon metabolism by Sphingomonas sp. strain SRS2 to a similar extent.  相似文献   

11.
Here we report that the bacterial catabolism of 4-hydroxy-3,5-dimethylbenzoic acid 1 takes a different course inRhodococcus rhodochrousN75 andPseudomonassp. strain HH35. The former organism accumulates a degradation metabolite of the acid which we isolated and identified as 2,6-dimethylhydroquinone 2. The latter bacterial strain converts the acid and the hydroquinone into a dead-end metabolite. This novel compound was characterised unequivocally by mass spectrometry and1H and13C NMR and UV spectroscopy as 4-acetonyl-4-hydroxy-2-methylbut-2-en-1,4-olide 4, a cyclic tautomer of (3-methylmaleyl)acetone, which exists as the enol carboxylate form 3 in aqueous solution.  相似文献   

12.
The aliphatic nitramine 4-nitro-2,4-diazabutanal (NDAB; C2H5N3O3) is a ring cleavage metabolite that accumulates during the aerobic degradation of the energetic compound hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by various Rhodococcus spp. NDAB is also produced during the alkaline hydrolysis of either RDX or octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and during the photolysis of RDX. Traces of NDAB were observed in a soil sampled from an ammunition-manufacturing facility contaminated with both HMX and RDX, suggesting natural attenuation. In this study, we report the isolation of a soil bacterium that is able to degrade NDAB under aerobic conditions. The isolate is a pink-pigmented facultative methylotroph affiliated with the genus Methylobacterium. The strain, named Methylobacterium sp. strain JS178, degrades NDAB as a sole nitrogen source, with concomitant growth and formation of 1 molar equivalent of nitrous oxide (N2O). Comparison of the growth yield of strain JS178 grown on NDAB, nitrite (NO2), or ammonium (NH4+) as a nitrogen source revealed that 1 N equivalent is assimilated from each mole of NDAB, which completes the nitrogen mass balance. In radiotracer experiments, strain JS178 mineralized 1 C of the [14C]NDAB produced in situ from [14C]RDX by Rhodococcus sp. strain DN22. Studies on the regulation of NDAB degradation indicated that allantoin, an intermediate in the purine catabolic pathway and a central molecule in the storage and transport of nitrogen in plants, up-regulated the enzyme(s) involved in the degradation of the nitramine. The results reveal the potential for the sequential participation of rhodococci and methylobacteria to effect the complete degradation of RDX.  相似文献   

13.
Bacterial Metabolism of 2,6-Xylenol   总被引:3,自引:3,他引:0       下载免费PDF全文
Strain DM1, a Mycobacterium sp. that utilizes 2,6-xylenol, 2,3,6-trimethylphenol, and o-cresol as sources of carbon and energy, was isolated. Intact cells of Mycobacterium strain DM1 grown with 2,6-xylenol cooxidized 2,4,6-trimethylphenol to 2,4,6-trimethylresorcinol. 4-Chloro-3,5-dimethylphenol prevents 2,6-xylenol from being totally degraded; it was quantitatively converted to 2,6-dimethylhydroquinone by resting cells. 2,6-Dimethylhydroquinone, citraconate, and an unidentified metabolite were detected as products of 2,6-xylenol oxidation in cells that were partially inactivated by EDTA. Under oxygen limitation, 2,6-dimethylhy-droquinone, citraconate, and an unidentified metabolite were released during 2,6-xylenol turnover by resting cells. Cell extracts of 2,6-xylenol-grown cells contained a 2,6-dimethylhydroquinone-converting enzyme. When supplemented with NADH, cell extracts catalyzed the reduction of 2,6-dimethyl-3-hydroxyquinone to 2,6-dimethyl-3-hydroxyhydroquinone. Since a citraconase was also demonstrated in cell extracts, a new metabolic pathway with 2,6-dimethyl-3-hydroxyhydroquinone as the ring fission substrate is proposed.  相似文献   

14.
The aim of this work was to determine the ability of rhodococci to transform 3,5-dichloro-4-hydroxybenzonitrile (chloroxynil), 3,5-dibromo-4-hydroxybenzonitrile (bromoxynil), 3,5-diiodo-4-hydroxybenzonitrile (ioxynil) and 2,6-dichlorobenzonitrile (dichlobenil); to identify the products and determine their acute toxicities. Rhodococcus erythropolis A4 and Rhodococcus rhodochrous PA-34 converted benzonitrile herbicides into amides, but only the former strain was able to hydrolyze 2,6-dichlorobenzamide into 2,6-dichlorobenzoic acid, and produced also more of the carboxylic acids from the other herbicides compared to strain PA-34. Transformation of nitriles into amides decreased acute toxicities for chloroxynil and dichlobenil, but increased them for bromoxynil and ioxynil. The amides inhibited root growth in Lactuca sativa less than the nitriles but more than the acids. The conversion of the nitrile group may be the first step in the mineralization of benzonitrile herbicides but cannot be itself considered to be a detoxification.  相似文献   

15.
Summary The 2-(2,4-dichlorphenoxy)propionic acid (2,4-DP)-degrading bacterial strain MH was isolated after numerous subcultivations of a mixed culture obtained by soil-column enrichment and finally identified as Flavobacterium sp. Growth of this strain was supported by 2,4-DP (maximum specific growth rate 0.2 h–1) as well as by 2,4-dichlorophenoxyacetic acid (2,4-D), 4(2,4-dichlorophenoxy)butyric acid (2,4-DB), and 2-(4-chloro-2-methyphenoxy)propionic acid (MCPP) as sole sources of carbon and energy under aerobic conditions. 2,4-DP-Grown cells (108) of strain MH degraded 2,4-dichlorophenoxyalkanoic acids, 2,4-dichlorophenol (2,4-DCP), and 4-chlorophenol at rates in the range of 30 nmol/h. Preliminary investigations indicate that cleavage of 2,4-DP results in 2,4-DCP, which is further mineralized via ortho-hydroxylation and ortho-cleavage of the resulting 3,5-dichlorocatechol. Offprint requests to: F. Streichsbier  相似文献   

16.
Mycobacterium sp. strain AP1 grew with pyrene as a sole source of carbon and energy. The identification of metabolites accumulating during growth suggests that this strain initiates its attack on pyrene by either monooxygenation or dioxygenation at its C-4, C-5 positions to give trans- or cis-4,5-dihydroxy-4,5-dihydropyrene, respectively. Dehydrogenation of the latter, ortho cleavage of the resulting diol to form phenanthrene 4,5-dicarboxylic acid, and subsequent decarboxylation to phenanthrene 4-carboxylic acid lead to degradation of the phenanthrene 4-carboxylic acid via phthalate. A novel metabolite identified as 6,6′-dihydroxy-2,2′-biphenyl dicarboxylic acid demonstrates a new branch in the pathway that involves the cleavage of both central rings of pyrene. In addition to pyrene, strain AP1 utilized hexadecane, phenanthrene, and fluoranthene for growth. Pyrene-grown cells oxidized the methylenic groups of fluorene and acenaphthene and catalyzed the dihydroxylation and ortho cleavage of one of the rings of naphthalene and phenanthrene to give 2-carboxycinnamic and diphenic acids, respectively. The catabolic versatility of strain AP1 and its use of ortho cleavage mechanisms during the degradation of polycyclic aromatic hydrocarbons (PAHs) give new insight into the role that pyrene-degrading bacterial strains may play in the environmental fate of PAH mixtures.  相似文献   

17.
Chlorpropham [isopropyl N-(3-chlorophenyl) carbamate] (CIPC), an important phenyl carbamate herbicide, has been used as a plant growth regulator and potato sprout suppressant (Solanum tuberosum L) during long-term storage. A bacterium capable of utilizing the residual herbicide CIPC as a sole source of carbon and energy was isolated from herbicide-contaminated soil samples employing selective enrichment method. The isolated bacterial strain was identified as Bacillus licheniformis NKC-1 on the basis of its morphological, cultural, biochemical characteristics and also by phylogenetic analysis based on 16S rRNA gene sequences. The organism degraded CIPC through its initial hydrolysis by CIPC hydrolase enzyme to yield 3-chloroaniline (3-CA) as a major metabolic product. An inducible 3-CA dioxygenase not only catalyzes the incorporation of molecular oxygen but also removes the amino group by the deamination yielding a monochlorinated catechol. Further, degradation of 4-chlorocatechol proceeded via ortho- ring cleavage through the maleylacetate process. 3-Chloroaniline and 4-chlorocatechol are the intermediates in the CIPC degradation which suggested that dechlorination had occurred after the aromatic ring cleavage. The presence of these metabolites has been confirmed by using ultra-violet (UV), high-performance liquid chromatography (HPLC), thin layer chromatography (TLC), Fourier transmission-infrared (FT-IR), proton nuclear magnetic resonance (1H NMR) and gas chromatography-mass (GC-MS) spectral analysis. Enzyme activities of CIPC hydrolase, 3-CA dioxygenase and chlorocatechol 1, 2-dioxygenase were detected in the cell-free-extract of the CIPC culture and are induced by cells of NKC-1 strain. These results demonstrate the biodegradation pathways of herbicide CIPC and promote the potential use of NKC-1 strain to bioremediate CIPC-contaminated environment with subsequent release of ammonia, chloride ions and carbon dioxide.  相似文献   

18.
A pyrethroid-degrading bacterium strain JZ-2 was isolated from activated sludge treating pyrethroid-manufacturing wastewater. Based on the morphological, physiological and biochemical characterization, and phylogenetic analysis of the 16S rRNA gene sequence, the strain was identified as Sphingobium sp. Strain JZ-2 was capable of degrading fenpropathrin, cypermethrin, permethrin, cyhalothrin, deltamethrin, fenvalerate and bifenthrin. This strain degraded fenpropathrin by hydrolysis of the carboxylester linkage to yield 3-phenoxybenzaldehyde and 2,2,3,3-tetramethylcyclopropanecarboxylic acid. 3-Phenoxybenzaldehyde, 3-phenoxybenzoate, protocatechuate and catechol are the intermediates of fenpropathrin degradation. Protocatechuate and catechol were further oxidized by ortho-cleavage pathway. A novel pyrethroid hydrolase from cell-free extract was purified 108.5-fold to apparent homogeneity with a 10.2% overall recovery. It was a monomer with a molecular mass of 31 ± 1 kDa, a pI of 4.85. The optimal pH and temperature were 7.5 and 40 °C, respectively. No cofactors or coenzymes were required for the pyrethroid-hydrolysis activity. The enzyme was strongly inhibited by many irons (Ag+, Cu2+, Hg2+ and Zn2+), SDS, p-chloromercuribenzoic acid, phenylmethylsulfonyl fluoride and malathion.  相似文献   

19.
Propachlor (2-chloro-N-isopropylacetanilide) is an acetamide herbicide used in preemergence. In this study, we isolated and characterized a soil bacterium, Acinetobacter strain BEM2, that was able to utilize this herbicide as the sole and limiting carbon source. Identification of the intermediates of propachlor degradation by this strain and characterization of new metabolites in the degradation of propachlor by a previously reported strain of Pseudomonas (PEM1) support two different propachlor degradation pathways. Washed-cell suspensions of strain PEM1 with propachlor accumulated N-isopropylacetanilide, acetanilide, acetamide, and catechol. Pseudomonas strain PEM1 grew on propachlor with a generation time of 3.4 h and a Ks of 0.17 ± 0.04 mM. Acinetobacter strain BEM2 grew on propachlor with a generation time of 3.1 h and a Ks of 0.3 ± 0.07 mM. Incubations with strain BEM2 resulted in accumulation of N-isopropylacetanilide, N-isopropylaniline, isopropylamine, and catechol. Both degradative pathways were inducible, and the principal product of the carbon atoms in the propachlor ring was carbon dioxide. These results and biodegradation experiments with the identified metabolites indicate that metabolism of propachlor by Pseudomonas sp. strain PEM1 proceeds through a different pathway from metabolism by Acinetobacter sp. strain BEM2.  相似文献   

20.
The persistence of propanil in soil and aquatic environments along with the possible accumulation of toxic degradation products, such as chloroanilines, is of environmental concern. In this work, a continuous small-scale bioprocess to degrade the herbicide propanil, its main catabolic by-product, 3,4-dichloroaniline (3,4-DCA), and the herbicide adjuvants is carried out. A microbial consortium, constituted by nine bacterial genera, was selected. The isolated strains, identified by amplification and sequencing of their 16S rDNA, were: Acidovorax sp., Luteibacter (rhizovicinus), Xanthomonas sp., Flavobacterium sp., Variovorax sp., Acinetobacter (calcoaceticus), Pseudomonas sp., Rhodococcus sp., and Kocuria sp. The ability of the microbial consortium to degrade the herbicide was evaluated in a biofilm reactor at propanil loading rates ranging from 1.9 to 36.8 mg L?1 h?1. Complete removal of propanil, 3,4-DCA, chemical oxygen demand and total organic carbon was obtained at propanil loading rates up to 24.9 mg L?1 h?1. At higher loading rates, the removal efficiencies decayed. Four of the identified strains could grow individually in propanil, and 3,4-DCA: Pseudomonas sp., Acinetobacter calcoaceticus, Rhodococcus sp., and Xanthomonas sp. The Kokuria strain grew on 3,4-DCA, but not on propanil. The first three bacteria have been related to biodegradation of phenyl urea herbicides or chlorinated anilines. Although some strains of the genera Xanthomonas and Kocuria have a role in the biodegradation of several xenobiotic compounds, as far as we know, there are no reports about degradation of propanil by Xanthomonas or 3,4-DCA by Kocuria species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号