首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The development and patterning of the wing in Drosophila relies on a sequence of cell interactions molecularly driven by a number of ligands and receptors. Genetic analysis indicates that a receptor encoded by the Notch gene and a signal encoded by the wingless gene play a number of interdependent roles in this process and display very strong functional interactions. At certain times and places, during wing development, the expression of wingless requires Notch activity and that of its ligands Delta and Serrate. This has led to the proposal that all the interactions between Notch and wingless can be understood in terms of this regulatory relationship. Here we have tested this proposal by analysing interactions between Delta- and Serrate-activated Notch signalling and Wingless signalling during wing development and patterning. We find that the cell death caused by expressing dominant negative Notch molecules during wing development cannot be rescued by coexpressing Nintra. This suggests that the dominant negative Notch molecules cannot only disrupt Delta and Serrate signalling but can also disrupt signalling through another pathway. One possibility is the Wingless signalling pathway as the cell death caused by expressing dominant negative Notch molecules can be rescued by activating Wingless signalling. Furthermore, we observe that the outcome of the interactions between Notch and Wingless signalling differs when we activate Wingless signalling by expressing either Wingless itself or an activated form of the Armadillo. For example, the effect of expressing the activated form of Armadillo with a dominant negative Notch on the patterning of sense organ precursors in the wing resembles the effects of expressing Wingless alone. This result suggests that signalling activated by Wingless leads to two effects, a reduction of Notch signalling and an activation of Armadillo.  相似文献   

2.
Notch is the receptor in a signalling pathway that operates in a diverse spectrum of developmental processes. Its ligands (e.g. Serrate) are transmembrane proteins whose signalling competence is regulated by the endocytosis-promoting E3 ubiquitin ligases, Mindbomb1 and Neuralized. The ligands also inhibit Notch present in the same cell (cis-inhibition). Here, we identify two conserved motifs in the intracellular domain of Serrate that are required for efficient endocytosis. The first, a dileucine motif, is dispensable for trans-activation and cis-inhibition despite the endocytic defect, demonstrating that signalling can be separated from bulk endocytosis. The second, a novel motif, is necessary for interactions with Mindbomb1/Neuralized and is strictly required for Serrate to trans-activate and internalise efficiently but not for it to inhibit Notch signalling. Cis-inhibition is compromised when an ER retention signal is added to Serrate, or when the levels of Neuralized are increased, and together these data indicate that cis-inhibitory interactions occur at the cell surface. The balance of ubiquitinated/unubiquitinated ligand will thus affect the signalling capacity of the cell at several levels.  相似文献   

3.
4.
The function of the Notch gene is required in cell interactions defining alternative cell fates in several developmental processes. The Notch gene encodes a transmembrane protein with 36 epidermal growth factor (EGF)-like repeats in its extracellular domain. This protein functions as a receptor that interacts with other transmembrane proteins, such as Serrate and Delta, which also have EGF repeats in their extracellular domain. The Abruptex mutations of the Notch locus are associated with amino acid substitutions in the EGF repeats 24-29 of the Notch protein. We have studied, in genetic combinations, the modifications of Notch function caused by Abruptex mutations. These mutations lead to phenotypes which are opposite to those caused by Notch deletions. The Abruptex phenotypes are modified by the presence of mutations in other loci, in particular in the genes Serrate and Delta as well as Hairless, and groucho. The results suggest that all Abruptex mutations cause stronger than normal Notch activation by the Delta protein. Some Abruptex alleles also display an insufficiency of N function. Abruptex alleles which produce stronger enhancement of Notch activation also display stronger Notch insufficiency. This insufficiency could be due to reduced ability of Abruptex proteins to interact with Notch ligands and/or to form functional Notch dimers.  相似文献   

5.
 The Drosophila gene Serrate encodes a transmembrane protein with 14 epidermal growth factor-(EGF)-like repeats in its extracellular portion. It has been suggested to act as a signal in the developing wing from the dorsal side to induce the organising centre at the dorsal/ventral compartment boundary, which is required for growth and patterning of the wing. Ectopic expression of Serrate during wing development induces ectopic outgrowth of ventral wing tissue and the formation of an additional wing margin. Here we present data to suggest that both events are mediated by genes that are required for normal wing development, including Notch as receptor. In order for Serrate to elicit these responses the concomitant expression of wingless seems to be required. The lack of wings in flies devoid of Serrate function can be partially restored by Gal4-mediated expression of Serrate, whilst expression of wingless is not sufficient. Ectopic expression of Delta, which encodes a structurally very similar transmembrane protein with EGF-like repeats, provokes wing outgrowth and induction of a new margin under all conditions tested here, both on the dorsal and ventral side. Our data further suggest that Serrate can act as an activating ligand for the Notch receptor only under certain circumstances; it inhibits Notch function under other conditions. Received: 26 april 1996 / Accepted: 24 May 1996  相似文献   

6.
The receptor protein NOTCH and its ligands SERRATE and DELTA are involved in many developmental processes in invertebrates and vertebrates alike. Here we show that the expression of the Serrate and Delta genes patterns the segments of the leg in Drosophila by a combination of their signalling activities. Coincident stripes of Serrate and Delta expressing cells activate Enhancer of split expression in adjacent cells through Notch signalling. These cells form a patterning boundary from which a putative secondary signal leads to the development of leg joints. Elsewhere in the tarsal segments, signalling by DELTA and NOTCH is necessary for the development of non-joint parts of the leg. We propose that these two effects result from different thresholds of NOTCH activation, which are translated into different downstream gene expression effects. We propose a general mechanism for creation of boundaries by Notch signalling.  相似文献   

7.
Notch signalling plays a major role in many invertebrate and vertebrate patterning systems. In this paper, we use high-titre, non-replicative pseudotype viruses to show that the two Notch ligands, Delta1 and Serrate1 (Jagged1), have differing activities in the developing chick spinal cord and hindbrain. In the walls of the neural tube, Serrate1 appears not to affect neurogenesis, in contrast to Delta1 which mediates lateral inhibition as elsewhere in the nervous system. In the floorplate we find that there is also a requirement for Notch, but with a different type of dependence on the two Notch ligands: cells with a floorplate character are lost when Notch activity is blocked with dominant-negative, truncated forms of either Delta1 or Serrate1. Our results are consistent with ligand-receptor specificity within the Notch signalling pathway, Serrate1 recognising selectively Notch2 (which is expressed in the floorplate), and Delta1 acting on both Notch2 and Notch1 (which is expressed in the walls of the neural tube).  相似文献   

8.
9.
10.
O-Fucose has been identified on epidermal growth factor-like (EGF) repeats of Notch, and elongation of O-fucose has been implicated in the modulation of Notch signaling by Fringe. O-Fucose modifications are also predicted to occur on Notch ligands based on the presence of the C(2)XXGG(S/T)C(3) consensus site (where S/T is the modified amino acid) in a number of the EGF repeats of these proteins. Here we establish that both mammalian and Drosophila Notch ligands are modified with O-fucose glycans, demonstrating that the consensus site was useful for making predictions. The presence of O-fucose on Notch ligands raised the question of whether Fringe, an O-fucose specific beta 1,3-N-acetylglucosaminyltransferase, was capable of modifying O-fucose on the ligands. Indeed, O-fucose on mammalian Delta 1 and Jagged1 can be elongated with Manic Fringe in vivo, and Drosophila Delta and Serrate are substrates for Drosophila Fringe in vitro. These results raise the interesting possibility that alteration of O-fucose glycans on Notch ligands could play a role in the mechanism of Fringe action on Notch signaling. As an initial step to begin addressing the role of the O-fucose glycans on Notch ligands in Notch signaling, a number of mutations in predicted O-fucose glycosylation sites on Drosophila Serrate have been generated. Interestingly, analysis of these mutants has revealed that O-fucose modifications occur on some EGF repeats not predicted by the C(2)XXGGS/TC(3) consensus site. A revised, broad consensus site, C(2)X(3-5)S/TC(3) (where X(3-5) are any 3-5 amino acid residues), is proposed.  相似文献   

11.
12.
The Notch receptor contains a conserved ankyrin repeat domain that is required for Notch-mediated signal transduction. The ankyrin domain of Drosophila Notch contains six ankyrin sequence repeats previously identified as closely matching the ankyrin repeat consensus sequence, and a putative seventh C-terminal sequence repeat that exhibits lower similarity to the consensus sequence. To better understand the role of the Notch ankyrin domain in Notch-mediated signaling and to examine how structure is distributed among the seven ankyrin sequence repeats, we have determined the crystal structure of this domain to 2.0 angstroms resolution. The seventh, C-terminal, ankyrin sequence repeat adopts a regular ankyrin fold, but the first, N-terminal ankyrin repeat, which contains a 15-residue insertion, appears to be largely disordered. The structure reveals a substantial interface between ankyrin polypeptides, showing a high degree of shape and charge complementarity, which may be related to homotypic interactions suggested from indirect studies. However, the Notch ankyrin domain remains largely monomeric in solution, demonstrating that this interface alone is not sufficient to promote tight association. Using the structure, we have classified reported mutations within the Notch ankyrin domain that are known to disrupt signaling into those that affect buried residues and those restricted to surface residues. We show that the buried substitutions greatly decrease protein stability, whereas the surface substitutions have only a marginal affect on stability. The surface substitutions are thus likely to interfere with Notch signaling by disrupting specific Notch-effector interactions and map the sites of these interactions.  相似文献   

13.
Unlike most receptors, Notch serves as both the receiver and direct transducer of signaling events. Activation can be mediated by one of five membrane-bound ligands of either the Delta-like (-1, -2, -4) or Jagged/Serrate (-1, -2) families. Alternatively, dissociation of the Notch heterodimer with consequent activation can also be mediated experimentally by calcium chelators or by mutations that destabilize the Notch1 heterodimer, such as in the human disease T cell acute lymphoblastic leukemia. Here we show that MAGP-2, a protein present on microfibrils, can also interact with the EGF-like repeats of Notch1. Co-expression of MAGP-2 with Notch1 leads to both cell surface release of the Notch1 extracellular domain and subsequent activation of Notch signaling. Moreover, we demonstrate that the C-terminal domain of MAGP-2 is required for binding and activation of Notch1. Based on the high level of homology, we predicted and further showed that MAGP-1 can also bind to Notch1, cause the release of the extracellular domain, and activate signaling. Notch1 extracellular domain release induced by MAGP-2 is dependent on formation of the Notch1 heterodimer by a furin-like cleavage, but does not require the subsequent ADAM metalloprotease cleavage necessary for production of the Notch signaling fragment. Together these results demonstrate for the first time that the microfibrillar proteins MAGP-1 and MAGP-2 can function outside of their role in elastic fibers to activate a cellular signaling pathway.  相似文献   

14.
Notch (N) and its ligands, Delta (Dl) and Serrate (Ser), are membrane-spanning proteins with EGF repeats. They play an essential role in mediating proliferation and segregated differentiation of stem cells. One of the prominent features of N signal system is that its ligands are anchored to the plasma membrane, which allows the ligand/receptor association only between the neighboring cells. Various lines of evidences have verified this intercellular signal transmission, but there also have been implications that expression of Dl or Ser interferes cell-autonomously with the ability of the cell to receive N signal, implying that N and its ligands may interact in the same cell. Here, we demonstrate that N, Dl, and Ser cell-autonomously form homomeric or heteromeric complexes. The cell-autonomous heteromeric complexes are not present on the cell surface, implying that the association occurs in the endoreticulum or Golgi apparatus. Expression of Dl or Ser cell-autonomously reduces the N-mediated HES-5 promoter activity, indicating that the cell-autonomous association alters the N signal receptivity. Intracellular deletion of Dl shows elevated activity of this dominant-negative effect. In vivo overexpression study suggests that the cell-autonomous function of Dl and Ser is independent of the ligand specificity and may be modulated by Fringe (Fg), which inhibits the formation of the cell-autonomous Dl/N or Ser/N complex.  相似文献   

15.
The glp-1 gene encodes a membrane protein required for inductive cell interactions during development of the nematode Caenorhabditis elegans. Here we report the molecular characterization of 15 loss-of-function (lf) mutations of glp-1. Two nonsense mutations appear to eliminate glp-1 activity; both truncate the glp-1 protein in its extracellular domain and have a strong loss-of-function phenotype. Twelve missense mutations and one in-frame deletion map to sites within the repeated motifs of the glp-1 protein (10 epidermal growth factor [EGF]-like and 3 LNG repeats extracellularly and 6 cdc10/SWI6, or ankyrin, repeats intracellularly). We find that all three types of repeated motifs are critical to glp-1 function, and two individual EGF-like repeats may have distinct functions. Intriguingly, all four missense mutations in one phenotypic class map to the N-terminal EGF-like repeats and all six missense mutations in a second phenotypic class reside in the intracellular cdc10/SWI6 repeats. These two clusters of mutations may identify functional domains within the glp-1 protein.  相似文献   

16.
Notch is a single-pass transmembrane receptor protein. Delta (member of the DSL protein family), a Notch ligand, is also single-pass transmembrane protein that can interact with Notch to form the Delta-Notch complex. It has been demonstrated that of the 36 Epidermal Growth Factor (EGF) repeats of Notch, 11th and 12th are sufficient to mediate interactions with Delta. Crystal structure of mammalian Notch1 extracellular ligand binding domain shows the presence of 11th and 12th EGF-like repeats. Here a portion of the Drosophila Delta protein, known to interact with Notch extracellular domain, has been modeled using homology modeling. The structure of the Delta-Notch complex was subsequently modeled by protein-docking method using GRAMM. Molecular dynamic simulations of the modeled structures were performed. The probable structures for Delta-Notch complex have been proposed based on interaction energy parameter and planarity studies.  相似文献   

17.
Notch signalling is well-known to mediate lateral inhibition in inner ear sensory patches, so as to generate a balanced mixture of sensory hair cells and supporting cells. Recently, however, we have found that ectopic Notch activity at an early stage can induce the formation of ectopic sensory patches. This suggests that Notch activity may have two different functions in normal ear development, acting first to promote the formation of the prosensory patches, and then later to regulate hair-cell production within the patches. The Notch ligand Serrate1 (Jag1 in mouse and humans) is expressed in the patches from an early stage and may provide Notch activation during the prosensory phase. Here, we test whether Notch signalling is actually required for prosensory patch development. When we block Notch activation in the chick embryo using the gamma-secretase inhibitor DAPT, we see a complete loss of prosensory epithelial cells in the anterior otocyst, where they are diverted into a neuroblast fate via failure of Delta1-dependent lateral inhibition. The cells of the posterior prosensory patch remain epithelial, but expression of Sox2 and Bmp4 is drastically reduced. Expression of Serrate1 here is initially almost normal, but subsequently regresses. The patches of sensory hair cells that eventually develop are few and small. We suggest that, in normal development, factors other than Notch activity initiate Serrate1 expression. Serrate1, by activating Notch, then drives the expression of Sox2 and Bmp4, as well as expression of the Serrate1 gene itself. The positive feedback maintains Notch activation and thereby preserves and perhaps extends the prosensory state, leading eventually to the development of normal sensory patches.  相似文献   

18.
Notch signalling is critical to help direct T-cell lineage commitment in early T-cell progenitors and in the development of αβ T-cells. Epithelial and stromal cell populations in the thymus express the Notch DSL (Delta, Serrate and Lag2)ligands Delta-like 1 (Dll1), Delta-like 4 (Dll4), Jagged 1 and Jagged 2, and induce Notch signalling in thymocytes that express the Notch receptor. At present there is nothing known about the role of the Delta-like 3 (Dll3) ligand in the immune system. Here we describe a novel cell autonomous role for Dll3 in αβ T-cell development. We show that Dll3 cannot activate Notch when expressed in trans but like other Notch ligands it can inhibit Notch signalling when expressed in cis with the receptor. The loss of Dll3 leads to an increase in Hes5 expression in double positive thymocytes and their increased production of mature CD4(+) and CD8(+) T cells. Studies using competitive irradiation chimeras proved that Dll3 acts in a cell autonomous manner to regulate positive selection but not negative selection of autoreactive T cells. Our results indicate that Dll3 has a unique function during T-cell development that is distinct from the role played by the other DSL ligands of Notch and is in keeping with other recent studies indicating that Dll1 and Dll3 ligands have non-overlapping roles during embryonic development.  相似文献   

19.
Epsin is an endocytic protein that binds Clathrin, the plasma membrane, Ubiquitin, and also a variety of other endocytic proteins through well-characterized motifs. Although Epsin is a general endocytic factor, genetic analysis in Drosophila and mice revealed that Epsin is essential specifically for internalization of ubiquitinated transmembrane ligands of the Notch receptor, a process required for Notch activation. Epsin's mechanism of function is complex and context-dependent. Consequently, how Epsin promotes ligand endocytosis and thus Notch signaling is unclear, as is why Notch signaling is uniquely dependent on Epsin. Here, by generating Drosophila lines containing transgenes that express a variety of different Epsin deletion and substitution variants, we tested each of the five protein or lipid interaction modules for a role in Notch activation by each of the two ligands, Serrate and Delta. There are five main results of this work that impact present thinking about the role of Epsin in ligand cells. First, we discovered that deletion or mutation of both UIMs destroyed Epsin's function in Notch signaling and had a greater negative impact on Epsin activity than removal of any other module type. Second, only one of Epsin's two UIMs was essential. Third, the lipid-binding function of the ENTH domain was required only for maximal Epsin activity. Fourth, although the C-terminal Epsin modules that interact with Clathrin, the adapter protein complex AP-2, or endocytic accessory proteins were necessary collectively for Epsin activity, their functions were highly redundant; most unexpected was the finding that Epsin's Clathrin binding motifs were dispensable. Finally, we found that signaling from either ligand, Serrate or Delta, required the same Epsin modules. All of these observations are consistent with a model where Epsin's essential function in ligand cells is to link ubiquitinated Notch ligands to Clathrin-coated vesicles through other Clathrin adapter proteins. We propose that Epsin's specificity for Notch signaling simply reflects its unique ability to interact with the plasma membrane, Ubiquitin, and proteins that bind Clathrin.  相似文献   

20.
M E Zweifel  D Barrick 《Biochemistry》2001,40(48):14344-14356
To gain insight into the structural basis for Notch signaling, and to investigate the relationship between structure and stability in ankyrin repeat proteins, we have examined structural features of polypeptides from the Drosophila melanogaster Notch protein that contain five, six, and a putative seventh ankyrin repeat. Circular dichroism (CD) spectroscopy indicates that Notch ankyrin polypeptides of different length contain a significant amount of alpha-helix, indicating that a folded structure can be maintained despite the loss of individual ankyrin modules. However, the alpha-helical content of the construct with the putative seventh repeat is slightly higher than polypeptides containing fewer repeats, suggesting that the putative seventh repeat may help stabilize other parts of the ankyrin domain. Fluorescence spectroscopy indicates that the single tryptophan in the fifth ankyrin repeat is in a nonpolar environment and is shielded from solvent in all three constructs, although slight differences in spectroscopic properties of the six- and five-repeat constructs are observed, indicating minor structural changes. Near-UV CD indicates that these ankyrin polypeptides contain a significant amount of fixed tertiary structure surrounding their aromatic side chains. Gel filtration chromatography and sedimentation equilibrium studies indicate that these ankyrin repeat polypeptides are monomeric. Sedimentation velocity studies indicate that each polypeptide exhibits significant axial asymmetry, consistent with the elongated structure seen for other for ankyrin repeat proteins. However, the degree of asymmetry is greatest for the construct containing six repeats, suggesting that in the absence of the putative seventh repeat, the sixth repeat is partly unfolded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号