首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A conventional view holds that population bottlenecks cause massive losses of genetic variability, thus endangering the viability of the derived population. Although some alleles that were infrequent in the parent population may be lost new empirical evidence from Drosophila and housefly populations has demonstrated that genetic variance available to selection may actually increase following a single severe bottleneck. Several theoretical models support this view, and suggest that the increase may result from conversion of balanced epistatic variance to additive variance that becomes immediately available to selection. These effects appear to be greatest on the inheritance of quantitative characters, releasing new variance through the disruption of covariance matrices that underlie and interrelate quantitative traits. Thus, character change in adaptation and speciation may, in some instances, be promoted by founder events.  相似文献   

2.
A population’s neutral genetic variation is a composite of its size, degree of isolation and demographic history. Bottlenecks and founder events increase genetic drift, leading to the loss of genetic variation and increased genetic differentiation among populations. Gene flow has the opposite effects. Thus, gene flow can override the genetic patterns caused by founder events. Using 37 microsatellite loci, we investigated the effects of serial bottlenecks on genetic variation and differentiation among 42 Alpine ibex populations in Switzerland with known re‐introduction histories. We detected a strong footprint of re‐introduction events on contemporary genetic structure, with re‐introduction history explaining a substantial part of the genetic differentiation among populations. As a result of the translocation of a considerable number of individuals from the sole formerly surviving population in northern Italy, most of the genetic variation of the ancestral population is now present in the combined re‐introduced Swiss populations. However, re‐introductions split up the genetic variation among populations, such that each contemporary Swiss population showed lower genetic variation than the ancestral population. As expected, serial bottlenecks had different effects on the expected heterozygosity (He) and standardized number of alleles (sNa). While loss of sNa was higher in the first bottlenecks than in subsequent ones, He declined to a similar degree with each bottleneck. Thus, genetic drift was detected with each bottleneck, even when no loss of sNa was observed. Overall, more than a hundred years after the beginning of this successful re‐introduction programme, re‐introduction history was the main determinant of today’s genetic structure.  相似文献   

3.
It is important to detect population bottlenecks in threatened and managed species because bottlenecks can increase the risk of population extinction. Early detection is critical and can be facilitated by statistically powerful monitoring programs for detecting bottleneck-induced genetic change. We used Monte Carlo computer simulations to evaluate the power of the following tests for detecting genetic changes caused by a severe reduction in a population's effective size ( N e): a test for loss of heterozygosity, two tests for loss of alleles, two tests for change in the distribution of allele frequencies, and a test for small N e based on variance in allele frequencies (the 'variance test'). The variance test was most powerful; it provided an 85% probability of detecting a bottleneck of size N e = 10 when monitoring five microsatellite loci and sampling 30 individuals both before and one generation after the bottleneck. The variance test was almost 10-times more powerful than a commonly used test for loss of heterozygosity, and it allowed for detection of bottlenecks before 5% of a population's heterozygosity had been lost. The second most powerful tests were generally the tests for loss of alleles. However, these tests had reduced power for detecting genetic bottlenecks caused by skewed sex ratios. We provide guidelines for the number of loci and individuals needed to achieve high-power tests when monitoring via the variance test. We also illustrate how the variance test performs when monitoring loci that have widely different allele frequency distributions as observed in five wild populations of mountain sheep ( Ovis canadensis ).  相似文献   

4.
Introductions of biological control agents may cause bottlenecks in population size despite efforts to avoid them. We examined the population genetics of Aphidius ervi (Hymenoptera: Braconidae), a parasitoid that was introduced to North America from Western Europe in 1959 to control pea aphids. To explore the phylogeographical relationships of A. ervi we sequenced 1249 bp of mitochondrial DNA (mtDNA) from 27 individuals from the native range and 51 individuals from the introduced range. Most individuals from Western Europe, the Middle East and North America shared one of two common haplotypes, consistent with the known history of the introduction. However, some A. ervi from the Pacific Northwest have a haplotype that is most similar to haplotypes found in Japan, raising the possibility of a second accidental introduction. To examine population structure and assess whether a bottleneck occurred upon introduction to North America, we assayed variation at 5 microsatellite loci in 62 individuals from 2 native populations and 230 individuals from 6 introduced populations. Introduced samples had fewer rare alleles than native samples (F1,34 = 13.5, P = 0.0008), but heterozygosity did not differ significantly. These results suggest that a mild bottleneck occurred in spite of the introduction of over 1000 individuals. Using a hierarchical Bayesian approach, the founding population size was estimated to be 245 individuals. amova showed significant genetic differentiation between the European and North American samples, and a Bayesian assignment approach clustered individuals into four groups, with most European individuals in one group and most North American individuals in the other three. These results highlight that genetic changes are associated with founder events in rapidly growing natural populations, even when the founding population size is relatively large.  相似文献   

5.
Few bottlenecks of wild populations are sufficiently well-documented to constitute models for testing theories about the impact of bottlenecks on genetic variation, and subsequent population persistence. Relevant details of the Bennett's wallaby (Macropus rufogriseus rufogriseus) introduction into New Zealand were recorded (founder number, source and approximate bottleneck duration) and suggest this may provide a rare opportunity to examine the efficacy of tests designed to detect recent bottlenecks in wild populations. We first assessed the accuracy of historic accounts of the introduction using genetic diversity detected in mitochondrial DNA (mtDNA) and at five microsatellite loci. Phylogenetic analyses of mtDNA D-loop sequence haplotypes were consistent with the reported origin of the founders as Tasmania, rather than one of the Bass Strait islands in which Bennett's wallabies are also found. Microsatellite allele frequencies from the Tasmanian source population were then used to seed bottleneck simulations encompassing varying sizes and numbers of generations, in order to assess the severity of bottleneck consistent with diversity observed in the New Zealand population. The results suggested that the founder number was unlikely to have been as small as the three animals suggested by the account of the introduction. Nonetheless, the bottleneck was probably severe; in the range of three to five pairs of wallabies for one to three generations. It resulted in significantly reduced levels of allelic diversity and heterozygosity relative to the source population. This bottleneck is only detectable under the infinite allele model (IAM) and not under the stepwise mutation model (SMM) or the two-phase model (TPM), and possible explanations for this are discussed.  相似文献   

6.
Detecting past population bottlenecks using temporal genetic data   总被引:1,自引:0,他引:1  
Population bottlenecks wield a powerful influence on the evolution of species and populations by reducing the repertoire of responses available for stochastic environmental events. Although modern contractions of wild populations due to human-related impacts have been documented globally, discerning historic bottlenecks for all but the most recent and severe events remains a serious challenge. Genetic samples dating to different points in time may provide a solution in some cases. We conducted serial coalescent simulations to assess the extent to which temporal genetic data are informative regarding population bottlenecks. These simulations demonstrated that the power to reject a constant population size hypothesis using both ancient and modern genetic data is almost always higher than that based solely on modern data. The difference in power between the modern and temporal DNA approaches depends significantly on effective population size and bottleneck intensity and less significantly on sample size. The temporal approach provides more power in cases of genetic recovery (via migration) from a bottleneck than in cases of demographic recovery (via population growth). Choice of genetic region is critical, as mutation rate heavily influences the extent to which temporal sampling yields novel information regarding the demographic history of populations.  相似文献   

7.
基于叶绿体DNA trnT-trnF序列研究祁连圆柏的谱系地理学   总被引:4,自引:0,他引:4  
由于青藏高原的地貌效应,第四纪冰期气候的反复变化应对现今该地区生物的地理分布及其居群遗传结构产生重大影响。本文对这一地区特有分布物种祁连圆柏Juniperus przewalskii Kom.整个分布区内20居群392个个体的trnT-trnF序列变化进行了研究;共发现3种单倍型(haplotype),构成两种地理区域:高原台面上的居群主要固定Hap A,而Hap A、Hap B和Hap C在高原边缘居群均有分布。所有居群总的遗传多样性HT = 0.511,GST= 0.847。在低海拔的高原边缘,Hap A、Hap B和Hap C高频率固定在不同的居群中,表明可能存在多个不同的避难所,居群反复缩小和扩张的瓶颈效应造成了遗传多样性的丢失。而边缘的一个居群含有两种相似单倍型频率则可能是冰期后迁移融合而成或者该居群在冰期经受的瓶颈作用更弱。高原台面东部间断分布的居群只固定Hap A,表明它们可能经历了冰期后共同的回迁过程和由此产生的奠基者效应。我们的研究结果表明祁连圆柏在冰期可能存在多个避难所,瓶颈效应和奠基者效应造成了这些居群现在的遗传多样性分布式样。  相似文献   

8.
Genetic analysis has been promoted as a way to reconstruct recent historical dynamics (“historical demography”) by screening for signatures of events, such as bottlenecks, that disrupt equilibrium patterns of variation. Such analyses might also identify “metapopulation” processes like extinction and recolonization or source-sink dynamics, but this potential remains largely unrealized. Here we use simulations to test the ability of two currently used strategies to distinguish between a set of interconnected subpopulations (demes) that have undergone bottlenecks or extinction and recolonization events (metapopulation dynamics) from a set of static demes. The first strategy, decomposed pairwise regression, provides a holistic test for heterogeneity among demes in their patterns of isolation-by-distance. This method suffered from a type II error rate of 59–100 %, depending on parameter conditions. The second strategy tests for deviations from mutation-drift equilibrium on a deme-by-deme basis to identify sites likely to have experienced recent bottlenecks or founder effects. Although bottleneck tests have good statistical power for single populations with recent population declines, their validity in structured populations has been called into question, and they have not been tested in a metapopulation context with immigration (or colonization) and population recovery. Our simulations of hypothetical metapopulations show that population recovery can rapidly eliminate the statistical signature of a bottleneck, and that moderate levels of gene flow can generate a false signal of recent population growth for demes in equilibrium. Although we did not cover all possible metapopulation scenarios, the performance of the tests was disappointing. Our results indicate that these methods might often fail to identify population bottlenecks and founder effects if population recovery and/or gene flow are influential demographic features of the study system.  相似文献   

9.
Mammal species characterized by highly fluctuating populations often maintain genetic diversity in response to frequent demographic bottlenecks, suggesting the ameliorating influence of life history and behavioral factors. Immigration in particular is expected to promote genetic recovery and is hypothesized to be the most likely process maintaining genetic diversity in fluctuating mammal populations. Most demographic bottlenecks have been inferred retrospectively, and direct analysis of a natural population before, during, and after a bottleneck is rare. Using a continuous 10-year dataset detailing the complete demographic and genetic history of a fluctuating population of golden-mantled ground squirrels (Spermophilus lateralis), we analyzed the genetic consequences of a 4-year demographic bottleneck that reduced the population to seven adult squirrels, and we evaluated the potential “rescue effect” of immigration. Analysis of six microsatellite loci revealed that, while a decline in allelic richness was observed during the bottleneck, there was no observed excess of heterozygosity, a characteristic bottleneck signature, and no evidence for heterozygote deficiency during the recovery phase. In addition, we found no evidence for inbreeding depression during or after the bottleneck. By identifying immigrants and analyzing their demographic and genetic contributions, we found that immigration promoted demographic recovery and countered the genetic effects of the bottleneck, especially the loss of allelic richness. Within 3 years both population size and genetic variation had recovered to pre-bottleneck levels, supporting the role of immigration in maintaining genetic variation during bottleneck events in fluctuating populations. Our analyses revealed considerable variation among analytical techniques in their ability to detect genetic bottlenecks, suggesting that caution is warranted when evaluating bottleneck events based on one technique.  相似文献   

10.
Population bottlenecks and founder events reduce genetic diversity through stochastic processes associated with the sampling of alleles at the time of the bottleneck, and the recombination of alleles that are identical by descent. At the same time bottlenecks and founder events can structure populations through the stochastic distortion of allele frequencies. Here we undertake an empirical assessment of the impact of two independent bottlenecks of known size from a known source, and consider inference about evolutionary process in the context of simulations and theoretical expectations. We find a similar level of reduced variation in the parallel bottleneck events, with the greater impact on the population that began with the smaller number of females. The level of diversity remaining was consistent with model predictions, but only if re-growth of the population was essentially exponential and polygeny was minimal at the early stages. There was a high level of differentiation seen compared to the source population and between the two bottlenecked populations, reflecting the stochastic distortion of allele frequencies. We provide empirical support for the theoretical expectations that considerable diversity can remain following a severe bottleneck event, given rapid demographic recovery, and that populations founded from the same source can become quickly differentiated. These processes may be important during the evolution of population genetic structure for species affected by rapid changes in available habitat.  相似文献   

11.
Selection maintains MHC diversity through a natural population bottleneck   总被引:1,自引:0,他引:1  
A perceived consequence of a population bottleneck is the erosion of genetic diversity and concomitant reduction in individual fitness and evolutionary potential. Although reduced genetic variation associated with demographic perturbation has been amply demonstrated for neutral molecular markers, the effective management of genetic resources in natural populations is hindered by a lack of understanding of how adaptive genetic variation will respond to population fluctuations, given these are affected by selection as well as drift. Here, we demonstrate that selection counters drift to maintain polymorphism at a major histocompatibility complex (MHC) locus through a population bottleneck in an inbred island population of water voles. Before and after the bottleneck, MHC allele frequencies were close to balancing selection equilibrium but became skewed by drift when the population size was critically low. MHC heterozygosity generally conformed to Hardy-Weinberg expectations except in one generation during the population recovery where there was a significant excess of heterozygous genotypes, which simulations ascribed to strong differential MHC-dependent survival. Low allelic diversity and highly skewed frequency distributions at microsatellite loci indicated potent genetic drift due to a strong founder affect and/or previous population bottlenecks. This study is a real-time examination of the predictions of fundamental evolutionary theory in low genetic diversity situations. The findings highlight that conservation efforts to maintain the genetic health and evolutionary potential of natural populations should consider the genetic basis for fitness-related traits, and how such adaptive genetic diversity will vary in response to both the demographic fluctuations and the effects of selection.  相似文献   

12.
Current methods of DNA sequence analysis attempt to reconstruct historical patterns of population structure and growth from contemporary samples. However, these techniques may be influenced by recent population bottlenecks, which have the potential to eliminate lineages that reveal past changes in demography. One way to examine the performance of these demographic methods is to compare samples from populations before and after recent bottlenecks. We compared estimates of demographic history from populations of greater prairie-chickens (Tympanuchus cupido) before and after recent bottlenecks using four common methods (nested clade analysis [NCA], Tajima's D, mismatch distribution, and MDIV). We found that NCA did not perform well in the presence of bottleneck events, although it did recover some genetic signals associated with increased isolation and the extinction of intermediate populations. The majority of estimates for Tajima's D, including those from bottlenecked populations, were not significantly different from zero, suggesting our data conformed to neutral expectations. In contrast, mismatch distributions including the raggedness index were more likely to identify recently bottlenecked populations with this data set. Estimates of population mutation rate (theta), population divergence time (t), and time to the most recent common ancestor (TMRCA) from MDIV were similar before and after bottlenecks; however, estimates of gene flow (M) were significantly lower in a few cases following a bottleneck. These results suggest that caution should be used when assessing demographic history from contemporary data sets, as recently fragmented and bottlenecked populations may have lost lineages that affect inferences of their demographic history.  相似文献   

13.
Kramer A  Sarnelle O 《Oecologia》2008,157(4):561-569
The Allee effect can result in a negative population growth rate at low population density. Consequently, populations below a minimum (critical) density are unlikely to persist. A lower limit on population size should constrain the loss of genetic variability due to genetic drift during population bottlenecks or founder events. We explored this phenomenon by modeling changes in genetic variability and differentiation during simulated bottlenecks of the alpine copepod, Hesperodiaptomus shoshone. Lake surveys, whole-lake re-introduction experiments and model calculations all indicate that H. shoshone should be unlikely to establish or persist at densities less than 0.5–5 individuals m−3. We estimated the corresponding range in minimum effective population size using the distribution of habitat (lake) sizes in nature and used these values to model the expected heterozygosity, allelic richness and genetic differentiation resulting from population bottlenecks. We found that during realistic bottlenecks or founder events, >90% of H. shoshone populations in the Sierra Nevada may be resistant to significant changes in heterozygosity or genetic distance, and 70–75% of populations may lose <10% of allelic richness. We suggest that ecological constraints on minimum population size be considered when using genetic markers to estimate historical population dynamics.  相似文献   

14.
Models of founder events have focused on the reduction in the genetic variation following a founder event. However, recent work (Bryant et al., 1986; Goodnight, 1987) suggests that when there is epistatic genetic variance in a population, the total genetic variance within demes may actually increase following a founder event. Since the additive genetic variance is a statistical property of a population and can change with the level of inbreeding, some of the epistatic genetic variance may be converted to additive genetic variance during a founder event. The model presented here demonstrates that some of the additive-by-additive epistatic genetic variance is converted to additive genetic variance following a founder event. Furthermore, the amount of epistasis converted to additive genetic variance is a function of the recombination rate and the propagule size. For a single founder event of two individuals, as much as 75% of the epistatic variance in the ancestral population may become additive genetic variance following the founder event. For founder events involving two individuals with free recombination, the relative contribution of epistasis to the additive genetic variance following a founder event is equal to its proportion of the total genetic variance prior to the founder event. Traits closely related to fitness are expected to have relatively little additive genetic variance but may have substantial nonadditive genetic variance. Founder events may be important in the evolution of fitness traits, not because they lead to a reduction in the genetic variance, but rather because they lead to an increase in the additive genetic variance.  相似文献   

15.
Because of anthropogenic factors many populations have been at least temporarily reduced to a very small population size. Such reductions could potentially decrease genetic variation and increase the probability of extinction. Analysis of molecular markers has shown a decrease in genetic variation but in many cases this has not reduced the ability of the population to recover from the bottleneck. This apparent paradox is resolved by a consideration of how population bottlenecks can affect additive genetic variance, the relevant measure of ability to respond to selective factors. A bottleneck has the potential to increase additive genetic variance in a population. This may result in an increase in fitness, particularly in populations of conservation concern that are small and lack genetic variation. Here we present a meta-analysis of experimental tests of this prediction using models designed to fit data that is strictly additive and data that has non-additive components. This analysis shows that additive genetic variance in a dataset dominated by morphological traits increases, on average, after a bottleneck event when the inbreeding coefficient is less than 0.3, but neither of the theoretical models alone can adequately explain this result. Because of our inability at present to predict the results of a population bottleneck in a specific case and the probability of extinction associated with small population size we caution against using bottlenecks to increase genetic variance, and thus the fitness, of endangered populations.  相似文献   

16.
Drastic reductions in population size, or bottlenecks, are thought to significantly erode genetic variability and reduce fitness. However, it has been suggested that a population can be purged of the genetic load responsible for reduced fitness when subjected to bottlenecks. To investigate this phenomenon, we put a number of Drosophila melanogaster isofemale lines known to differ in inbreeding depression through four ‘founder‐flush’ bottleneck cycles with flush sizes of 5 or 100 pairs and assayed for relative fitness (single‐pair productivity) after each cycle. Following the founder‐flush phase, the isofemale lines, with a large flush size and a history of inbreeding depression, recovered most of the fitness lost from early inbreeding, consistent with purging. The same isofemale lines, with a small flush size, did not regain fitness, consistent with the greater effect of genetic drift in these isofemale lines. On the other hand, the isofemale lines that did not show initial inbreeding depression declined in fitness after repeated bottlenecks, independent of the flush size. These results suggest that the nature of genetic variation in fitness may greatly influence the way in which populations respond to bottlenecks and that stochastic processes play an important role. Consequently, an attempt intentionally to purge a population of detrimental variation through inbreeding appears to be a risky strategy, particularly in the genetic management of endangered species.  相似文献   

17.
The Norwegian red deer population (Cervus elaphus) was from the mid eighteenth to the early twentieth century drastically reduced in size and distribution but has the last century expanded both demographically and spatially. We have investigated genetic variation, differentiation and admixture in this spatially expanding ungulate population, using 14 microsatellites. The present genetic structure is moderate to strong with an average F ST = 0.08. Low M-ratios indicate loss of genetic variation in all localities and signals of a recent bottleneck was identified in 14 of 15 localities. Genetic distances between the localities indicate two main routes of dispersal during expansion, from the north–west and south–west, respectively. Bayesian assignment tests verify a break of the dataset in two, and demonstrate 99.9% probability for the existence of five sub-populations, which coincide well with five relict populations described by historic records. Computer simulations suggest that the observed genetic differentiation is recent rather than ancient, and that it may be explained by models of fragmentation or of founder events and subsequent merging rather than by models of recent bottlenecks in some particular demes within an ancient genetic structure.  相似文献   

18.
The well documented historical translocations of the European rabbit (Oryctolagus cuniculus) offer an excellent framework to test the genetic effects of reductions in effective population size. It has been proposed that rabbits went through an initial bottleneck at the time of their establishment in Australia, as well as multiple founder events during the rabbit's colonization process. To test these hypotheses, genetic variation at seven microsatellite loci was measured in 252 wild rabbits from five populations across Australia. These populations were compared to each other and to data from Europe. No evidence of a genetic bottleneck was observed with the movement of 13 rabbits from Europe to Australia when compared to French data. Within Australia the distribution of genetic diversity did not reflect the suggested pattern of sequential founder effects. In fact, the current pattern of genetic variation in Australia is most likely a result of multiple factors including mutation, genetic drift and geographical differentiation. The absence of reduced genetic diversity is almost certainly a result of the rabbit's rapid population expansion at the time of establishment in Australia. These results highlight the importance of population growth following a demographic bottleneck, which largely determines the severity of genetic loss.  相似文献   

19.
Population bottlenecks are often invoked to explain low levels of genetic variation in natural populations, yet few studies have documented the direct genetic consequences of known bottlenecks in the wild. Empirical studies of natural population bottlenecks are therefore needed, because key assumptions of theoretical and laboratory studies of bottlenecks may not hold in the wild. Here we present microsatellite data from a severe bottleneck (95% mortality) in an insular population of song sparrows (Melospiza melodia). The major findings of our study are as follows: (i) The bottleneck reduced heterozygosity and allelic diversity nearly to neutral expectations, despite non-random survival of birds with respect to inbreeding and wing length. (ii) All measures of genetic diversity regained pre-bottleneck levels within two to three years of the crash. This rapid recovery was due to low levels of immigration. (iii) The rapid recovery occurred despite a coincident, strong increase in average inbreeding. These results show that immigration at levels that are hard to measure in most field studies can lead to qualitatively very different genetic outcomes from those expected from mutations only. We suggest that future theoretical and empirical work on bottlenecks and metapopulations should address the impact of immigration.  相似文献   

20.
The northern pike Esox lucius L. is a freshwater fish exhibiting pronounced population subdivision and low genetic variability. However, there is limited knowledge on phylogeographical patterns within the species, and it is not known whether the low genetic variability reflects primarily current low effective population sizes or historical bottlenecks. We analysed six microsatellite loci in ten populations from Europe and North America. Genetic variation was low, with the average number of alleles within populations ranging from 2.3 to 4.0 per locus. Genetic differentiation among populations was high (overall θST = 0.51; overall ρST = 0.50). Multidimensional scaling analysis of genetic distances between populations and spatial analysis of molecular variance suggested a single phylogeographical race within the sampled populations from northern Europe, whereas North American and southern European populations were highly distinct. A population from Ireland was monomorphic at all loci, presumably reflecting founder events associated with introduction of the species to the island in the sixteenth century. Bayesian analysis of demographic parameters showed differences in θ (a product of effective population size and mutation rate) among populations from large and small water bodies, but the relative differences in θ were smaller than expected, which could reflect population subdivision within the larger water bodies. Finally, the analyses showed drastic population declines on a time scale of several thousand years within European populations, which we ascribe to either glacial bottlenecks or postglacial founder events.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 84 , 91–101.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号