首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The design of modified nucleic acid aptamers is improved by considering thermodynamics and kinetics of their association/dissociation processes. Locked Nucleic Acids (LNA) is a promising class of nucleic acid analogs. In this work the thermodynamic and kinetic properties of a LNA quadruplex formed by the TGGGT sequence, containing only conformationally restricted LNA residues, are reported and compared to those of 2'-OMe-RNA (O-RNA) and DNA quadruplexes. The thermodynamic analysis indicates that the sugar-modified quadruplexes (LNA and O-RNA) are stabilized by entropic effects. The kinetic analysis shows that LNA and O-RNA quadruplexes are characterized by a slower dissociation and a faster association with respect to DNA quadruplex. Interestingly, the LNA quadruplex formation process shows a second-order kinetics with respect to single strand concentration and has a negative activation energy. To explain these data, a mechanism for tetramer formation with two intermediate states was proposed.  相似文献   

2.
NMR solution structure of a parallel LNA quadruplex   总被引:3,自引:2,他引:1  
The solution structure of a locked nucleic acid (LNA) quadruplex, formed by the oligomer d(TGGGT), containing only conformationally restricted LNA residues is reported. NMR and CD spectroscopy, as well as molecular dynamics and mechanic calculations, has been used to characterize the complex. The molecule adopts a parallel stranded conformation with a 4-fold rotational symmetry, showing a right-handed helicity and the guanine residues in an almost planar conformation with three well-defined G-tetrads. The thermal stability of Q-LNA has been found to be comparable with that of [r(UGGGU)]4, while a Tm increment of 20°C with respect to the corresponding DNA quadruplex structure [d(TGGGT)]4 has been observed. The structural features of the LNA quadruplex reported here may open new perspectives for the biological application of LNAs as novel versatile tools to design aptamer or catalyst oligonucleotides.  相似文献   

3.
Telomeric DNA of a variety of vertebrates including humans contains the tandem repeat d(TTAGGG)n. The guanine rich strand can fold into four-stranded G-quadruplex structures, which have recently become attractive for biomedical research. Indeed, the aptamers based on the quadruplex motif may prove useful as tools aimed at binding and inhibiting particular proteins, catalyzing various biochemical reactions, or even serving as pharmaceutically active agents. The incorporation of modified bases into oligonucleotides can have profound effects on their folding and may produce useful changes in physical and biological properties of the resulting DNA fragments. In this work, the adenines of the human telomeric repeat oligonucleotide d(TAGGGT) and d(AGGGT) were substituted by 2'-deoxy-8-(propyn-1-yl)adenosine (A-->APr) or by 8-bromodeoxyadenosine (A-->ABr). The biophysical properties of the resulting quadruplex structures were compared with the unmodified quadruplexes. NMR and CD spectra of the studied sequences were characteristic of parallel-stranded, tetramolecular quadruplexes. The analysis of the equilibrium melting curves reveals that the modifications stabilize the quadruplex structure. The results are useful when considering the design of novel aptameric nucleic acids with diverse molecular recognition capabilities that would not be present using native RNA/DNA sequences.  相似文献   

4.
LNAs (locked nucleic acids) are new DNA analogues with higher binding affinities toward nucleic acids than the canonical counterparts mainly due to the characteristic conformational restriction arising from the 2'-O, 4'-C methylene bridge. In light of the promising therapeutic applications and considering the advantageous characteristics of LNAs, such as their high water solubility, easy handling, and synthetic accessibility through the conventional phosphoramidite chemistry, we undertook a study concerning the capability of these nucleic acid analogues to form quadruplex structures. Particularly, we have been investigating the LNA/DNA chimeras corresponding to the well-known DNA sequences 5-GGTTGGTGTGGTTGG-3', capable of forming an unimolecular quadruplex. This article deals with the study of the sequence 5'-ggTTggTGTggTTgg-3' (upper and lower case letters represent DNA and LNA residues, respectively), which, according to CD spectroscopy, is able to fold into a quadruplex structure.  相似文献   

5.
LNAs (locked nucleic acids) are new DNA analogues with higher binding affinities toward nucleic acids than the canonical counterparts mainly due to the characteristic conformational restriction arising from the 2′-O, 4′-C methylene bridge. In light of the promising therapeutic applications and considering the advantageous characteristics of LNAs, such as their high water solubility, easy handling, and synthetic accessibility through the conventional phosphoramidite chemistry, we undertook a study concerning the capability of these nucleic acid analogues to form quadruplex structures. Particularly, we have been investigating the LNA/DNA chimeras corresponding to the well-known DNA sequences 5′-GGTTGGTGTGGTTGG-3′, capable of forming an unimolecular quadruplex. This article deals with the study of the sequence 5′-ggTTggTGTggTTgg-3′ (upper and lower case letters represent DNA and LNA residues, respectively), which, according to CD spectroscopy, is able to fold into a quadruplex structure.  相似文献   

6.
Quadruplexes are involved in the regulation of gene expression and are part of telomeres at the ends of chromosomes. In addition, they are useful in therapeutic and biotechnological applications, including nucleic acid diagnostics. In the presence of K+ ions, two 15-mer sequences d(GGTTGGTGTGGTTGG) (thrombin binding aptamer) and d(GGGTGGGTGGGTGGG) (G3T) fold into antiparallel and parallel quadruplexes, respectively. In the present study, we measured the fluorescence intensity of one or more 2-aminopurine or 6-methylisoxanthopterin base analogs incorporated at loop-positions of quadruplex forming sequences to develop a detection method for DNA sequences in solution. Before quadruplex formation, the fluorescence is efficiently quenched in all cases. Remarkably, G3T quadruplex formation results in emission of fluorescence equal to that of a free base in all three positions. In the case of thrombin binding aptamer, the emission intensity depends on the location of the fluorescent nucleotides. Circular dichroism studies demonstrate that the modifications do not change the overall secondary structure, whereas thermal unfolding experiments revealed that fluorescent analogs significantly destabilize the quadruplexes. Overall, these studies suggest that quadruplexes containing fluorescent nucleotide analogs are useful tools in the development of novel DNA detection methodologies.  相似文献   

7.
The arrangement of the human telomeric quadruplex in physiologically relevant conditions has not yet been unambiguously determined. Our spectroscopic results suggest that the core quadruplex sequence G3(TTAG3)3 forms an antiparallel quadruplex of the same basket type in solution containing either K+ or Na+ ions. Analogous sequences extended by flanking nucleotides form a mixture of the antiparallel and hybrid (3 + 1) quadruplexes in K+-containing solutions. We, however, show that long telomeric DNA behaves in the same way as the basic G3(TTAG3)3 motif. Both G3(TTAG3)3 and long telomeric DNA are also able to adopt the (3 + 1) quadruplex structure: Molecular crowding conditions, simulated here by ethanol, induced a slow transition of the K+-stabilized quadruplex into the hybrid quadruplex structure and then into a parallel quadruplex arrangement at increased temperatures. Most importantly, we demonstrate that the same transitions can be induced even in aqueous, K+-containing solution by increasing the DNA concentration. This is why distinct quadruplex structures were detected for AG3(TTAG3)3 by X-ray, nuclear magnetic resonance and circular dichrosim spectroscopy: Depending on DNA concentration, the human telomeric DNA can adopt the antiparallel quadruplex, the (3 + 1) structure, or the parallel quadruplex in physiologically relevant concentrations of K+ ions.  相似文献   

8.
In this paper, we report the NMR structural study of two quadruplex structures formed by truncations of the human telomeric sequence and containing a modified base, namely d(AprGGGT) and d(TAprGGGT), where Apr indicates 2'-deoxy-8-(propyn-1-yl)adenosines. Both oligonucleotides have been found to form 4-fold symmetric G-quadruplex structures with all strands parallel and equivalent to each other and characterized by higher thermal stabilities than the natural counterparts. The presence of the propynyl groups affects the conformations of the 5' edge of both quadruplexes in such a way to prevent the formation of one of the two possible H-bond patterns observed for a canonical A-tetrad. The increased thermal stabilities of the modified quadruplexes seem to be mostly due to a prevalent syn glycosidic conformation assumed by the Apr residues.  相似文献   

9.
We have used two-dimensional (1)H NMR spectroscopy at 750 MHz to determine a high-resolution solution structure of an oligonucleotide containing restricted nucleotides with a 2'-O, 4'-C-methylene bridge (LNA) hybridized to the complementary DNA strand. The LNA:DNA duplex examined contained four thymidine LNA modifications (T(L), d(C1T(L)2G3C4T(L)5T(L)6C7T(L)8G9C10):d( G11C12A13G14A15A16G17C 18A19G20). A total relaxation matrix approach was used to obtain interproton distance bounds from NOESY cross-peak intensities. These distance bounds were used as restraints in molecular dynamics (rMD) calculations. Forty final structures were generated for the duplex from A-form and B-form DNA starting structures. The root-mean-square deviation (RMSD) of the coordinates for the 40 structures of the complex was 0.6 A. The sugar puckerings are averaged values of a dynamic interchange between N- and S-type conformation except in case of the locked nucleotides that were found to be fixed in the C3'-endo conformation. Among the other nucleotides in the modified strand, the furanose ring of C7 and G9 is predominantly in the N-type conformation whereas that of G3 is in a mixed conformation. The furanose rings of the nucleotides in the unmodified complementary strand are almost exclusively in the S-type conformation. Due to these different conformations of the sugars in the two strands, there is a structural strain between the A-type modified strand and the B-type unmodified complementary strand. This strain is relaxed by decreasing the value of rise and compensating with tip, buckle, and propeller twist. The values of twist vary along the strand but for a majority of the base pairs a value even lower than that of A-DNA is observed. The average twist over the sequence is 32+/-1 degrees. On the basis of the structure, we conclude that the high stability of LNA:DNA duplexes is caused by a local change of the phosphate backbone geometry that favors a higher degree of stacking.  相似文献   

10.
Abstract

A NMR structural study of quadruplex [d(TGGGT)]4 containing a modified thymine is reported. The three dimensional structure of the complex is very similar to those of other parallel stranded quadruplexes. The modified thymines (T*) are able, at least in the minimised structures, to form a tetrad containing extra H-bonds through the hydroxyl groups. Nevertheless, in this new tetrad the modified thymines are slightly open towards the solvent respect to the unmodified T-tetrad.  相似文献   

11.
Unfolding of DNA quadruplexes induced by HIV-1 nucleocapsid protein   总被引:4,自引:1,他引:3  
The human immunodeficiency virus type 1 nucleocapsid protein (NC) is a nucleic acid chaperone that catalyzes the rearrangement of nucleic acids into their thermodynamically most stable structures. In the present study, a combination of optical and thermodynamic techniques were used to characterize the influence of NC on the secondary structure, thermal stability and energetics of monomolecular DNA quadruplexes formed by the sequence d(GGTTGGTGTGGTTGG) in the presence of K+ or Sr2+. Circular dichroism studies demonstrate that NC effectively unfolds the quadruplexes. Studies carried out with NC variants suggest that destabilization is mediated by the zinc fingers of NC. Calorimetric studies reveal that NC destabilization is enthalpic in origin, probably owing to unstacking of the G-quartets upon protein binding. In contrast, parallel studies performed on a related DNA duplex reveal that under conditions where NC readily destabilizes and unfolds the quadruplexes, its effect on the DNA duplex is much less pronounced. The differences in NC's ability to destabilize quadruplex versus duplex is in accordance with the higher ΔG of melting for the latter, and with the inverse correlation between nucleic acid stability and the destabilizing activity of NC.  相似文献   

12.
DNA-based aptamers that contain 2′-O,4′-C-methylene-bridged/linked bicyclic ribonucleotides (B/L nucleotides) over the entire length were successfully obtained using a capillary electrophoresis systematic evolution of ligands by exponential enrichment (CE-SELEX) method. A modified DNA library was prepared with an enzyme mix of KOD Dash and KOD mutant DNA polymerases. Forty 2′-O,4′-C-methylene bridged/locked nucleic acid (2′,4′-BNA/LNA) aptamers were isolated from an enriched pool and classified into six groups according to their sequence. 2′,4′-BNA/LNA aptamers of groups V and VI bound human thrombin with Kd values in the range of several 10 nanomolar levels.  相似文献   

13.
Two G-quadruplex forming sequences, 5'-TGGGAG and the 17-mer sequence T30177, which exhibit anti-HIV-1 activity on cell lines, were modified using either locked nucleic acids (LNA) or via insertions of (R)-1-O-(pyren-1-ylmethyl)glycerol (intercalating nucleic acid, INA) or (R)-1-O-[4-(1-pyrenylethynyl)phenylmethyl]glycerol (twisted intercalating nucleic acid, TINA). Incorporation of LNA or INA/TINA monomers provide as much as 8-fold improvement of anti-HIV-1 activity. We demonstrate for the first time a detailed analysis of the effect the incorporation of INA/TINA monomers in quadruplex forming oligonucleotides (QFOs) and the effect of LNA monomers in the context of biologically active QFOs. In addition, recent literature reports and our own studies on the gel retardation of the phosphodiester analogue of T30177 led to the conclusion that this sequence forms a parallel, dimeric G-quadruplex. Introduction of the 5'-phosphate inhibits dimerisation of this G-quadruplex as a result of negative charge-charge repulsion. Contrary to that, we found that attachment of the 5'-O-DMT-group produced a more active 17-mer sequence that showed signs of aggregation-forming multimeric G-quadruplex species in solution. Many of the antiviral QFOs in the present study formed more thermally stable G-quadruplexes and also high-order G-quadruplex structures which might be responsible for the increased antiviral activity observed.  相似文献   

14.
DNA guanine quadruplexes are all based on stacks of guanine tetrads, but they can be of many types differing by mutual strand orientation, topology, position and structure of loops, and the number of DNA molecules constituting their structure. Here we have studied a series of nine DNA fragments (G(3)Xn)(3)G(3), where X = A, C or T, and n = 1, 2 or 3, to find how the particular bases and their numbers enable folding of the molecule into quadruplex and what type of quadruplex is formed. We show that any single base between G(3) blocks gives rise to only four-molecular parallel-stranded quadruplexes in water solutions. In contrast to previous models, even two Ts in potential loops lead to tetramolecular parallel quadruplexes and only three consecutive Ts lead to an intramolecular quadruplex, which is antiparallel. Adenines make the DNA less prone to quadruplex formation. (G(3)A(2))(3)G(3) folds into an intramolecular antiparallel quadruplex. The same is true with (G(3)A(3))(3)G(3) but only in KCl. In NaCl or LiCl, (G(3)A(3))(3)G(3) prefers to generate homoduplexes. Cytosine still more interferes with the quadruplex, which only is generated by (G(3)C)(3)G(3), whereas (G(3)C(2))(3)G(3) and (G(3)C(3))(3)G(3) generate hairpins and/or homoduplexes. Ethanol is a more potent DNA guanine quadruplex inducer than are ions in water solutions. It promotes intramolecular folding and parallel orientation of quadruplex strands, which rather corresponds to quadruplex structures observed in crystals.  相似文献   

15.
We have determined solution structure of r(GGAGGUUUUGGAGG) (R14) by NMR; the RNA 14-mer forms an intra-strand parallel quadruplex with a G-tetrad and a hexad, in which a G-tetrad core is augmented by association of two A residues. The quadruplex further forms a dimer through stacking interaction between the hexads. In order to obtain insight into the difference between RNA and DNA quadruplexes, we synthesized the corresponding DNA 14-mer, d(GGAGGTTTTGGAGG) (D14), and examined its properties and structure by CD, gel electrophoresis, and NMR. K+ ions increased the thermal stability of both R14 and D14 structures. The binding affinity of K+ ions to R14 was much higher than that to D14. The CD and gel electrophoretic studies suggest that D14 forms a quadruplex entirely different from that of R14 in the presence of K+ ions; two molecules of D14 form a quadruplex with both antiparallel and parallel strand alignments and with diagonal loops at both ends of the stacked G-tetrads. The NMR study also gave results that are consistent with such structure: alternate glycosidic conformation, 5'G(syn)-G(anti)3', and characteristic chemical shift data observed for many quadruplexes containing diagonal TTTT loops.  相似文献   

16.
1H-NMR, CD, and UV spectroscopy have been used to investigate the structure of PNA/DNA chimeras forming quadruplex structures. In particular, we synthesized 5'TGGG3'-t (1) and 5'TGG3'-gt (2), where lower and upper case letters indicate PNA and DNA residues, respectively. CD spectrum and all NMR data of (1) are typical of quadruplexes involving four parallel strands. UV melting profile of (1) indicates that its thermal stability is quite similar to that observed for the reference structure [d(TGGGT)]4. 1H-NMR spectrum for 5'TGG3'-gt (2) shows that this oligonucleotide is not able to fold into a single, well-defined species.  相似文献   

17.
McTigue PM  Peterson RJ  Kahn JD 《Biochemistry》2004,43(18):5388-5405
The design of modified nucleic acid probes, primers, and therapeutics is improved by considering their thermodynamics. Locked nucleic acid (LNA) is one of the most useful modified backbones, with incorporation of a single LNA providing a substantial increase in duplex stability. In this work, the hybridization DeltaH(o), DeltaS(o), and melting temperature (T(M)) were measured from absorbance melting curves for 100 duplex oligonucleotides with single internal LNA nucleotides on one strand, and the results provided DeltaDeltaH(o), DeltaDeltaS(o), DeltaDelta, and DeltaT(M) relative to reference DNA oligonucleotides. LNA pyrimidines contribute more stability than purines, especially A(L), but there is substantial context dependence for each LNA base. Both the 5' and 3' neighbors must be considered in predicting the effect of an LNA incorporation, with purine neighbors providing more stability. Enthalpy-entropy compensation in DeltaDeltaH(o) and DeltaDeltaS(o) is observed across the set of sequences, suggesting that LNA can stabilize the duplex by either preorganization or improved stacking, but not both simultaneously. Singular value decomposition analysis provides predictive sequence-dependent rules for hybridization of singly LNA-substituted DNA oligonucleotides to their all-DNA complements. The results are provided as sets of DeltaDeltaH(o), DeltaDeltaS(o), and DeltaDelta parameters for all 32 of the possible nearest neighbors for LNA+DNA:DNA hybridization (5' MX(L) and 5' X(L)N, where M, N, and X = A, C, G, or T and X(L) represents LNA). The parameters are applicable within the standard thermodynamic prediction algorithms. They provide T(M) estimates accurate to within 2 degrees C for LNA-containing oligonucleotides, which is significantly better accuracy than previously available.  相似文献   

18.
Smirnov IV  Shafer RH 《Biopolymers》2007,85(1):91-101
Stabilization of nucleic acid structures results from a balance of multiple interactions, including electrostatics, base stacking, hydrophobic interactions, hydrogen bonding, van der Waals forces, etc. Nucleic acid quadruplexes are unusual structures in that their formation is driven by specific binding of metal ions. This unique mode of metal binding, which is tightly coupled to oligonucleotide folding, can engender correspondingly unique solution behavior. In particular, we show that addition of many cosolvents, such as primary aliphatic alcohols, increases the thermal stability of quadruplexes, as determined by melting temperature, Tm, in direct contrast to the response of duplexes to the same admixture of solvents. Thermal stability is observed to increase as the dielectric constant of the composite solvent decreases. This behavior suggests a dominant role for electrostatics in quadruplex formation and stability. Additional studies done with other cosolvents and solutes suggest that, in some cases, other forces may come into play, including the possibility of direct interaction with the quadruplex structure. Nonetheless, many cosolvents and small molecules, such as ethanol, dimethylformamide, and betaine, stabilize the quadruplex conformation in sharp distinction to their destabilization of DNA duplexes.  相似文献   

19.
Guanosine-rich sequences are prone to fold into four-stranded nucleic acid structures. Such quadruplex sequences have long been suspected to play important roles in regulatory processes within cells. Although DNA quadruplexes have been studied in great detail, four-stranded structures made up from RNA have received only minor attention, although it is known that RNA is able to form stable quadruplexes as well.Here, we compare quadruplex structures and stabilities of a variety of DNA and RNA sequences. We focus on well established DNA sequences and determine the topologies and stabilities of the corresponding RNA sequences by CD spectroscopy and CD thermal melting experiments. We find that the RNA sequences exclusively fold into the all-parallel conformation in contrast to the diverse topologies adopted by DNA quadruplexes. The thermal stabilities of the RNA structures rival those of the corresponding DNA sequences, often displaying enhanced stabilities compared to their DNA counterparts. Especially thermodynamically less stable sequences show a strong preference for potassium, with the RNA quadruplexes exhibiting much higher stabilities than the corresponding DNAs. The latter finding suggests that quadruplexes formed at critical positions in mRNAs might perturb gene expression to a larger extend than previously anticipated.  相似文献   

20.
DNA sequences that can form intramolecular quadruplex structures are found in promoters of proto-oncogenes. Many of these sequences readily fold into parallel quadruplexes. Here we characterize the ability of yeast Pif1 to bind and unfold a parallel quadruplex DNA substrate. We found that Pif1 binds more tightly to the parallel quadruplex DNA than single-stranded DNA or tailed duplexes. However, Pif1 unwinding of duplexes occurs at a much faster rate than unfolding of a parallel intramolecular quadruplex. Pif1 readily unfolds a parallel quadruplex DNA substrate in a multiturnover reaction and also generates some product under single cycle conditions. The rate of ATP hydrolysis by Pif1 is reduced when bound to a parallel quadruplex compared with single-stranded DNA. ATP hydrolysis occurs at a faster rate than quadruplex unfolding, indicating that some ATP hydrolysis events are non-productive during unfolding of intramolecular parallel quadruplex DNA. However, product eventually accumulates at a slow rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号