首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
When corticosterone was incubated with cytochrome P-45011 beta purified from bovine adrenocortical mitochondria in the presence of adrenodoxin, NADPH-adrenodoxin reductase and an NADPH generating system, aldosterone as well as 18-hydroxycorticosterone were formed with turnover numbers of 0.23 and 1.1 nmol/min/nmol P-450, respectively. Phospholipids extracted from adrenocortical mitochondria remarkably enhanced the activity of aldosterone formation by the cytochrome P-45011 beta-reconstituted system. The apparent Km and turnover number were estimated to be 6.9 microM and 2.0 nmol/min/nmol P-450 for aldosterone formation in the presence of the lipidic extract. When 18-hydroxycorticosterone was tested as a substrate, cytochrome P-45011 beta showed catalytic activity for aldosterone synthesis with an apparent Km and turnover number of 325 microM and 5.3 nmol/min/nmol P-450, respectively. Carbon monoxide and metyrapone inhibited the production of aldosterone from corticosterone and that from 18-hydroxycorticosterone. These results suggest that conversion of corticosterone and of 18-hydroxycorticosterone to aldosterone occurs through P-45011 beta-catalyzed reaction.  相似文献   

2.
Direct effects of heparin (0.1-10 IU/ml) on basal and stimulated aldosterone production have been studied using intact rat adrenal glomerulosa cells. Heparin at any dose did not affect basal aldosterone production when added to the incubation medium. Heparin at a 0.01 IU/ml dose had no effect on aldosterone production maximally stimulated by angiotensin II (AII, 4.8 X 10(-8) M), ACTH (4.3 X 10(-9) M) or potassium (8.0 mM). However, heparin at 0.1 and 0.3 IU/ml doses selectively blocked aldosterone production maximally stimulated by AII but not by ACTH or potassium, while the compound at 1 and 10 IU/ml doses inhibited aldosterone production maximally stimulated by these three stimuli. In addition, the inhibitory effect of 0.3 IU/ml heparin occurred as early as 30 min after incubation with heparin. These data suggest that heparin at 0.1 and 0.3 IU/ml doses acts directly on adrenal zona glomerulosa to selectively block the stimulatory action of AII, while the compound at 1 and 10 IU/ml doses inhibits all the stimulatory actions of AII, ACTH and potassium.  相似文献   

3.
We examined the direct effect of magnesium ion on aldosterone production by adrenal cells using collagenase-dispersed zona-glomerulosa cells in rats. The effects of magnesium on aldosterone production stimulated by angiotensin II or ACTH were also investigated. Both magnesium sulphate (MgSO4) and magnesium chloride (MgCl2) (0 to 2 mM) decreased aldosterone production in a dose-dependent manner. In comparison with magnesium-free medium, 2 mM MgSO4 inhibited aldosterone production by 73% and MgCl2 by 65%. In addition, MgSO4 showed an inhibitory effect on aldosterone production stimulated by angiotensin II (10pM to 10nM), whereas it had no significant effect on aldosterone production due to ACTH stimulation (10pM to 10nM). These data suggest that magnesium has an inhibitory action on aldosterone production in vitro and may be a physiological regulator of aldosterone production.  相似文献   

4.
Adrenocortical cells were obtained by fractionated trypsination of newborn rat adrenal glands and transfected with a plasmid containing the EJ/T24-Ha-ras oncogene. Isolation of adhesive cells led to a proliferative cell line with an overexpression of 21 kDa ras protein. These cells incubated with corticosterone or deoxycorticosterone as the precursor produced a high level of 18-hydroxycorticosterone and aldosterone as identified by gas chromatography- mass spectrometry. ACTH and angiotensin II increased the basal production of aldosterone nineteen-fold and six-fold respectively. Under ACTH stimulation the ratio between aldosterone and 18-hydroxycorticosterone production was 1:3. The transformation of corticosterone under angiotensin II stimulation yielded up to 41% of 18-hydroxycorticosterone (4.7 micrograms/mg of cell protein per 24h) and 4.4% of aldosterone (0.5 microgram/mg of cell protein per 24h) in a low potassium concentration medium (6 mmol/l). To our knowledge this is the first report of continuous proliferative adrenocortical cells producing aldosterone.  相似文献   

5.
The effect of various nucleotides on the last step of aldosterone biosynthesis, the so-called "18 oxidation" (transformation of 18-hydroxycorticosterone to aldosterone), was studied by incubation of tritiated 18-hydroxycorticosterone with untreated duck adrenal mitochondria in vitro. The study was carried out in the absence or in the presence of antimycin A which blocks the respiratory chain. Results show that, when oxidative phosphorylation chain functions normally, GTP and CTP had no effect, UTP stimulated this reaction but ADP and ATP inhibited the transformation of 18-hydroxycorticosterone into aldosterone to the same extent. For this reason ATP is included in all controls for experiments studying the effect of ATP when "18 oxidation" is inhibited by antimycin A. When oxidative phosphorylation chain is inhibited by antimycin A, ATP is able to reverse the inhibition of "18 oxidation" induced by antimycin A, in the presence of succinate. Under these conditions UTP is not able to reverse the inhibition induced by antimycin A; GTP and CTP had no effect. Effects of ATP and UTP on the last step of aldosterone biosynthesis are related to different mechanisms. ATP clearly acts as an energy source for "18 oxidation" in the presence of succinate. The role of UTP must still be determined.  相似文献   

6.
The inhibiting effects of 18-ethynyl-deoxycorticosterone (18-E-DOC) as a mechanism-based inhibitor on the late-steps of the aldosterone biosynthetic pathway were examined in calf adrenal zona glomerulosa cells in primary culture and in freshly isolated calf zona glomerulosa cells. 18-E-DOC inhibited the stimulated secretion of aldosterone and 18-hydroxycorticosterone in a similar dose-response and time fashion. No significant differences were found between the inhibition in cultured and freshly isolated cells (Ki of 0.25 vs 0.26 μM) Corticosterone secretion stimulated by ACTH or angiotensin II was also cultured in freshly isolated zona glomerulosa and fasciculata cells, but was not inhibited in cultured calf adrenal cells. Cortisol secretion stimulated by ACTH was not inhibited by 18-E-DOC in cultured zona fasciculata adrenal cells, but was inhibited in freshly isolated zona fasciculata cells with a Ki of 48 μM. The secretion of 18-hydroxyDOC or 19-hydroxyDOC stimulated by ACTH was not inhibited by 18-E-DOC. The bovine adrenal has been reported to have cytochrome P-450 11β-hydroxylases that can perform the various hydroxylations required for the synthesis of cortisol and aldosterone in the different areas of the adrenal. In other species a distinct 11β-hydroxylase which participates in the biosynthesis of aldosterone and is located in the zona glomerulosa has been described. These studies with the mechanism-based inhibitor, 18-E-DOC, suggest that the bovine adrenal functions in a manner very similar to that of other species and raises the possibility that a distinct 11β-hydroxylase with aldosterone synthase activity might be present, but has not been cloned as yet.  相似文献   

7.
Bovine adrenocortical calmodulin was purified and its general properties were examined. The latter were similar to those of bovine brain calmodulin. When added to a cytochrome P-450(11)beta-reconstituted system in the presence of dilauroylphosphatidylcholine, calmodulin decreased the rate of aldosterone production from corticosterone from 0.8 to 0.1 nmol/(min X nmol P-450), while it increased the rate of 18-hydroxycorticosterone production from 1.8 to 4.6 nmol/(min X nmol P-450). This effect of calmodulin on steroid production was maximum at a concentration of 1 microM, when 1 microM cytochrome P-450(11)beta was used. The effect was dependent on the presence of Ca2+, and maximal response was observed at less than 1 microM Ca2+. There was essentially no difference in the effect when bovine brain calmodulin was used. Calmodulin induced a change in the activity of cytochrome P-450(11)beta in the presence of a wide concentration range of corticosterone as a substrate. As for 18-hydroxycorticosterone production, calmodulin increased both the maximal activity and the apparent Km for corticosterone, but it decreased the apparent Km for adrenodoxin. Adrenodoxin at a concentration of less than 20 microM did not fully abolish the effect of calmodulin. A small type I difference spectrum appeared when calmodulin was added to cytochrome P-450(11)beta. The difference spectrum increased significantly in the presence of both Ca2+ and adrenodoxin. These results suggest that calmodulin interacts with cytochrome P-450(11)beta in the presence of adrenodoxin and then modulates the activity of aldosterone synthesis catalyzed by cytochrome P-450(11) beta.  相似文献   

8.
Synthetic ovine CRF (8 micrograms/rat) injected intravenously in nembutal anaesthetized rats increased not only plasma ACTH and corticosterone but also aldosterone and 18-hydroxycorticosterone concentrations. The maximum elevation occurred 30 min after oCRF administration. 2 h and 4 h after injection the hormone concentrations declined and after 6 h the corticosterone and 18-hydroxycorticosterone values were lower than the corresponding controls. At this time aldosterone remained slightly elevated and ACTH unchanged. 24 h after oCRF injection no difference between the control and oCRF treated animals were evident.  相似文献   

9.
Using sonicated mitochondria fraction prepared from bovine adrenal glomerulosa cells, aldosterone biosynthesis from 18-hydroxycorticosterone was examined as its final step, as production of [3H]-aldosterone from [3H]-corticosterone was strongly reduced by addition of non-radioactive 18-hydroxycorticosterone during the incubation. Significant conversion of 18-hydroxycorticosterone to aldosterone by the mitochondria sonicate was observed in the presence of NADPH, but not NADP+. This reaction was almost completely inhibited in the atmosphere of 100% carbon monoxide in the presence of either NADP+, or NAD+, and significantly reduced in the mixture of carbon monoxide and oxygen (90:10) in the presence of NADPH. Several drugs, such as SU compounds, spironolactone, amphenone B and SKF 525A which affect cytochrome P-450 blocked production of aldosterone from 18-hydroxycorticosterone. From these results, we conclude that a mixed function oxidase involving a cytochrome P-450 is engaged in the final course of aldosterone biosynthesis.  相似文献   

10.
Dexamethasone, aldosterone and spironolactone inhibited the release of immunoreactive corticotropin (ACTH) from primary culture of the rat anterior pituitary cells. The steroids inhibited only the ACTH release stimulated by Pitressin and not the basal ACTH release by non-stimulated cells. On a molar basis, aldosterone appears to be the most efficient inhibitor of ACTH release while the effect of spironolactone is similar to the effect of dexamethasone. Simultaneous incubation with aldosterone and spironolactone inhibited the ACTH release to the same extent as spironolactone alone. This indicates that aldosterone's effect on ACTH release is also inhibited by spironolactone at the pituitary level.  相似文献   

11.
While in vitro incubation of dispersed cell preparations of adrenal cell types has been widely used as an experimental model, few studies have addressed the possibility that the enzymic and mechanical treatments involved may affect tissue functions. Using rat adrenal whole capsule tissue, consisting of glomerulosa cells still attached to the connective tissue capsule together with some fasciculata cells, and dispersed glomerulosa cell preparations formed by a variety of enzymic and incubation treatments, striking differences have been demonstrated between the functions of the various preparations in vitro. Under ACTH stimulation, whole capsules produced (ng per pair ± s.e.) 405 ± 35 ng aldosterone, 650 ± 60 ng 18-hydroxycorticosterone (18-OH-B) and 850 ± 90 ng corticosterone. In cells dispersed by collagenase incubation followed by repeated pipetting and filtration, aldosterone and 18-OH-B yields under ACTH stimulation fell to values less than 10% of those produced by whole tissue, whereas corticosterone values were unchanged. Omitting the filtration step gave a less well marked decline in aldosterone and 18-OH-B to 50% of intact tissue values. When the tissue was not dispersed after collagenase incubation, aldosterone and 18-OH-B outputs were similar in the two preparations. The decline in aldosterone and 18-OH-B is not attributable to loss in cell–cell contact alone, since short term culture of collagenase dispersed cells on contracting collagen discs did not restore the capacity to produce these steroids, and a decline in their output also occurred in similar culture of intact capsule tissue. In acute incubations, hyaluronidase had similar effects to collagenase, whereas trypsin, papain and a bacterial protease evoked aldosterone release during the preincubation period, but did not affect subsequent yields of aldosterone and 18-OH-B in incubations of dispersed (but not filtered tissue) in the presence of ACTH. Chymo-trypsin had no effect on preincubation but eliminated subsequent response to ACTH in all incubation conditions. Together with previously published data on the effects of trypsin, the results support the view that in intact rat adrenal glomerulosa tissue, aldosterone and 18-OH-B are sequestered into intracellular stores in the form of novel steroid-protein complexes. These are hydrolysed by trypsin and other preoteases with consequent release of steroid, but are virtually eliminated by conventional methods of cell suspension preparations, using collagenase preincubation with subsequent mechanical dispersal and filtration.  相似文献   

12.
Dispersed chicken adrenocortical cells were preincubated with atrial natriuretic peptide (rANP), sodium nitroprusside (SNP) or 8-bromo cyclic GMP, followed by incubations with ACTH, chicken PTH, cholera toxin or various steroid intermediates of aldosterone production. Cyclic AMP production and aldosterone secretion were evaluated, in order to determine the sites of ANP inhibition in the sequence of events leading to aldosterone secretion. Dose-dependent inhibitory effects on ACTH-stimulated aldosterone secretion by rANP and SNP were observed. Both agents appeared to stimulate cGMP production by the particulate fraction of the avian adrenocortical cells. Aldosterone production, stimulated by cyclic AMP agonists such as ACTH, chicken PTH and cholera toxin, was significantly inhibited by ANP. On the other hand, ANP did not interfere with production or degradation of cAMP. Each of the aldosterone intermediates--pregnenolone, progesterone, 11-deoxycorticosterone and corticosterone--promoted aldosterone production when included in the incubation media. Atrial natriuretic peptide and SNP inhibited aldosterone secretion when enhanced by the intermediates, by about 40-60%, but the ACTH-stimulated secretion was inhibited by over 90%. The results suggest two sites of inhibition by ANP in the pathway of aldosterone synthesis and secretion: synthesis of cholesterol or pregnenolone, and conversion of corticosterone to aldosterone. The inhibition by 8-bromo cGMP of aldosterone secretion and the similar sites of inhibition for ANP and SNP suggest that cyclic GMP mediates the inhibition in both cases.  相似文献   

13.
It has been shown that serine proteases are involved in aldosterone and 18-hydroxycorticosterone production by the rat adrenal zona glomerulosa in response to a variety of stimulants. From evidence presented for various tissues, including the rat adrenal cortex, the observation that adenylate cyclase can be activated by proteolytic enzymes and inhibited by protease inhibitors has led to the suggestion that serine proteases may also be involved in the hormonal stimulation of adenylate cyclase. In studies designed to test this hypothesis using protease inhibitors, only high concentrations (greater than 10(-4) M) of TAME (p-tosyl-L-arginine methyl ester) inhibited ACTH stimulated steroid and cAMP production in rat adrenal glomerulosa cells. TPCK (tosyl-L-phenylalanine chloromethylketone) and TLCK (tosyl-L-lysine chloromethylketone) were found to have a similar effect at very high concentrations (10(-2) M) but had no effect at the serine protease inhibitory concentration of 5 X 10(-6) M. Other protease inhibitors tested had no effect on ACTH-stimulated cAMP but the inhibitory effect of high concentrations of protease inhibitors on ACTH-stimulated adenylate cyclase was duplicated by the polyanion dextran sulphate. The results suggest that the inhibitors act through non-specific membrane effects and that proteases are not involved in the activation of zona glomerulosa adenylate cyclase by ACTH. In view of these findings it is concluded that a more rigorous approach should be applied to the use of protease inhibitors in whole cell systems, and that the concept of hormonal activation of adenylate cyclase via proteolytic events, which is based on studies with such inhibitors, should be reconsidered.  相似文献   

14.
Aldosterone biosynthesis by a reconstituted cytochrome P-45011 beta system   总被引:1,自引:0,他引:1  
[3H]Corticosterone was incubated with cytochrome P-45011 beta purified to electrophoretic homogeneity from bovine adrenocortical mitochondria, and the reaction products were analyzed by high performance liquid chromatography. The production of aldosterone (21.2 pmol/nmol P-450/min) and 18-hydroxycorticosterone (1.17 nmol/nmol P-450/min) was observed. When lipidic extracts from mitochondria of bovine adrenocortical zona glomerulosa were added to the reaction mixture, the rate of production of aldosterone was increased 28-fold. When [3H]18-hydroxycorticosterone was incubated with cytochrome P-45011 beta, the amount of aldosterone produced was 55.7 pmol/nmol P-450/min in the absence of the lipidic extracts and the enhancing effect of the lipidic extracts was 4-fold.  相似文献   

15.
The effects of growth hormone and ACTH, alone or in combination, on fetal rat adrenal steroidogenesis in vitro were examined on the last day of intrauterine development. ACTH increased, while growth hormone did not affect fetal adrenal weight. ACTH increased fetal rat adrenal steroidogenesis, hydroxylation of 4-14C-progesterone to corticosterone, 18-hydroxy-11-deoxycorticosterone, 11-hydroxycorticosterone and aldosterone. Growth hormone alone had no effect on fetal adrenal steroidogenesis. ACTH and growth hormone administered together increased the conversion of progesterone to the above mentioned steroids to a greater extent than ACTH alone. The results indicate that growth hormone may participate in the fetal rat adrenal steroidogenesis potentiating the effects of fetal pituitary ACTH.  相似文献   

16.
A mass fragmentographic technique for assay of 18-hydroxylation of labeled (exogenous) and unlabeled (endogenous) corticosterone in adrenal mitochondria and in reconstituted cytochrome P-450 systems has been developed. An extract of an incubation of [14-14C]corticosterone is subjected both to thin-layer radiochromatography and to mass fragmentography (as O-methyloxime-trimethylsilyl ether derivative). In the latter procedure the ions at m/e 605 and 607 (specific for the derivatives of unlabeled and labeled 18-hydroxycorticosterone, respectively), at m/e 591 and 593 (specific for the derivatives of unlabeled labeled aldosterone, respectively) and at m/e 548 and 550 (specific for the derivatives of unlabeled and labeled corticosterone, respectively) were followed through the gas-liquid chromatography. From the ratio between the peaks obtained in the mass fragmentography and from the percentage conversion of [4-14C]corticosterone obtained in the thin-layer radiochromatography, the amount of endogenous and exogenous 18-hydroxycorticosterone and aldosterone could be calculated. The effects of time, enzyme, and substrate concentration of 18-hydroxylation were studied and optimal conditions for assay were determined. Under most conditions, the ratio between labeled and unlabeled 18-hydroxylated products was about constant, indicating that labeled and unlabeled corticosterone were not in equilibrium. It was ascertained that the 18-hydroxycorticosterone and aldosterone formed in the incubations were derived from corticosterone. [4-14C]18-Hydroxydeoxycorticosterone was not converted into aldosterone or 18-hydroxycorticosterone. In vitro studies with different 18-hydroxylase inhibitors (spironolactone, canrenone, and canrenoate-K) and studies with rats pretreated with KCl in drinking fluid suggest that 18-hydroxylation of corticosterone is catalyzed by an enzyme system different from that catalyzing 18-hydroxylation of deoxycorticosterone.  相似文献   

17.
Monensin inhibition of corticotropin releasing factor mediated ACTH release   总被引:1,自引:0,他引:1  
D O Sobel  K M Shakir 《Peptides》1988,9(5):1037-1042
Monensin is a sodium selective carboxylic ionophore that has been helpful in studying the intracellular mechanisms of protein secretion by its ability to inhibit transport of secretory proteins, particularly through the Golgi apparatus, and by its capacity to block intracellular posttranslational processing events. We studied in rat anterior pituitary cell culture the effects of monensin on: CRF stimulated ACTH release; presynthesized (stored) ACTH release; and on forskolin- (activator of adenylate cyclase) and KCl- (a membrane depolarizer which does not stimulate ACTH synthesis) induced ACTH release. Monensin inhibited CRF stimulated ACTH release in a dose-dependent fashion. The ED50 was 2.7 x 10(-8) M and maximal inhibition was 52% at 1.5 x 10(-7) M. Inhibition at 40 minutes of CRF incubation was similar to the percent inhibition noted at 1 hr 40 min and 2 hr 40 min. Monensin (1.5 x 10(-6) M) decreased the amount of ACTH release from cells incubated with cycloheximide plus CRF by 32% (p less than 0.01). Monensin individually inhibited forskolin (2 x 10(-6) M) and dibutyryl cyclic AMP (3 x 10(-3) M) mediated ACTH release in a dose-dependent fashion. The inhibition of forskolin and dibutyryl cyclic AMP mediated ACTH release by 1.5 x 10(-6) M monensin was 48% and 46% respectively. Monensin (1.5 x 10(-6) M) also reduced KCl (50 mM) stimulated ACTH release by 48%. This study demonstrates that monensin inhibits CRF mediated ACTH release.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Paraquat is an artificial electron carrier that captures electrons from reduced cytochrome P-450 instead of the natural acceptors, thus decreasing the concentration of reduced mitochondrial cytochrome P-450. In the present study, paraquat inhibited the biosynthesis of aldosterone from 18-hydroxycorticosterone by mitochondria from duck adult adrenal gland, under aerobic conditions. Since paraquat did not induce any change in the absorption spectrum of highly purified cytochrome P-450 11 beta, the possibility of a displacement of steroid by the drug is ruled out. Moreover, paraquat did not affect oxidative phosphorylating chain nor did it alter by itself the chemical structure of 18-hydroxycorticosterone. In our conditions, the inhibitory role of paraquat seems restricted to a capture of electrons from reduced cytochrome P-450. Under the same conditions metopirone and spironolactone, known to bind cytochrome P-450 11 beta at the steroid binding site, also inhibited the reaction. Altogether these results show that for aldosterone synthesis from 18-hydroxycorticosterone to take place, the steroid binding site on cytochrome P-450 must be accessible to 18-hydroxycorticosterone and that the cytochrome P-450 must be the direct donor of reducing equivalents. Hence, cytochrome P-450 appears as the final linking point between 18-hydroxycorticosterone and the reducing equivalents provided by NADPH.  相似文献   

19.
The sites of action of beta-melanocyte stimulating hormone (beta-MSH) on aldosterone biosynthesis were studied using collagenase-dispersed adrenal glomerulosa cells from rats maintained on either normal or sodium-deficient diets for 2 weeks. Isolated cells were treated with a cyanoketone derivative (WIN 19,578) to isolate the early and late steps in aldosterone biosynthesis. WIN 19,578 (1 microM) completely blocked aldosterone production stimulated by sodium depletion, AII, ACTH, and beta-MSH. beta-MSH (1 microM) significantly stimulated pregnenolone production (early step) and the conversion of corticosterone to aldosterone (late step) in aldosterone biosynthesis. The effect of beta-MSH was similar to AII and ACTH. Sodium depletion enhanced the effect of beta-MSH only on the late step in aldosterone biosynthesis. In conclusion, beta-MSH stimulates both the early and late steps of aldosterone biosynthesis. These results suggest that beta-MSH or peptides containing beta-MSH may play a role in the regulation of aldosterone production.  相似文献   

20.
This paper documents the rare and hitherto unreported association between isolated ACTH deficiency and normoreninemic hypoaldosteronism in a 63-year-old woman. Baseline plasma aldosterone and 18-hydroxycorticosterone were extremely low. Both steroids did not respond to exogenous angiotensin II infusion, whereas they were increased in parallel to ACTH stimulation. Thus, acquired dysfunction or congenital dysgenesis of the zona glomerulosa was suspected. The upright posture-furosemide test showed a subnormal but definite plasma aldosterone response coupled with a normal increase in plasma renin activity, indicating that there may be a yet unidentified mechanism(s) underlying the postural increase of aldosterone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号