首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diabetes mellitus is a major risk factor in the development of atherosclerosis and cardiovascular disease conditions, involving intimal injury and enhanced vascular smooth muscle cell (VSMC) migration. We report a mechanistic basis for divergences between insulin's inhibitory effects on migration of aortic VSMC from control Wistar Kyoto (WKY) rats versus Goto-Kakizaki (GK) diabetic rats. In normal WKY VSMC, insulin increased MAPK phosphatase-1 (MKP-1) expression as well as MKP-1 phosphorylation, which stabilizes it, and inhibited PDGF-mediated MAPK phosphorylation and cell migration. In contrast, basal migration was elevated in GK diabetic VSMCs, and all of insulin's effects on MKP-1 expression and phosphorylation, MAPK phosphorylation, and PDGF-stimulated migration were markedly inhibited. The critical importance of MKP-1 in insulin inhibition of VSMC migration was evident from several observations. MKP-1 small interfering RNA inhibited MKP-1 expression and abolished insulin inhibition of PDGF-induced VSMC migration. Conversely, adenoviral expression of MKP-1 decreased MAPK phosphorylation and basal migration rate and restored insulin's ability to inhibit PDGF-directed migration in GK diabetic VSMCs. Also, the proteasomal inhibitors lactacystin and MG132 partially restored MKP-1 protein levels in GK diabetic VSMCs and inhibited their migration. Furthermore, GK diabetic aortic VSMCs had reduced cGMP-dependent protein kinase Ialpha (cGK Ialpha) levels as well as insulin-dependent, but not sodium nitroprusside-dependent, stimulation of cGMP. Adenoviral expression of cGK Ialpha enhanced MKP-1 inhibition of MAPK phosphorylation and VSMC migration. We conclude that enhanced VSMC migration in GK diabetic rats is due at least in part to a failure of insulin-stimulated cGMP/cGK Ialpha signaling, MKP-1 expression, and stabilization and thus MAPK inactivation.  相似文献   

2.
Glycogen synthase kinase-3 (GSK3) has been implicated in the multifactorial etiology of skeletal muscle insulin resistance in animal models and in human type 2 diabetic subjects. However, the potential molecular mechanisms involved are not yet fully understood. Therefore, we determined if selective GSK3 inhibition in vitro leads to an improvement in insulin action on glucose transport activity in isolated skeletal muscle of insulin-resistant, prediabetic obese Zucker rats and if these effects of GSK3 inhibition are associated with enhanced insulin signaling. Type I soleus and type IIb epitrochlearis muscles from female obese Zucker rats were incubated in the absence or presence of a selective, small organic GSK3 inhibitor (1 microM CT118637, Ki < 10 nM for GSK3alpha and GSK3beta). Maximal insulin stimulation (5 mU/ml) of glucose transport activity, glycogen synthase activity, and selected insulin-signaling factors [tyrosine phosphorylation of insulin receptor (IR) and IRS-1, IRS-1 associated with p85 subunit of phosphatidylinositol 3-kinase, and serine phosphorylation of Akt and GSK3] were assessed. GSK3 inhibition enhanced (P <0.05) basal glycogen synthase activity and insulin-stimulated glucose transport in obese epitrochlearis (81 and 24%) and soleus (108 and 20%) muscles. GSK3 inhibition did not modify insulin-stimulated tyrosine phosphorylation of IR beta-subunit in either muscle type. However, in obese soleus, GSK3 inhibition enhanced (all P < 0.05) insulin-stimulated IRS-1 tyrosine phosphorylation (45%), IRS-1-associated p85 (72%), Akt1/2 serine phosphorylation (30%), and GSK3beta serine phosphorylation (39%). Substantially smaller GSK3 inhibitor-mediated enhancements of insulin action on these insulin signaling factors were observed in obese epitrochlearis. These results indicate that selective GSK3 inhibition enhances insulin action in insulin-resistant skeletal muscle of the prediabetic obese Zucker rat, at least in part by relieving the deleterious effects of GSK3 action on post-IR insulin signaling. These effects of GSK3 inhibition on insulin action are greater in type I muscle than in type IIb muscle from these insulin-resistant animals.  相似文献   

3.
Insulin resistance associated with Type 2 diabetes contributes to impaired vasorelaxation and therefore contributes to the enhanced incidence of hypertension observed in diabetes. In this study, we examined the role of insulin on the association of the myosin-binding subunit of myosin phosphatase (MYPT1) to myosin phosphatase Rho-interacting protein (MRIP), a relatively novel member of the myosin phosphatase complex that directly binds RhoA in vascular smooth muscle cells (VSMCs). Through a series of molecular and cellular studies, we investigated whether insulin stimulates the binding of MRIP to MYPT1 and compared the results generated from VSMCs isolated from both Wistar-Kyoto (WKY) control and Goto-Kakizaki (GK) diabetic rats. We demonstrate for the first time that insulin stimulates the binding of MRIP to MYPT1 in a dose- and time-dependent manner, as determined by immunoprecipitation, implying a regulatory role for MRIP in insulin-induced vasodilation signaling via MYPT1 interaction. VSMCs from GK model of Type 2 diabetes had impaired insulin-induced MRIP/MYPT1 binding as well as reduced MRIP expression. Adenovirus-mediated overexpression of MRIP in GK VSMCs led to significantly improved insulin-stimulated MRIP/MYPT1 binding. Finally, insulin-stimulated MRIP translocation out of stress fibers, which was observed in control VSMCs, was impaired in GK VSMCs. We believe the impaired expression of MRIP, and therefore decreased insulin-stimulated MRIP/MYPT1 association, in the GK diabetic model may contribute to the impaired insulin-mediated vasodilation observed in the diabetic vasculature and provides a novel therapeutic strategy for the treatment of Type 2 diabetes.  相似文献   

4.
Serine/threonine phosphorylation of insulin receptor has been implicated in the development of insulin resistance. To investigate whether dephosphorylation of serine/threonine residues of the insulin receptor may restore the decreased insulin-stimulated receptor tyrosine kinase activity in skeletal muscle of obese Zucker rats, insulin receptor tyrosine kinase activity was measured before and after alkaline phosphatase treatment. Compared to lean controls, insulin-stimulated glucose transport was depressed by 61% (p < 0.05) in obese Zucker rats. The insulin receptor and insulin receptor substrate-1 contents were decreased by 14% (p < 0.05) and 16% (p < 0.05), respectively, in skeletal muscle of obese Zucker rats. In vivo insulin-induced tyrosine phosphorylation of insulin receptor and insulin receptor substrate-1 was depressed by 82% (p < 0.05) and 86% (p < 0.05), respectively. In the meantime, in vitro insulin-stimulated receptor tyrosine kinase activity in obese rats was decreased by 39% (p < 0.05). Dephosphorylation of the insulin receptor by prior alkaline phosphatase treatment increased insulin-stimulated receptor tyrosine kinase activity in both lean and obese Zucker rats, but the increase was three times greater in obese Zucker rats (p < 0.05). These findings suggest that excessive serine/threonine phosphorylation of the insulin receptor in obese Zucker rats may be a cause for insulin resistance in skeletal muscle.  相似文献   

5.
To determine the molecular mechanism underlying hyperglycemia-induced insulin resistance in skeletal muscles, postreceptor insulin-signaling events were assessed in skeletal muscles of neonatally streptozotocin-treated diabetic rats. In isolated soleus muscle of the diabetic rats, insulin-stimulated 2-deoxyglucose uptake, glucose oxidation, and lactate release were all significantly decreased compared with normal rats. Similarly, insulin-induced phosphorylation and activation of Akt/protein kinase B (PKB) and GLUT-4 translocation were severely impaired. However, the upstream signal, including phosphorylation of the insulin receptor (IR) and insulin receptor substrate (IRS)-1 and -2 and activity of phosphatidylinositol (PI) 3-kinase associated with IRS-1/2, was enhanced. The amelioration of hyperglycemia by T-1095, a Na(+)-glucose transporter inhibitor, normalized the reduced insulin sensitivity in the soleus muscle and the impaired insulin-stimulated Akt/PKB phosphorylation and activity. In addition, the enhanced PI 3-kinase activation and phosphorylation of IR and IRS-1 and -2 were reduced to normal levels. These results suggest that sustained hyperglycemia impairs the insulin-signaling steps between PI 3-kinase and Akt/PKB, and that impaired Akt/PKB activity underlies hyperglycemia-induced insulin resistance in skeletal muscle.  相似文献   

6.
Bitar MS  Al-Saleh E  Al-Mulla F 《Life sciences》2005,77(20):2552-2573
Insulin resistance, characterized by an inexorable decline in skeletal muscle glucose utilization and/or an excessive hepatic glucose production, constitutes a major pathogenic importance in a cluster of clinical disorders including diabetes mellitus, hypertension, dyslipidemia, central obesity and coronary artery disease. A novel concept suggests that heightened state of oxidative stress during diabetes contributes, at least in part, to the development of insulin resistance. Several key predictions of this premise were subjected to experimental testing using Goto-Kakizaki (GK) rats as a genetic animal model for non-obese type II diabetes. Euglycemic-hyperinsulinemic clamp studies with an insulin infusion index of 5 mU/kg bw/min were used to measure endogenous glucose production (EGP), glucose infusion rate (GIR), glucose disposal rate (GDR) and skeletal muscle glucose utilization index (GUI). Moreover, the status of oxidative stress as reflected by the urinary levels of isoprostane and protein carbonyl formation were also assessed as a function of diabetes. Post-absorptive basal EGP and circulating levels of insulin, glucose and free fatty acid (FFA) were elevated in GK rats, compared to their corresponding control values. In contrast, steady state GIR and GDR of the hyperglycemic/hyperinsulinemic animals were reduced, concomitantly with impaired insulin's ability to suppress EGP. Insulin stimulated [3H]-2-deoxyglucose (2-DG) uptake (a measure of glucose transport activity) by various types of skeletal muscle fibers both in vivo and in vitro (isolated muscle, cultured myoblasts) was diminished in diabetic GK rats. This diabetes-related suppression of skeletal muscle glucose utilization was associated with a decrease in insulin's ability to promote the phosphorylation of tyrosine residues of insulin receptor substrate-1 (IRS-1). Similarly, the translocation of GLUT-4 from intracellular compartment to plasma membrane in response to insulin was also reduced in these animals. Oxidative stress-based markers (e.g. urinary isoprostane, carbonyl-bound proteins) were elevated as a function of diabetes. Nullification of the heightened state of oxidative stress in the GK rats with alpha-lipoic acid resulted in a partial amelioration of the diabetes-related impairment of the in vivo and in vitro insulin actions. Collectively, the above data suggest that 1) insulin resistance in GK rats occurs at the hepatic and skeletal muscle levels, 2) muscle cell glucose transport exhibited a blunted response to insulin and it is associated with a major defect in key molecules of both GLUT-4 trafficking and insulin signaling pathways, 3) skeletal muscle insulin resistance in GK rats appears to be of genetic origin and not merely related to a paracrine or autocrine effect, since this phenomenon is also observed in cultured myoblasts over several passages and finally heightened state of oxidative stress may mediate the development of insulin resistance during diabetes.  相似文献   

7.
In diabetic states, endothelial dysfunction is related to vascular complications. We hypothesized that insulin-induced relaxation and the associated proline-rich tyrosine kinase 2 (Pyk2)/Src/Akt pathway would be abnormal in aortas from the Goto-Kakizaki (GK) type 2 diabetic rat, which exhibits hyperglycemia/insulin resistance, and that losartan treatment of such rats (25 mg·kg(-1)·day(-1) for 2 wk) would correct these abnormalities. Endothelium-dependent relaxation was by measuring isometric force in helical strips of aortas from four groups, each of 30 rats: normal Wistar (control), GK (diabetic), losartan-treated normal, and losartan-treated GK. Pyk2, Src, and Akt/endothelial nitric oxide synthase (eNOS) signaling-pathway protein levels and activities were assayed mainly by Western blotting and partly by immunohistochemistry. In GK (vs. age-matched control) aortas, various insulin-stimulated levels [nitric oxide production and the phosphorylations of eNOS at Ser(1177), of Akt at Thr(308), of phosphoinositide-dependent kinase-1 (PDK1) at Ser(241), of Src at Tyr(416), and of Pyk2 at Tyr(579)] were all significantly decreased and unaffected by either Src inhibitor (PP2) or Pyk2 inhibitor (AG17), while the insulin-stimulated levels of insulin receptor substrate (IRS)-1 phosphorylation at Ser(307), total-eNOS, and total-Akt were significantly increased. Losartan treatment normalized these altered levels. The insulin-stimulated phosphorylation levels of Src/PDK1/Akt/eNOS, but not of Pyk2, were decreased by PP2 in control and losartan-treated GK, but not in GK, aortas. These results suggest that in the GK diabetic aorta increased phospho-IRS-1 (at Ser(307)) and decreased Pyk2/Src activity inhibit insulin-induced stimulation of the PDK/Akt/eNOS pathway. The observed increase in phospho-IRS-1 (at Ser(307)) may result from increased angiotensin II activity.  相似文献   

8.
Oxidative stress and mitochondrial dysfunction are known to play important roles in type 2 diabetes mellitus (T2DM) and insulin resistance. However, the pathology of T2DM remains complicated; in particular, the mechanisms of mitochondrial dysfunction in skeletal muscle and other insulin-sensitive tissues are as yet unclear. In the present study, we investigated the underlying mechanisms of oxidative stress and mitochondrial dysfunction by focusing on mitochondrial dynamics, including mitochondrial biogenesis and autophagy, in skeletal muscle of a nonobese diabetic animal model--the Goto-Kakizaki (GK) rat. The results showed that GK rats exhibited impaired glucose metabolism, increased oxidative stress and decreased mitochondrial function. These dysfunctions were found to be associated with induction of LC3B, Beclin1 and DRP1 (key molecules mediating the autophagy pathway), while they appeared not to affect the mitochondrial biogenesis pathway. In addition, (-)-epigallocatechin-3-gallate (EGCG) was tested as a potential autophagy-targeting nutrient, and we found that EGCG treatment improved glucose tolerance and glucose homeostasis in GK rats, and reduced oxidative stress and mitochondrial dysfunction in skeletal muscle. Amelioration of excessive muscle autophagy in GK rats through the down-regulation of the ROS-ERK/JNK-p53 pathway leads to improvement of glucose metabolism, reduction of oxidative stress and inhibition of mitochondrial loss and dysfunction. These results suggest (a) that hyperglycemia-associated oxidative stress may induce autophagy through up-regulation of the ROS-ERK/JNK-p53 pathway, which may contribute to mitochondrial loss in soleus muscle of diabetic GK rats, and (b) that EGCG may be a potential autophagy regulator useful in treatment of insulin resistance.  相似文献   

9.
The sensitivity and responsiveness of glucose uptake and glycogen synthesis to insulin are 3-4-fold greater in red than in white skeletal muscle (James, D. E., Jenkins, A. B., and Kraegen, E. W. (1985) Am. J. Physiol. 248, E567-E574). In the present study, the insulin receptor tyrosine kinase activity has been examined in red and white muscle of rats. Partially purified insulin receptors were obtained from muscle following solubilization in detergent, ultracentrifugation, and lectin affinity chromatography. Total insulin receptor number per gram of tissue was slightly higher in red (30%) than in white muscle. In contrast, basal and insulin-stimulated autophosphorylation, normalized for receptor number, were 2.3-fold higher in red muscle. A similar difference was observed in the ability of partially purified receptors to phosphorylate the exogenous substrate polyglutamate/tyrosine. The integrity of the insulin receptor preparation in the two fiber types was identical as determined by affinity cross-linking of [125I-TyrB26]insulin to the receptor. Mixing partially purified receptors from red and white muscle resulted in an additive response for exogenous substrate phosphorylation, suggesting that the difference in tyrosine kinase activity was not due to the presence of an inhibitor or activator. The results suggest that there are differences in the insulin receptors of red and white muscles that lead to discordance in their basal and insulin-stimulated intrinsic tyrosine kinase activity. The correlation between these differences and insulin action in red and white muscle supports the concept that the insulin receptor tyrosine kinase activity is involved in the initiation of insulin action.  相似文献   

10.
Earlier studies have shown that whole body adenosine receptor antagonism increases skeletal muscle insulin sensitivity in insulin-resistant Zucker rats. To find which steps in the insulin signaling pathway are influenced by adenosine receptors, muscle from lean and obese Zucker rats, treated for 1 week with the adenosine receptor antagonist, 1,3-dipropyl-8-(4-acrylate)-phenylxanthine (BWA1433), were analyzed. All rats were first anesthetized and injected intravenously (i.v.) with 1 IU of insulin. About 3 min later the gastrocnemius was freeze clamped. Insulin receptors were partially purified on wheat germ agglutinin (WGA) columns and insulin receptor kinase activity measured in control and BWA1433-treated lean and obese Zucker rats. Protein tyrosine phosphatase (PTPase) activity was also analyzed in subcellular fractions, including the cytosolic fraction, a high-speed particulate fraction and the insulin receptor fraction eluted from WGA columns. Administration of BWA1433 increased insulin receptor kinase activity in obese but not lean Zucker rats. PTPase activities were higher in the untreated obese rat muscle particulate fractions than in the lean rat particulate fractions. The BWA1433 administration lowered the PTPase activity of the obese rats but not the lean rats. Although the PTPase activity in WGA eluate fractions containing crude insulin receptors were similar in lean and obese animals, BWA1433 administration was found to lower the PTPase activities in the fractions obtained from obese but not from the lean rats. PTPases may be upregulated in muscles from obese rats due to activated adenosine receptors. Adenosine receptor blockade, by reducing PTPase activity, may thereby increase insulin signaling.  相似文献   

11.
Glycogen synthase activity is increased in response to insulin and exercise in skeletal muscle. Part of the mechanism by which insulin stimulates glycogen synthesis may involve phosphorylation and activation of Akt, serine phosphorylation and deactivation of glycogen synthase kinase-3 (GSK-3), leading to dephosphorylation and activation of glycogen synthase. To study Akt and GSK-3 regulation in muscle, time course experiments on the effects of insulin injection and treadmill running exercise were performed in hindlimb skeletal muscle from male rats. Both insulin and exercise increased glycogen synthase activity (%I-form) by 2-3-fold over basal. Insulin stimulation significantly increased Akt phosphorylation and activity, whereas exercise had no effect. The time course of the insulin-stimulated increase in Akt was closely matched by GSK-3alpha Ser(21) phosphorylation and a 40-60% decrease in GSK-3alpha and GSK-3beta activity. Exercise also deactivated GSK-3alpha and beta activity by 40-60%. However, in contrast to the effects of insulin, there was no change in Ser(21) phosphorylation in response to exercise. Tyrosine dephosphorylation of GSK-3, another putative mechanism for GSK-3 deactivation, did not occur with insulin or exercise. These data suggest the following: 1) GSK-3 is constitutively active and tyrosine phosphorylated under basal conditions in skeletal muscle, 2) both exercise and insulin are effective regulators of GSK-3 activity in vivo, 3) the insulin-induced deactivation of GSK-3 occurs in response to increased Akt activity and GSK-3 serine phosphorylation, and 4) there is an Akt-independent mechanism for deactivation of GSK-3 in skeletal muscle.  相似文献   

12.
Alpha-lipoic acid mitigates insulin resistance in Goto-Kakizaki rats.   总被引:5,自引:0,他引:5  
Impaired glucose uptake and metabolism by peripheral tissues is a common feature in both type I and type II diabetes mellitus. This phenomenon was examined in the context of oxidative stress and the early events within the insulin signalling pathway using soleus muscles derived from non-obese, insulin-resistant type II diabetic Goto-Kakizaki (GK) rats, a well-known genetic rat model for human type II diabetes. Insulin-stimulated glucose transport was impaired in soleus muscle from GK rats. Oxidative and non-oxidative glucose disposal pathways represented by glucose oxidation and glycogen synthesis in soleus muscles of GK rats appear to be resistant to the action of insulin when compared to their corresponding control values. These diabetes-related abnormalities in glucose disposal were associated with a marked diminution in the insulin-mediated enhancement of protein kinase B (Akt/PKB) and insulin receptor substrate-1 (IRS-1)-associated phosphatidylinostol 3-kinase (PI 3-kinase) activities; these two kinases are key elements in the insulin signalling pathway. Moreover, heightened state of oxidative stress, as indicated by protein bound carbonyl content, was evident in soleus muscle of GK diabetic rats. Chronic administration of the hydrophobic/hydrophilic antioxidant alpha -lipoic-acid (ALA, 100 mg/kg, i.p.) partly ameliorated the diabetes-related deficit in glucose metabolism, protein oxidation as well as the activation by insulin of the various steps of the insulin signalling pathway, including the enzymes Akt/PKB and PI-3 kinase. Overall, the current investigation illuminates the concept that oxidative stress may indeed be involved in the pathogenesis of certain types of insulin resistance. It also harmonizes with the notion of including potent antioxidants such as ALA in the armamentarium of antidiabetic therapy.  相似文献   

13.
Protein tyrosine phosphatases (PTPases) have been suggested to modulate the insulin receptor signal transduction pathways.We studied PTPases in Psammomys obesus, an animal model of nutritionally induced insulin resistance. No changes in the protein expression level of src homology PTPase 2 (SHP-2) (muscle, liver) or leukocyte antigen receptor (LAR) (liver) were detected. In contrast, the expression level of PTPase 1B (PTP 1B) in the skeletal muscle, but not in liver, was increased by 83% in the diabetic animals, compared with a diabetes-resistant line. However, PTP 1B– specific activity (activity/protein) significantly decreased (50% to 56%) in skeletal muscle of diabetic animals, compared with both the diabetes-resistant line and diabetes-prone animals. In addition, PTP 1B activity was inversely correlated to serum glucose level (r = –.434, P < .02). These findings suggest that PTP 1B, though overexpressed, is not involved in the susceptibility to insulin resistance in Psammomys obesus and is secondarily attenuated by hyperglycemia or other factors in the diabetic milieu.  相似文献   

14.
A role for elevated glycogen synthase kinase-3 (GSK-3) activity in the multifactorial etiology of insulin resistance is now emerging. However, the utility of specific GSK-3 inhibition in modulating insulin resistance of skeletal muscle glucose transport is not yet fully understood. Therefore, we assessed the effects of novel, selective organic inhibitors of GSK-3 (CT-98014 and CT-98023) on glucose transport in insulin-resistant muscles of Zucker diabetic fatty (ZDF) rats. Incubation of type IIb epitrochlearis and type I soleus muscles from ZDF rats with CT-98014 increased glycogen synthase activity (49 and 50%, respectively, P < 0.05) but did not alter basal glucose transport (2-deoxyglucose uptake). In contrast, CT-98014 significantly increased the stimulatory effects of both submaximal and maximal insulin concentrations in epitrochlearis (37 and 24%) and soleus (43 and 26%), and these effects were associated with increased cell-surface GLUT4 protein. Lithium enhanced glycogen synthase activity and both basal and insulin-stimulated glucose transport in muscles from ZDF rats. Acute oral administration (2 x 30 mg/kg) of CT-98023 to ZDF rats caused elevations in GSK-3 inhibitor concentrations in plasma and muscle. The glucose and insulin responses during a subsequent oral glucose tolerance test were reduced by 26 and 34%, respectively, in the GSK-3 inhibitor-treated animals. Thirty minutes after the final GSK-3 inhibitor treatment, insulin-stimulated glucose transport was significantly enhanced in epitrochlearis (57%) and soleus (43%). Two hours after the final treatment, insulin-mediated glucose transport was still significantly elevated (26%) only in the soleus. These results indicate that specific inhibition of GSK-3 enhances insulin action on glucose transport in skeletal muscle of the insulin-resistant ZDF rat. This unique approach may hold promise as a pharmacological treatment against insulin resistance of skeletal muscle glucose disposal.  相似文献   

15.
Recent evidence has shown that activation of lipid-sensitive protein kinase C (PKC) isoforms leads to skeletal muscle insulin resistance. However, earlier studies demonstrated that phorbol esters increase glucose transport in skeletal muscle. The purpose of the present study was to try to resolve this discrepancy. Treatment with the phorbol ester 12-deoxyphorbol-13-phenylacetate 20-acetate (dPPA) led to an approximately 3.5-fold increase in glucose transport in isolated fast-twitch epitrochlearis and flexor digitorum brevis muscles. Phorbol ester treatment was additive to a maximally effective concentration of insulin in fast-twitch skeletal muscles. Treatment with dPPA did not affect insulin signaling in the epitrochlearis. In contrast, phorbol esters had no effect on basal glucose transport and inhibited maximally insulin-stimulated glucose transport approximately 50% in isolated slow-twitch soleus muscle. Furthermore, dPPA treatment inhibited the insulin-stimulated tyrosine phosphorylation of insulin receptor substrate (IRS)-1 and the threonine and serine phosphorylation of PKB by approximately 50% in the soleus. dPPA treatment also caused serine phosphorylation of IRS-1 in the slow-twitch soleus muscle. In conclusion, our results show that phorbol esters stimulate glucose transport in fast-twitch skeletal muscles and inhibit insulin signaling in slow-twitch soleus muscle of rats. These findings suggest that mechanisms other than PKC activation mediate lipotoxicity-induced whole body insulin resistance.  相似文献   

16.
The insulin signaling pathway is activated by tyrosine phosphorylation of the insulin receptor and key post-receptor substrate proteins and balanced by the action of specific protein-tyrosine phosphatases (PTPases). PTPase activity, in turn, is highly regulated in vivo by oxidation/reduction reactions involving the cysteine thiol moiety required for catalysis. Here we show that insulin stimulation generates a burst of intracellular H(2)O(2) in insulin-sensitive hepatoma and adipose cells that is associated with reversible oxidative inhibition of up to 62% of overall cellular PTPase activity, as measured by a novel method using strictly anaerobic conditions. The specific activity of immunoprecipitated PTP1B, a PTPase homolog implicated in the regulation of insulin signaling, was also strongly inhibited by up to 88% following insulin stimulation. Catalase pretreatment abolished the insulin-stimulated production of H(2)O(2) as well as the inhibition of cellular PTPases, including PTP1B, and was associated with reduced insulin-stimulated tyrosine phosphorylation of its receptor and high M(r) insulin receptor substrate (IRS) proteins. These data provide compelling new evidence for a redox signal that enhances the early insulin-stimulated cascade of tyrosine phosphorylation by oxidative inactivation of PTP1B and possibly other tyrosine phosphatases.  相似文献   

17.
Previous studies have shown that chronic salt overload increases insulin sensitivity, while chronic salt restriction decreases it. In the present study we investigated the influence of dietary sodium on 1) GLUT4 gene expression, by No the n and Western blotting analysis; 2) in vivo GLUT4 protein translocation, by measuring the GLUT4 protein in plasma membrane and microsome, before and after insulin injection; and 3) insulin signaling, by analyzing basal and insulin-stimulated tyrosine phosphorylation of insulin receptor (IR)-beta, insulin receptor substrate (IRS)-1, and IRS-2. Wistar rats we e fed no mal-sodium (NS-0.5%), low-sodium (LS-0.06%), o high-sodium diets (HS-3.12%) fo 9 wk and were killed under pentobarbital anesthesia. Compared with NS ats, HS ats inc eased (P < 0.05) the GLUT4 protein in adipose tissue and skeletal muscle, whereas GLUT4 mRNA was increased only in adipose tissue. GLUT4 expression was unchanged in LS ats compared with NS ats. The GLUT4 translocation in HS ats was higher (P < 0.05) both in basal and insulin-stimulated conditions. On the other hand, LS ats did not increase the GLUT4 translocation after insulin stimulus. Compared with NS ats, LS ats showed reduced (P < 0.01) basal and insulin-stimulated tyrosine phosphorylation of IRS-1 in skeletal muscle and IRS-2 in live, whereas HS ats showed enhanced basal tyrosine phosphorylation of IRS-1 in skeletal muscle (P < 0.05) and of IRS-2 in live. In summary, increased insulin sensitivity in HS ats is elated to increased GLUT4 gene expression, enhanced insulin signaling, and GLUT4 translocation, whereas decreased insulin sensitivity of LS ats does not involve changes in GLUT4 gene expression but is elated to impaired insulin signaling.  相似文献   

18.
We hypothesized that levodopa with carbidopa, a common therapy for patients with Parkinson's disease, might contribute to the high prevalence of insulin resistance reported in patients with Parkinson's disease. We examined the effects of levodopa-carbidopa on glycogen concentration, glycogen synthase activity, and insulin-stimulated glucose transport in skeletal muscle, the predominant insulin-responsive tissue. In isolated muscle, levodopa-carbidopa completely prevented insulin-stimulated glycogen accumulation and glucose transport. The levodopa-carbidopa effects were blocked by propranolol, a beta-adrenergic antagonist. Levodopa-carbidopa also inhibited the insulin-stimulated increase in glycogen synthase activity, whereas propranolol attenuated this effect. Insulin-stimulated tyrosine phosphorylation of insulin receptor substrate (IRS)-1 was reduced by levodopa-carbidopa, although Akt phosphorylation was unaffected by levodopa-carbidopa. A single in vivo dose of levodopa-carbidopa increased skeletal muscle cAMP concentrations, diminished glycogen synthase activity, and reduced tyrosine phosphorylation of IRS-1. A separate set of rats was treated intragastrically twice daily for 4 wk with levodopa-carbidopa. After 4 wk of treatment, oral glucose tolerance was reduced in rats treated with drugs compared with control animals. Muscles from drug-treated rats contained at least 15% less glycogen and approximately 50% lower glycogen synthase activity compared with muscles from control rats. The data demonstrate beta-adrenergic-dependent inhibition of insulin action by levodopa-carbidopa and suggest that unrecognized insulin resistance may exist in chronically treated patients with Parkinson's disease.  相似文献   

19.
Elevation of plasma lactate levels induces peripheral insulin resistance, but the underlying mechanisms are unclear. We examined whether lactate infusion in rats suppresses glycolysis preceding insulin resistance and whether lactate-induced insulin resistance is accompanied by altered insulin signaling and/or insulin-stimulated glucose transport in skeletal muscle. Hyperinsulinemic euglycemic clamps were conducted for 6 h in conscious, overnight-fasted rats with or without lactate infusion (120 micromol x kg(-1) x min(-1)) during the final 3.5 h. Lactate infusion increased plasma lactate levels about fourfold. The elevation of plasma lactate had rapid effects to suppress insulin-stimulated glycolysis, which clearly preceded its effect to decrease insulin-stimulated glucose uptake. Both submaximal and maximal insulin-stimulated glucose transport decreased 25-30% (P < 0.05) in soleus but not in epitrochlearis muscles of lactate-infused rats. Lactate infusion did not alter insulin's ability to phosphorylate the insulin receptor, the insulin receptor substrate (IRS)-1, or IRS-2 but decreased insulin's ability to stimulate IRS-1- and IRS-2-associated phosphatidylinositol 3-kinase activities and Akt/protein kinase B activity by 47, 75, and 55%, respectively (P < 0.05 for all). In conclusion, elevation of plasma lactate suppressed glycolysis before its effect on insulin-stimulated glucose uptake, consistent with the hypothesis that suppression of glucose metabolism could precede and cause insulin resistance. In addition, lactate-induced insulin resistance was associated with impaired insulin signaling and decreased insulin-stimulated glucose transport in skeletal muscle.  相似文献   

20.
Liver mitochondrial bioenergetics of Goto-Kakizaki (GK) rats (a model of non-insulin dependent diabetes mellitus) reveals a Delta Psi upon energization with succinate significantly increased relatively to control animals. The repolarization rate following ADP phosphorylation is also significantly increased in GK mitochondria in parallel with increased ATPase activity. The increase in the repolarization rate and ATPase activity is presumably related to an improved efficiency of F(0)F(1)-ATPase, either from a better phosphorylative energy coupling or as a consequence of an enlarged number of catalytic units. Titrations with oligomycin indicate that diabetic GK liver mitochondria require excess oligomycin pulses to completely abolish phosphorylation, relative to control mitochondria. Therefore, accepting that the number of operational ATP synthase units is inversely proportional to the amount of added oligomycin, it is concluded that liver mitochondria of diabetic GK rats are provided with extra catalytic units relative to control mitochondria of normal rats. Other tissues (kidney, brain and skeletal muscle) were evaluated for the same bioenergetic parameters, confirming that this feature is exclusive to liver from diabetic GK rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号