首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The long-term survival of Escherichia coli in river water   总被引:11,自引:0,他引:11  
Escherichia coli introduced into autoclaved filtered river water survived for up to 260 d at temperatures from 4 degrees to 25 degrees C with no loss of viability. Survival times were less in water which was only filtered through either a Whatman filter paper or a 0.45 micron Millipore filter or in untreated water, suggesting that competition with the natural microbial flora of the water was the primary factor in the disappearance of the introduced bacteria. Survival was also dependent upon temperature with survival at 4 degrees C greater than 15 degrees C greater than 25 degrees C greater than 37 degrees C for any water sample. Direct counts showed that bacterial cells did not disappear as the viable count decreased. The possession of the antibiotic resistance plasmids, R1drd-19 or R144-3, did not enhance survival nor cause a faster rate of decay, indicating that the metabolic burden imposed by a plasmid was not a factor in survival under starvation conditions. There was no evidence of transfer of either plasmid at 15 degrees C or of loss of plasmid function during starvation.  相似文献   

2.
The long-term survival of Escherichia coli in river water   总被引:9,自引:8,他引:1  
Escherichia coli introduced into autoclaved filtered river water survived for up to 260 d at temperatures from 4° to 25°C with no loss of viability. Survival times were less in water which was only filtered through either a Whatman filter paper or a 0.45 μm Millipore filter or in untreated water, suggesting that competition with the natural microbial flora of the water was the primary factor in the disappearance of the introduced bacteria. Survival was also dependent upon temperature with survival at 4°C > 15°C > 25°C > 37°C for any water sample. Direct counts showed that bacterial cells did not disappear as the viable count decreased. The possession of the antibiotic resistance plasmids, R 1 drd -19 or R144-3, did not enhance survival nor cause a faster rate of decay, indicating that the metabolic burden imposed by a plasmid was not a factor in survival under starvation conditions. There was no evidence of transfer of either plasmid at 15°C or of loss of plasmid function during starvation.  相似文献   

3.
A rapid biosensor for the detection of bacterial growth was developed using micromechanical oscillators coated in common nutritive layers. The change in resonance frequency as a function of the increasing mass on a cantilever array forms the basis of the detection scheme. The calculated mass sensitivity according to the mechanical properties of the cantilever sensor is approximately 50 pg/Hz; this mass corresponds to an approximate sensitivity of approximately 100 Escherichia coli cells. The sensor is able to detect active growth of E. coli cells within 1 h. The starting number of E. coli cells initially attached to the sensor cantilever was, on average, approximately 1,000 cells. Furthermore, this method allows the detection of selective growth of E. coli within only 2 h by adding antibiotics to the nutritive layers. The growth of E. coli was confirmed by scanning electron microscopy. This new sensing method for the detection of selective bacterial growth allows future applications in, e.g., rapid antibiotic susceptibility testing.  相似文献   

4.
Twelve derivatives of Escherichia coli strain HB101 which contained different sizes of plasmids ranging from 3.9 Kb to 48 Kb and encoding resistance to various antibiotics were used. When these organisms were introduced into natural river water, the population declined rapidly and by day 3, the majority (i.e. more than 99.9%) of them could no longer be detected on antibiotic-amended culture plates. If the river water was filter sterilized first, the added organisms maintained their population for up to 7 d without any significant decrease in numbers. Similar results were also observed in sterilized tap water or distilled water. This indicated that the disappearance of these organisms in the aquatic environment was caused mainly by biotic factor(s). The loss of the ability to grow in the presence of antibiotics by some of the E. coli was not observed unless they were allowed to grow in the antibiotic-free environment first. When the test organisms were added to natural silt loam, a large portion of the original population still remained viable after 16 d. There was no relationship between the percentage survival of E. coli in natural river water and the sizes of plasmid harboured. On the other hand, when these bacteria were added to natural soil, survival appeared to increase as plasmid size increased.  相似文献   

5.
Twelve derivatives of Escherichia coli strain HB101 which contained different sizes of plasmids ranging from 3.9 Kb to 48 Kb and encoding resistance to various antibiotics were used. When these organisms were introduced into natural river water, the population declined rapidly and by day 3, the majority (i.e. more than 99.9%) of them could no longer be detected on antibiotic-amended culture plates. If the river water was filter sterilized first, the added organisms maintained their population for up to 7 d without any significant decrease in numbers. Similar results were also observed in sterilized tap water or distilled water. This indicated that the disappearance of these organisms in the aquatic environment was caused mainly by biotic factor(s). The loss of the ability to grow in the presence of antibiotics by some of the E. coli was not observed unless they were allowed to grow in the antibiotic-free environment first. When the test organisms were added to natural silt loam, a large portion of the original population still remained viable after 16 d. There was no relationship between the percentage survival of E. coli in natural river water and the sizes of plasmid harboured. On the other hand, when these bacteria were added to natural soil, survival appeared to increase as plasmid size increased. and accepted 19 August 1989  相似文献   

6.
A rapid test procedure for the enzyme glutamate decarboxylase was developed for detection of Escherichia coli. The assay procedure was able to confirm the presence of E. coli in enteric broth cultures with 95% specificity for both pure cultures and environmental samples. The procedure was capable of detecting survivors among chlorine-exposed cells.  相似文献   

7.
Aims:  The aim of this study was to examine a rapid method for detecting Escherichia coli and enterococci in recreational water.
Methods and Results:  Water samples were assayed for E. coli and enterococci by traditional and immunomagnetic separation/adenosine triphosphate (IMS/ATP) methods. Three sample treatments were evaluated for the IMS/ATP method: double filtration, single filtration, and direct analysis. Pearson's correlation analysis showed strong, significant, linear relations between IMS/ATP and traditional methods for all sample treatments; strongest linear correlations were with the direct analysis ( r  = 0·62 and 0·77 for E. coli and enterococci, respectively). Additionally, simple linear regression was used to estimate bacteria concentrations as a function of IMS/ATP results. The correct classification of water-quality criteria was 67% for E. coli and 80% for enterococci.
Conclusions:  The IMS/ATP method is a viable alternative to traditional methods for faecal-indicator bacteria.
Significance and Impact of the Study:  The IMS/ATP method addresses critical public health needs for the rapid detection of faecal-indicator contamination and has potential for satisfying US legislative mandates requiring methods to detect bathing water contamination in 2 h or less. Moreover, IMS/ATP equipment is considerably less costly and more portable than that for molecular methods, making the method suitable for field applications.  相似文献   

8.
A new chemiluminescent in situ hybridization (CISH) method provides simultaneous detection, identification, and enumeration of culturable Escherichia coli cells in 100 ml of municipal water within one working day. Following filtration and 5 h of growth on tryptic soy agar at 35 degrees C, individual microcolonies of E. coli were detected directly on a 47-mm-diameter membrane filter using soybean peroxidase-labeled peptide nucleic acid (PNA) probes targeting a species-specific sequence in E. coli 16S rRNA. Within each microcolony, hybridized, peroxidase-labeled PNA probe and chemiluminescent substrate generated light which was subsequently captured on film. Thus, each spot of light represented one microcolony of E. coli. Following probe selection based on 16S ribosomal DNA (rDNA) sequence alignments and sample matrix interference, the sensitivity and specificity of the probe Eco16S07C were determined by dot hybridization to RNA of eight bacterial species. Only the rRNA of E. coli and Pseudomonas aeruginosa were detected by Eco16S07C with the latter mismatch hybridization being eliminated by a PNA blocker probe targeting P. aeruginosa 16S rRNA. The sensitivity and specificity for the detection of E. coli by PNA CISH were then determined using 8 E. coli strains and 17 other bacterial species, including closely related species. No bacterial strains other than E. coli and Shigella spp. were detected, which is in accordance with 16S rDNA sequence information. Furthermore, the enumeration of microcolonies of E. coli represented by spots of light correlated 92 to 95% with visible colonies following overnight incubation. PNA CISH employs traditional membrane filtration and culturing techniques while providing the added sensitivity and specificity of PNA probes in order to yield faster and more definitive results.  相似文献   

9.
A total of 202 Escherichia coli isolated from urban and rural water were tested with 11 antibiotics to assess the prevalence of antibiotic resistance from each source. Urban waters harbored higher percentages of resistant E. coli strains than rural waters. Antibiotic-resistant E. coli may offer an index of water quality related to source.  相似文献   

10.
A filtration flow-through design was used to develop the rapid immunodetection of Escherichia coli. Polyclonal anti-E. coli IgG was conjugated to small, 0.8 Blue latex beads. Cells were mixed with conjugated beads in the presence of anti-E. coli monoclonal IgM. The suspension was then filtered through a 5 nitrocellulose membrane. The cell-containing complexes were effectively collected on the filter, forming a blue spot. The method produced reliable detection of E. coli at a concentration of 105 cells ml–1, which is a current benchmark figure for urinary tract infection (UTI) diagnosis.  相似文献   

11.
There is a high demand for rapid, sensitive, and field-ready detection methods for Escherichia coli O157:H7, a highly infectious and potentially fatal food and water borne pathogen. In this study, E. coli O157:H7 cells are isolated via immunomagnetic separation (IMS) and labeled with biofunctionalized electroactive polyaniline (immuno-PANI). Labeled cell complexes are deposited onto a disposable screen-printed carbon electrode (SPCE) sensor and pulled to the electrode surface by an external magnetic field, to amplify the electrochemical signal generated by the polyaniline. Cyclic voltammetry is used to detect polyaniline and signal magnitude indicates the presence or absence of E. coli O157:H7. As few as 7CFU of E. coli O157:H7 (corresponding to an original concentration of 70 CFU/ml) were successfully detected on the SPCE sensor. The assay requires 70 min from sampling to detection, giving it a major advantage over standard culture methods in applications requiring high-throughput screening of samples and rapid results. The method can be performed with portable, handheld instrumentation and no biological modification of the sensor surface is required. Potential applications include field-based pathogen detection for food and water safety, environmental monitoring, healthcare, and biodefense.  相似文献   

12.
应用多重PCR(motiplex PCR)结合变性高效液相色谱技术(denaturing high-performanceliquid chromatography,DHPLC)建立了快速检测食品中产志贺毒素大肠杆菌O111和O157的方法.以基因wzxO111、rfbEO157为靶基因,建立多重PCR-DHPLC方法,进行特异性和灵敏度测试,同时进行RT-PCR检测比较灵敏度.该方法具有良好特异性,可以一次PCR扩增同时检测O111、O157;灵敏度达到25 CFU/mL.129份牛肉样品中检出1例O111,3例O157阳性;74份鸡肉样品中检测出O111、O157阳性各1例,67份蔬菜样品中未检测到O111、O157.本文建立O111、O157多重PCR-DHPLC检测方法,操作简便,特异性强,适用于产志贺毒素大肠杆菌筛选检测.  相似文献   

13.
A highly sensitive and specific assay method was developed for the detection of viable Escherichia coli as an indicator organism in water, using nucleic acid sequence-based amplification (NASBA) and electrochemiluminescence (ECL) analysis. Viable E. coli were identified via a 200-nt-long target sequence from mRNA (clpB) coding for a heat shock protein. In the detection assay, a heat shock was applied to the cells prior to disruption to induce the synthesis of clpB mRNA and the mRNA was extracted, purified, and finally amplified using NASBA. The amplified mRNA was quantified with an ECL detection system after hybridization with specific DNA probes. Several disruption methods were investigated to maximize total RNA extracted from viable cells. Optimization was also carried out regarding the design of NASBA primer pairs and detection probes, as well as reaction and detection conditions. Finally, the assay was tested regarding sensitivity and specificity. Analysis of samples revealed that as few as 40 E. coli cells/mL can be detected, with no false positive signals resulting from other microorganisms or nonviable E. coli cells. Also, it was shown that a quantification of E. coli cells was possible with our assay method.  相似文献   

14.
Three fluorogenic methylumbelliferone (MU) substrates were evaluated for rapid detection of total and fecal coliform bacteria (TC and FC) in drinking water. 4-MU-beta-D-galactoside, MU-heptanoate, and MU-glucuronide were used to determine enzyme activity as a surrogate measure of coliform concentration. Coliforms occurring in river water and in potable water artificially contaminated with raw sewage were tested. The initial rate of hydrolysis (delta F) of MU-beta-D-galactoside showed promise as an indicator of TC and FC within 15 min. delta F of MU-glucuronide was insufficient in the 15-min assay, and combinations of the MU substrates did not enhance delta F. A direct membrane filter method incorporating MU-beta-D-galactoside into an agar medium allowed the detection of as few as 1 FC per 100 ml within 6 h.  相似文献   

15.
G Chu  P Berg 《Nucleic acids research》1985,13(8):2921-2930
Cultured mammalian cells transduced with the Escherichia coli gene, Ecogpt, synthesize the bacterial enzyme xanthine-guanine phosphoribosyl transferase (XGPT) (1). This paper describes a method for measuring XGPT activity in crude cell extracts by following the conversion of 14C-xanthine (X) to 14C-xanthine monophosphate (XMP) and 14C-xanthosine (XR) by thin layer chromatography. The method is rapid, easy to use, sensitive and linear over a wide range of XGPT activity and has been useful for detecting XGPT in cells that were transiently transfected or stably transformed with Ecogpt. During our studies, we have found that a human cell line (XP20S) converts xanthine to XMP. This activity is probably catalyzed by a variant hypoxanthine-guanine phosphoribosyltransferase (HGPT) since the low activity is readily inhibited by hypoxanthine. A low level of conversion of X to XMP may explain why some cell lines are not killed in a medium containing mycophenolic acid and X.  相似文献   

16.
A highly sensitive and specific RNA biosensor was developed for the rapid detection of viable Escherichia coli as an indicator organism in water. The biosensor is coupled with protocols developed earlier for the extraction and amplification of mRNA molecules from E. coli [Anal. Biochem. 303 (2002) 186]. However, in contrast to earlier detection methods, the biosensor allows the rapid detection and quantification of E. coli mRNA in only 15-20 min. In addition, the biosensor is portable, inexpensive and very easy to use, which makes it an ideal detection system for field applications. Viable E. coli are identified and quantified via a 200 nt-long target sequence from mRNA (clpB) coding for a heat shock protein. For sample preparation, a heat shock is applied to the cells prior to disruption. Then, mRNA is extracted, purified and finally amplified using the isothermal amplification technique Nucleic acid sequence-based amplification (NASBA). The amplified RNA is then quantified with the biosensor. The biosensor is a membrane-based DNA/RNA hybridization system using liposome amplification. The various biosensor components such as DNA probe sequences and concentration, buffers, incubation times have been optimized, and using a synthetic target sequence, a detection limit of 5 fmol per sample was determined. An excellent correlation to a much more elaborate and expensive laboratory based detection system was demonstrated, which can detect as few as 40 E. coli cfu/ml. Finally, the assay was tested regarding its specificity; no false positive signals were obtained from other microorganisms or from nonviable E. coli cells.  相似文献   

17.
Three fluorogenic methylumbelliferone (MU) substrates were evaluated for rapid detection of total and fecal coliform bacteria (TC and FC) in drinking water. 4-MU-beta-D-galactoside, MU-heptanoate, and MU-glucuronide were used to determine enzyme activity as a surrogate measure of coliform concentration. Coliforms occurring in river water and in potable water artificially contaminated with raw sewage were tested. The initial rate of hydrolysis (delta F) of MU-beta-D-galactoside showed promise as an indicator of TC and FC within 15 min. delta F of MU-glucuronide was insufficient in the 15-min assay, and combinations of the MU substrates did not enhance delta F. A direct membrane filter method incorporating MU-beta-D-galactoside into an agar medium allowed the detection of as few as 1 FC per 100 ml within 6 h.  相似文献   

18.
This study presents evidence for the unfeasibility of enzymatic presence-absence tests to detect one total coliform or one Escherichia coli organism in 100 ml of drinking water within a working day. The results of field trials with prototype chemiluminometric procedures indicated that the sensitivity-boosting measures that are essential to achieve the required speed compromise the specificity of the tests.  相似文献   

19.
The detection of fluorescent colonies of Escherichia coli/total coliforms (TC) on a membrane filter is currently carried out using 4-methylumbelliferyl-beta-D-glycosides as enzyme substrates and a UV-lamp for visualization. The most rapid procedures based on this approach for the demonstration of these indicator bacteria in water take 6-7.5 h to complete. As part of efforts to further reduce the detection time, an improved two-step procedure for the fluorescence or chemiluminescence labelling of microcolonies of E. coli/TC on a membrane filter has been developed. Essential features of this approach include a separation of the bacterial propagation and target enzyme induction from the actual enzymatic labelling, the use of improved fluorogenic, i.e., 4-trifluoromethylumbelliferyl-beta-D-glycosides and fluorescein-di-beta-D-glycosides, or chemiluminogenic (i.e., phenylglucuronic- or galactose-substituted adamantyl 1,2-dioxetanes) substrates for beta-glucuronidase/beta-galactosidase, of enzyme inducers, of special membrane filters and of polymyxin B to promote the cellular uptake of the substrate. This labelling procedure has been applied in conjunction with different detection devices including a UV-lamp, CCD-cameras, X-ray film and the ChemScan((R)) RDI. Using the former three, microcolonies of pure cultures could be detected within 5.5-6.5 h, but waterborne E. coli/TC may fail to form microcolonies in this short time period, thus yielding poor sensitivity and a high false-negative rate. In contrast, a quantitative enumeration was feasible in less than 4 h with the ChemScan((R)) RDI, owing to its ability to detect both microcolonies and non-dividing single cells.  相似文献   

20.
PCR-ELISA detection of Escherichia coli in milk   总被引:4,自引:0,他引:4  
AIMS: The purpose of this study was to develop a reliable molecular procedure for the detection of Escherichia coli in milk. METHODS AND RESULTS: Robust and expeditious DNA extraction and PCR techniques were evaluated using Enzyme-Linked Immunosorbent Assay (ELISA) detection of biotin-labelled amplicons to facilitate optimal detection of E. coli DNA. CONCLUSIONS: It was found that 5 E. coli colony-forming units (cfu) could be detected per PCR reaction using the PCR-ELISA system, equating to a sensitivity of detection of 100 E. coli cfu ml(-1) pasteurized milk. SIGNIFICANCE AND IMPACT OF THE STUDY: This approach should facilitate evaluation of milk contamination and enable rapid detection of E. coli mastitis, leading to correct deployment of relevant antibiotic therapy and improved animal welfare.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号