首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hwang SA  Kruzel ML  Actor JK 《Biochimie》2009,91(1):76-85
The current vaccine for tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), is an attenuated strain of Mycobacterium bovis bacillus Calmette-Guerin (BCG). BCG has proven to be effective in children, however, efficacy wanes in adulthood. Lactoferrin, a natural protein with immunomodulatory properties, is a potential adjuvant candidate to enhance efficacy of BCG. These studies define bovine lactoferrin as an enhancer of the BCG vaccine, functioning in part by modulating macrophage ability to present antigen and stimulate T-cells. BCG-infected bone marrow derived macrophages (BMMs) cultured with bovine lactoferrin increased the number of MHC II(+) expressing cells. Addition of IFN-gamma and lactoferrin to BCG-infected BMMs enhanced MHC II expressiona dna increased the ratio of CD86/CD80. Lactoferrin treated BCG-infected BMMs were able to stimulate an increase in IFN-gamma production from presensitized CD3(+) splenocytes. Together, these results demonstrate that bovine lactoferrin is capable of modulating BCG-infected macrophages to enhance T-cell stimulation through increased surface expression of antigen presentation and co-stimulatory molecules, which potentially explains the observed in vivo bovine lactoferrin enhancement of BCG vaccine efficacy to protect against virulent MTB infection.  相似文献   

2.
The success and failure of BCG - implications for a novel tuberculosis vaccine   总被引:15,自引:0,他引:15  
Over the past 50 years, the Mycobacterium bovis bacille Calmette-Guérin (BCG) vaccine against tuberculosis (TB) has maintained its position as the world's most widely used vaccine, despite showing highly variable efficacy (0-80%) in different trials. The efficacy of BCG in adults is particularly poor in tropical and subtropical regions. Studies in animal models of TB, supported by data from clinical BCG trials in humans, indicate that this failure is related to pre-existing immune responses to antigens that are common to environmental mycobacteria and Mycobacterium tuberculosis. Here, we discuss the potential mechanisms behind the variation of BCG efficacy and their implications for an improved TB vaccination strategy.  相似文献   

3.
There is an urgent need for an immunological correlate of protection against tuberculosis (TB) with which to evaluate candidate TB vaccines in clinical trials. Development of a human challenge model of Mycobacterium tuberculosis (M.tb) could facilitate the detection of such correlate(s). Here we propose a novel in vivo Bacille Calmette-Guérin (BCG) challenge model using BCG immunization as a surrogate for M.tb infection. Culture and quantitative PCR methods have been developed to quantify BCG in the skin, using the mouse ear as a surrogate for human skin. Candidate TB vaccines have been evaluated for their ability to protect against a BCG skin challenge, using this model, and the results indicate that protection against a BCG skin challenge is predictive of BCG vaccine efficacy against aerosol M.tb challenge. Translation of these findings to a human BCG challenge model could enable more rapid assessment and down selection of candidate TB vaccines and ultimately the identification of an immune correlate of protection.  相似文献   

4.
Zhao S  Zhao Y  Mao F  Zhang C  Bai B  Zhang H  Shi C  Xu Z 《PloS one》2012,7(2):e31908
Tuberculosis (TB) remains a major worldwide health problem. The only vaccine against TB, Mycobacterium bovis Bacille Calmette-Guerin (BCG), has demonstrated relatively low efficacy and does not provide satisfactory protection against the disease. More efficient vaccines and improved therapies are urgently needed to decrease the worldwide spread and burden of TB, and use of a viable, metabolizing mycobacteria vaccine may be a promising strategy against the disease. Here, we constructed a recombinant Mycobacterium smegmatis (rMS) strain expressing a fusion protein of heparin-binding hemagglutinin (HBHA) and human interleukin 12 (hIL-12). Immune responses induced by the rMS in mice and protection against Mycobacterium tuberculosis (MTB) were investigated. Administration of this novel rMS enhanced Th1-type cellular responses (IFN-γ and IL-2) in mice and reduced bacterial burden in lungs as well as that achieved by BCG vaccination. Meanwhile, the bacteria load in M. tuberculosis infected mice treated with the rMS vaccine also was significantly reduced. In conclusion, the rMS strain expressing the HBHA and human IL-12 fusion protein enhanced immunogencity by improving the Th1-type response against TB, and the protective effect was equivalent to that of the conventional BCG vaccine in mice. Furthermore, it could decrease bacterial load and alleviate histopathological damage in lungs of M. tuberculosis infected mice.  相似文献   

5.
New strategies to control infection with Mycobacterium tuberculosis, the causative agent of tuberculosis, are urgently required, particularly in areas where acquired immunodeficiencies are prevalent. In this report we have determined if modification of the current tuberculosis vaccine, Mycobacterium bovis BCG, to constitutively express the mycobacterial HspX latency antigen altered its protective effect against challenge with virulent M. tuberculosis. Overexpression of M. tuberculosis HspX in BCG caused reduced growth in aerated cultures compared to control BCG, but growth under limited oxygen availability was not markedly altered. Upon infection of mice, BCG:HspX displayed tissue-specific attenuation compared to control BCG, with reduced growth within the lung and liver but not the spleen. Both BCG:HspX and control BCG protected mice against aerosol M. tuberculosis challenge to a similar extent, however, immunodeficient mice infected with BCG:HspX survived significantly longer than mice infected with the control BCG strain. Therefore, altering the in vivo persistence of BCG by overexpression of HspX may be one important step towards developing a new tuberculosis vaccine with an improved safety profile and suitable protective efficacy against M. tuberculosis infection.  相似文献   

6.
Tuberculosis (TB) disease caused by Mycobacterium tuberculosis (M. tb) remains one of the leading infectious causes of death and disease throughout the world. The only licensed vaccine, Mycobacterium bovis bacille Calmette-Guérin (BCG) confers highly variable protection against pulmonary disease. An effective vaccination regimen would be the most efficient way to control the epidemic. However, BCG does confer consistent and reliable protection against disseminated disease in childhood, and most TB vaccine strategies being developed incorporate BCG to retain this protection. Cellular immunity is necessary for protection against TB and all the new vaccines in development are focused on inducing a strong and durable cellular immune response. There are two main strategies being pursued in TB vaccine development. The first is to replace BCG with an improved whole organism mycobacterial priming vaccine, which is either a recombinant BCG or an attenuated strain of M. tb. The second is to develop a subunit boosting vaccine, which is designed to be administered after BCG vaccination, and to enhance the protective efficacy of BCG. This article reviews the leading candidate vaccines in development and considers the current challenges in the field with regard to efficacy testing.  相似文献   

7.
Bacillus Calmette-Guerin (BCG) vaccine has failed to control the global tuberculosis (TB) epidemic, and there is a lack of safe and effective mucosal vaccines capable of potent protection against pulmonary TB. A recombinant replication-deficient adenoviral-based vaccine expressing an immunogenic Mycobacterium tuberculosis Ag Ag85A (AdAg85A) was engineered and evaluated for its potential to be used as a respiratory mucosal TB vaccine in a murine model of pulmonary TB. A single intranasal, but not i.m., immunization with AdAg85A provided potent protection against airway Mycobacterium tuberculosis challenge at an improved level over that by cutaneous BCG vaccination. Systemic priming with an Ag85A DNA vaccine and mucosal boosting with AdAg85A conferred a further enhanced immune protection which was remarkably better than BCG vaccination. Such superior protection triggered by AdAg85 mucosal immunization was correlated with much greater retention of Ag-specific T cells, particularly CD4 T cells, in the lung and was shown to be mediated by both CD4 and CD8 T cells. Thus, adenoviral TB vaccine represents a promising novel vaccine platform capable of potent mucosal immune protection against TB. Our study also lends strong evidence that respiratory mucosal vaccination is critically advantageous over systemic routes of vaccination against TB.  相似文献   

8.

Background

The tuberculosis (TB) still increases in the number of new cases, which is estimated to approach 10 million in 2010. The number of aged people has been growing all over the world. Ageing is one of risk factors in tuberculosis because of decreased immune responses in aged people. Mycobacterium bovis Bacillus Calmette Guérin (BCG) is a sole vaccine currently used for TB, however, the efficacy of BCG in adults is still a matter of debate. Emerging the multidrug resistant Mycobacterium tuberculosis (MDR-TB) make us to see the importance of vaccination against TB in new light. In this study, we evaluated the efficacy of BCG vaccination in aged mice.

Results

The Th1 responses, interferon-γ production and interleukin 2, in BCG inoculated aged mice (24-month-old) were comparable to those of young mice (4- to 6-week-old). The protection activity of BCG in aged mice against Mycobacterium tuberculosis H37Rv was also the same as young mice.

Conclusion

These findings suggest that vaccination in aged generation is still effective for protection against tuberculosis.  相似文献   

9.
The live vaccine Mycobacterium bovis bacillus Calmette-Guérin (BCG) provides variable efficacy against adult pulmonary tuberculosis (TB). Recombinant BCG, expressing either immunodominant antigens or Th1 cytokines, is a promising strategy for developing a new TB vaccine. However, not much is known about whether the introduction of cytokine and specific antigen genes concurrently into the BCG strain could improve the immunogenicity of BCG. In this study, a recombinant BCG strain (rBCG) expressing the fusion protein human interleukin (IL)-2 and ESAT-6 (early secreted antigenic target-6 kDa) antigen of Mycobacterium tuberculosis was constructed. Six weeks after BALB/c mice (H-2d) were immunized with 106 colony forming units (CFUs) BCG or rBCG, splenocyte proliferation was determined with MTT [3-(4,5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide] assay, IL-4 and interferon (IFN)-gamma produced by splenocytes were tested by enzyme linked immunosorbent assay (ELISA,) and the cytotoxicity of splenocytes from immunized mice to P815 cells (H-2d) expressing ESAT-6 protein was measured using CytoTox 96 Non-Radioactive Cytotoxicity Assay. Compared with native BCG-vaccinated mice, rBCG induced stronger Th1 responses that were confirmed by high lymphoproliferative responses and IFN-gamma production to culture filtrate protein (CFP) or ESAT-6 protein. Moreover, rBCG induced significant enhanced CTL responses against P815-ESAT-6 cells. Results from rBCG-immunized mice demonstrated that introducing the il-2 and esat-6 genes into BCG could enhance Th1 type immune responses to ESAT-6. Further investigation is needed by introducing other Th1 cytokines and antigens into BCG to optimize the protective efficacy against TB.  相似文献   

10.
Tuberculosis (TB) caused by Mycobacterium tuberculosis remains a major global health problem, despite the widespread use of the M. bovis Bacille Calmette-Guerin (BCG) vaccine and the availability of drug therapies. In recent years, the high incidence of coinfection of M. tuberculosis and HIV, as well as escalating problems associated with drug resistance, has raised ominous concerns with regard to TB control. Vaccination with BCG has not proven highly effective in controlling TB, and also has been associated with increasing concerns about the potential for the vaccine to cause disseminated mycobacterial infection in HIV infected hosts. Thus, the development of an efficacious and safe TB vaccine is generally viewed as a critical to achieving control of the ongoing global TB pandemic. In the current study, we have analyzed the vaccine efficacy of an attenuated M. tuberculosis strain that combines a mutation that enhances T cell priming (ΔsecA2) with a strongly attenuating lysine auxotrophy mutation (ΔlysA). The ΔsecA2 mutant was previously shown to be defective in the inhibition of apoptosis and markedly increased priming of antigen-specific CD8(+) T cells in vivo. Similarly, the ΔsecA2ΔlysA strain retained enhanced apoptosis and augmented CD8(+) T cell stimulatory effects, but with a noticeably improved safety profile in immunosuppressed mice. Thus, the M. tuberculosis ΔsecA2ΔlysA mutant represents a live attenuated TB vaccine strain with the potential to deliver increased protection and safety compared to standard BCG vaccination.  相似文献   

11.
Pan Y  Yang X  Duan J  Lu N  Leung AS  Tran V  Hu Y  Wu N  Liu D  Wang Z  Yu X  Chen C  Zhang Y  Wan K  Liu J  Zhu B 《Journal of bacteriology》2011,193(12):3152-3153
Mycobacterium bovis Bacille Calmette-Guérin (BCG) is the only vaccine available against tuberculosis (TB). A number of BCG strains are in use, and they exhibit biochemical and genetic differences. We report the genome sequences of four BCG strains representing different lineages, which will help to design more effective TB vaccines.  相似文献   

12.
The anti-tuberculosis vaccine, Mycobacterium bovis BCG, has been used worldwide, but its protective efficacy is variable against adult pulmonary tuberculosis. In this study, immune responses of antigen 85A (Ag85A) and heat-shock protein X (HspX) antigen of Mycobacterium tuberculosis were investigated during acute and stationary stage of infection in the murine aerosol TB challenge model and their protective effects were evaluated against progressive tuberculosis. A high level of Ag85A-specific IFN-γ production was induced from the early stage of the infection, whereas HspX-specific IFN-γ production was increased in the later stationary stage. As a subunit vaccine, Ag85A and HspX antigen vaccine induced high levels of IFN-γ, and a vaccine comprising both antigens induced the highest level of IFN-γ. At 30 days post-challenge, the Ag85A subunit vaccine was protective against M. tuberculosis challenge, but the HspX subunit vaccine was not. Interestingly, the HspX antigen vaccine induced significant protective efficacy at 90 days post-challenge. Moreover, the combined antigen vaccine induced the highest protective efficacy against M. tuberculosis challenge both at 30 days and 90 days post-challenge. These results suggest that the vaccine comprising Ag85A and HspX antigen which react in different stages of infection is highly protective against progressive tuberculosis.  相似文献   

13.
Development of novel tuberculosis vaccines   总被引:5,自引:0,他引:5  
Efficacious control of tuberculosis (TB), one of the world's major health threats, is best achieved by a combination of chemotherapy and vaccination. The current vaccine, BCG, fails to prevent pulmonary TB in adults, which is the most prevalent form of this disease. Consequently, the design of novel vaccines against TB is urgently required. Because the acquired immune response is mediated by different T-cell sets, an optimal combination of these populations must be stimulated. As one third of the world's population is already infected with Mycobacterium tuberculosis, two types of vaccine may be required: one for eradication of already established infection and the other for prompt combat of invading microbes. A rational judgement on the efficacy of the different types of vaccine currently under development needs to await further evaluation.  相似文献   

14.
The existence of therapeutic agents and the bacille Calmette-Guérin (BCG) vaccine have not significantly affected the current tuberculosis pandemic. BCG vaccine protects against serious pediatric forms of tuberculosis but not against adult pulmonary tuberculosis, the most common and contagious form of the disease. Several vaccine candidates, including Mycobacterium tuberculosis recombinant proteins formulated in newer adjuvants or delivered in bacterial plasmid DNA have recently been described. An attractive source of vaccine candidates has been M. tuberculosis Ags present in culture supernatants of the initial phases of the bacterial growth in vitro. In this study we describe an Ag discovery approach to select for such Ags produced in vivo during the initial phases of the infection. We combined RP-HPLC and mass spectrometry to identify secreted or shed M. tuberculosis proteins eliminated in animal urine within 14 days after the infection. A peptide containing sequence homology with a hypothetical M. tuberculosis protein was identified and the recombinant protein produced in Escherichia coli. The protein was recognized by Ab (IgG2a and IgG1) and T cells (Th1) of mice infected with M. tuberculosis and by lymphoid cells from healthy donors who had a positive purified protein derivative skin test but not from tuberculosis patients. Moreover, this Ag induced protection in mice against M. tuberculosis at levels comparable to protection induced by BCG vaccine. These results validate the Ag discovery approach of M. tuberculosis proteins secreted or shed in vivo during the early phases of the infection and open new possibilities for the development of potential vaccine candidates or of markers of active mycobacterial multiplication and therefore active disease.  相似文献   

15.
Although the BCG vaccine can prevent tuberculosis (TB) in infants, its ability to prevent adult pulmonary TB is reportedly limited. Therefore, development of a novel effective vaccine against pulmonary TB has become an international research priority. We have previously reported that intranasal vaccination of mice with a mycobacterial heparin‐binding hemagglutinin adhesin (HBHA) plus mucosal adjuvant cholera toxin (CT) enhances production of IFN‐γ and anti‐HBHA antibody and suppresses extrapulmonary bacterial dissemination after intranasal infection with BCG. In the present study, the effects of intranasal HBHA + CT vaccine on murine pulmonary Mycobacterium tuberculosis (Mtb) infection were examined. Intranasal HBHA + CT vaccination alone failed to reduce the bacterial burden in the infected lung. However, a combination vaccine consisting of s.c. BCG priming and an intranasal HBHA + CT booster significantly enhanced protective immunity against pulmonary Mtb infection on day 14 compared with BCG vaccine alone. Further, it was found that intranasal HBHA + CT vaccine enhanced not only IFN‐γ but also IL‐17A production by HBHA‐specific T cells in the lung after pulmonary Mtb infection. Therefore, this combination vaccine may be a good candidate for a new vaccine strategy against pulmonary TB.  相似文献   

16.

Background

In early clinical studies, the live tuberculosis vaccine Mycobacterium bovis BCG exhibited 80% protective efficacy against pulmonary tuberculosis (TB). Although BCG still exhibits reliable protection against TB meningitis and miliary TB in early childhood it has become less reliable in protecting against pulmonary TB. During decades of in vitro cultivation BCG not only lost some genes due to deletions of regions of the chromosome but also underwent gene duplication and other mutations resulting in increased antioxidant production.

Methodology/Principal Findings

To determine whether microbial antioxidants influence vaccine immunogenicity, we eliminated duplicated alleles encoding the oxidative stress sigma factor SigH in BCG Tice and reduced the activity and secretion of iron co-factored superoxide dismutase. We then used assays of gene expression and flow cytometry with intracellular cytokine staining to compare BCG-specific immune responses in mice after vaccination with BCG Tice or the modified BCG vaccine. Compared to BCG, the modified vaccine induced greater IL-12p40, RANTES, and IL-21 mRNA in the spleens of mice at three days post-immunization, more cytokine-producing CD8+ lymphocytes at the peak of the primary immune response, and more IL-2-producing CD4+ lymphocytes during the memory phase. The modified vaccine also induced stronger secondary CD4+ lymphocyte responses and greater clearance of challenge bacilli.

Conclusions/Significance

We conclude that antioxidants produced by BCG suppress host immune responses. These findings challenge the hypothesis that the failure of extensively cultivated BCG vaccines to prevent pulmonary tuberculosis is due to over-attenuation and suggest instead a new model in which BCG evolved to produce more immunity-suppressing antioxidants. By targeting these antioxidants it may be possible to restore BCG''s ability to protect against pulmonary TB.  相似文献   

17.
Mycobacterium bovis bacillus Calmette-Guerin (BCG), the only licensed vaccine, shows limited protection efficacy against pulmonary tuberculosis (TB), particularly hypervirulent Mycobacterium tuberculosis (Mtb) strains, suggesting that a logistical and practical vaccination strategy is urgently required. Boosting the BCG-induced immunity may offer a potentially advantageous strategy for advancing TB vaccine development, instead of replacing BCG completely. Despite the improved protection of the airway immunization by using live BCG, the use of live BCG as an airway boosting agent may evoke safety concerns. Here, we analyzed the protective efficacy of γ-irradiated BCG as a BCG-prime boosting agent for airway immunization against a hypervirulent clinical strain challenge with Mycobacterium tuberculosis HN878 in a mouse TB model. After the aerosol challenge with the HN878 strain, the mice vaccinated with BCG via the parenteral route exhibited only mild and transient protection, whereas BCG vaccination followed by multiple aerosolized boosting with γ-irradiated BCG efficiently maintained long-lasting control of Mtb in terms of bacterial reduction and pathological findings. Further immunological investigation revealed that this approach resulted in a significant increase in the cellular responses in terms of a robust expansion of antigen (PPD and Ag85A)-specific CD4+ T cells concomitantly producing IFN-γ, TNF-α, and IL-2, as well as a high level of IFN-γ-producing recall response via both the local and systemic immune systems upon further boosting. Collectively, aerosolized boosting of γ-irradiated BCG is able to elicit strong Th1-biased immune responses and confer enhanced protection against a hypervirulent Mycobacterium tuberculosis HN878 infection in a boosting number-dependent manner.  相似文献   

18.
Vaccination with Bacille Calmette-Guérin (BCG) has traditionally been used for protection against disease caused by the bacterium Mycobacterium tuberculosis (M.tb). The efficacy of BCG, especially against pulmonary tuberculosis (TB) is variable. The best protection is conferred in temperate climates and there is close to zero protection in many tropical areas with a high prevalence of both tuberculous and non-tuberculous mycobacterial species. Although interferon (IFN)-γ is known to be important in protection against TB disease, data is emerging on a possible role for interleukin (IL)-17 as a key cytokine in both murine and bovine TB vaccine studies, as well as in humans. Modified Vaccinia virus Ankara expressing Antigen 85A (MVA85A) is a novel TB vaccine designed to enhance responses induced by BCG. Antigen-specific IFN-γ production has already been shown to peak one week post-MVA85A vaccination, and an inverse relationship between IL-17-producing cells and regulatory T cells expressing the ectonucleosidease CD39, which metabolises pro-inflammatory extracellular ATP has previously been described. This paper explores this relationship and finds that consumption of extracellular ATP by peripheral blood mononuclear cells from MVA85A-vaccinated subjects drops two weeks post-vaccination, corresponding to a drop in the percentage of a regulatory T cell subset expressing the ectonucleosidase CD39. Also at this time point, we report a peak in co-production of IL-17 and IFN-γ by CD4(+) T cells. These results suggest a relationship between extracellular ATP and effector responses and unveil a possible pathway that could be targeted during vaccine design.  相似文献   

19.
The long-term control of tuberculosis (TB) will require the development of more effective anti-TB vaccines, as the only licensed vaccine, Mycobacterium bovis bacille Calmette-Guérin (BCG), has limited protective efficacy against infectious pulmonary TB. Subunit vaccines have an improved safety profile over live, attenuated vaccines, such as BCG, and may be used in immuno-compromised individuals. MPT83 (Rv2873) is a secreted mycobacterial lipoprotein expressed on the surface of Mycobacterium tuberculosis. In this study, we examined whether recombinant MPT83 is recognized during human and murine M. tuberculosis infection. We assessed the immunogenicity and protective efficacy of MPT83 as a protein vaccine, with monophosphyl lipid A (MPLA) in dimethyl-dioctadecyl ammonium bromide (DDA) as adjuvant, or as a DNA vaccine in C57BL/6 mice and mapped the T cell epitopes with peptide scanning. We demonstrated that rMPT83 was recognised by strong proliferative and Interferon (IFN)-γ-secreting T cell responses in peripheral blood mononuclear cells (PBMC) from patients with active TB, but not from healthy, tuberculin skin test-negative control subjects. MPT83 also stimulated strong IFN-γ T cell responses during experimental murine M. tuberculosis infection. Immunization with either rMPT83 in MPLA/DDA or DNA-MPT83 stimulated antigen-specific T cell responses, and we identified MPT83(127-135) (PTNAAFDKL) as the dominant H-2(b)-restricted CD8(+) T cell epitope within MPT83. Further, immunization of C57BL/6 mice with rMPT83/MPLA/DDA or DNA-MPT83 stimulated significant levels of protection in the lungs and spleens against aerosol challenge with M. tuberculosis. Interestingly, immunization with rMPT83 in MPLA/DDA primed for stronger IFN-γ T cell responses to the whole protein following challenge, while DNA-MPT83 primed for stronger CD8(+) T cell responses to MPT83(127-135). Therefore MPT83 is a protective T cell antigen commonly recognized during human M. tuberculosis infection and should be considered for inclusion in future TB subunit vaccines.  相似文献   

20.
The bacillus Calmette-Guérin (BCG) vaccine is the only licensed vaccine for human use against tuberculosis (TB). Although controversy exists about its efficacy, the BCG vaccine is able to protect newborns and children against disseminated forms of TB, but fails to protect adults against active forms of TB. In the last few years, interest in the mucosal delivery route for the vaccine has been increasing owing to its increased capacity to induce protective immune responses both in the mucosal and the systemic immune compartments. Here, we show the importance of this route of vaccination in newly developed vaccines, especially for vaccines against TB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号