首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The function of the herpes simplex virus type 1(HSV-1)UL4 protein is still elusive. Our objective is to investigate the subcellular transport mechanism of the UL4 protein. In this study,fluorescence microscopy was employed to investigate the subcellular localization of UL4 and characterize the transport mechanism in living cells. By constructing a series of deletion mutants fused with enhanced yellow fluorescent protein(EYFP),the nuclear export signals(NES)of UL4 were for the first time mapped to amino acid residues 178 to 186. In addition,the N-terminal 19 amino acids are identified to be required for the granule-like cytoplasmic pattern of UL4.Furthermore,the UL4 protein was demonstrated to be exported to the cytoplasm through the NES in a chromosomal region maintenance 1(CRM l)-dependent manner involving RanGTP hydrolysis.  相似文献   

2.
The function of the herpes simplex virus type 1 (HSV-1) UL4 protein is still elusive. Our objective is to investigate the subcellular transport mechanism of the UL4 protein. In this study, fluorescence microscopy was employed to investigate the subcellular localization of UL4 and characterize the transport mechanism in living cells. By constructing a series of deletion mutants fused with enhanced yellow fluorescent protein (EYFP), the nuclear export signals (NES) of UL4 were for the first time mapped to amino acid residues 178 to 186. In addition, the N-terminal 19 amino acids are identified to be required for the granule-like cytoplasmic pattern of UL4. Furthermore, the UL4 protein was demonstrated to be exported to the cytoplasm through the NES in a chromosomal region maintenance 1 (CRM1)-dependent manner involving RanGTP hydrolysis.  相似文献   

3.
Herpesvirus DNA is packaged into capsids in the nuclei of infected cells in a process requiring at least six viral proteins. Of the proteins required for encapsidation of viral DNA, UL15 and UL28 are the most conserved among herpes simplex virus type 1 (HSV), varicella-zoster virus, and equine herpesvirus 1. The subcellular distribution of the pseudorabies virus (PRV) UL28 protein was examined by in situ immunofluorescence. UL28 was present in the nuclei of infected cells; however, UL28 was limited to the cytoplasm in the absence of other viral proteins. When cells expressing variant forms of UL28 were infected with a PRV UL28-null mutant, UL28 entered the nucleus, provided the carboxyl-terminal 155 amino acids were present. Additionally, PRV UL28 entered the nucleus in cells infected with HSV. Two HSV packaging proteins were tested for the ability to affect the subcellular distribution of UL28. Coexpression of HSV UL15 enabled PRV UL28 to enter the nucleus in a manner that required the carboxyl-terminal 155 amino acids of UL28. Coexpression of HSV UL25 did not affect the distribution of UL28. We propose that an interaction between UL15 and UL28 facilitates the transport of a UL15-UL28 complex to the infected-cell nucleus.  相似文献   

4.
5.
The UL25 gene of pseudorabies virus (PrV) can encode a protein of about 57 kDa which is well conserved among herpesviruses. The UL25 protein of herpes simplex virus type 1 is a capsid constituent involved in virus penetration and capsid maturation. To identify and characterize the UL25 gene product of PrV, polyclonal mouse anti-UL25 antibodies were raised to a bacterially expressed fusion protein. In immunoblotting and immunoprecipitation assays of PrV-infected cell lysates, these anti-UL25 antisera specifically recognized a protein of the expected size with late expression kinetics. This 57-kDa product was also present in purified virions and was found to be associated with all types of capsids. Synthesis of a protein migrating at the same size point was directed from the eukaryotic expression plasmid pCG-UL25. To determine the subcellular localization of UL25, immunofluorescence studies with anti-UL25 antisera were performed on Nonidet P-40-extracted COS-7 cells infected with PrV or transfected with pCG-UL25. In PrV-infected cells, newly synthesized UL25 is directed mainly to distinct nuclear compartments, whereas UL25 expressed in the absence of other viral proteins is distributed more uniformly in the nucleus and colocalizes also with microtubules. To study the fate of UL25 at very early stages of infection, immunofluorescence experiments were performed on invading PrV particles in the presence or absence of drugs that specifically depolymerize components of the cytoskeleton. We found that the incoming nucleocapsids colocalize with microtubules during their transport to the nucleus and that UL25 remains associated with nucleocapsids during this transport.  相似文献   

6.
Human cytomegalovirus infections involve the extensive modification of host cell pathways, including cell cycle control, the regulation of the DNA damage response, and averting promyelocytic leukemia (PML)-mediated antiviral responses. The UL35 gene from human cytomegalovirus is important for viral gene expression and efficient replication and encodes two proteins, UL35 and UL35a, whose mechanism of action is not well understood. Here, affinity purification coupled with mass spectrometry was used to identify previously unknown human cellular targets of UL35 and UL35a. We demonstrate that both viral proteins interact with the ubiquitin-specific protease USP7, and that UL35 expression can alter USP7 subcellular localization. In addition, UL35 (but not UL35a) was found to associate with three components of the Cul4(DCAF1) E3 ubiquitin ligase complex (DCAF1, DDB1, and DDA1) previously shown to be targeted by the HIV-1 Vpr protein. The coimmunoprecipitation and immunofluorescence microscopy of DCAF1 mutants revealed that the C-terminal region of DCAF1 is required for association with UL35 and mediates the dramatic relocalization of DCAF1 to UL35 nuclear bodies, which also contain conjugated ubiquitin. As previously reported for the Vpr-DCAF1 interaction, UL35 (but not UL35a) expression resulted in the accumulation of cells in the G(2) phase of the cell cycle, which is typical of a DNA damage response, and activated the G(2) checkpoint in a DCAF1-dependent manner. In addition, UL35 (but not UL35a) induced γ-H2AX and 53BP1 foci, indicating the activation of DNA damage and repair responses. Therefore, the identified interactions suggest that UL35 can contribute to viral replication through the manipulation of host responses.  相似文献   

7.
RNA interference (RNAi) is a process by which introduced small interfering RNA (siRNA) can cause the specific degradation of mRNA with identical sequences. The human herpes simplex virus type 1 (HSV-1) RR is composed of two distinct homodimeric subunits encoded by UL39 and UL40, respectively. In this study, we applied siRNAs targeting the UL39 and UL40 genes of HSV-1. We showed that synthetic siRNA silenced effectively and specifically UL39 and UL40 mRNA expression and inhibited HSV-1 replication. Our work offers new possibilities for RNAi as a genetic tool for inhibition of HSV-1 replication.  相似文献   

8.
单纯疱疹病毒1型(Herpes simplex virus type 1,HSV-1)潜伏感染期间LATs的活跃转录可能与其启动子与增强子两侧的CTCF结合序列有关。本研究对位于UL56下游与LAT启动子上游之间并与CTCF结合序列重叠存在的一个新开放读码框(本研究中命名为UL57)进行了鉴定。首先利用HSV-1(F)细菌人工染色体(HSV-BAC)系统构建重组病毒HSV-EGFP-UL57,将EGFP序列插入UL57 5’端;然后分别通过Northern Blot和Western Blot检测EGFP标记的UL57的转录和表达;同时构建敲除UL57的重组病毒HSV-ΔUL57,观察UL57对病毒增殖的影响。结果显示,重组病毒HSV-EGFP-UL57感染HEp-2细胞17h后,EGFP探针检测到两条转录产物,其中1.8kb转录产物与预测大小相符;使用放线菌酮(Cycloheximide,CHX)阻断病毒即刻早期蛋白/早期蛋白合成后,UL57转录受到明显抑制。重组病毒HSV-EGFP-UL57感染Vero细胞后,9h可见融合蛋白表达,24h表达明显;融合蛋白分子量与预测大小(58kD)一致。病毒生长曲线显示,重组病毒HSV-EGFP-UL57及HSV-ΔUL57在Vero细胞中的增殖水平与HSV-1(F)基本一致。本研究表明,在HSV-1基因组(GenBank:GU734771.1)UL56下游与LAT启动子上游之间存在一个新开放读码框UL57(116 921bp~117 799bp),UL57可以进行转录,且其转录受病毒即刻早期蛋白/早期蛋白调控;转录产物可以翻译出融合蛋白,但表达水平较低。删除UL57对病毒增殖无明显影响。  相似文献   

9.
Duck enteritis virus (DEV) is a herpesvirus that causes an acute, contagious and fatal disease. In the present article, the DEV UL4 gene was cloned and sequenced from a vaccine virus. A degenerate oligonucleotide primer for the consensus site of herpesvirus UL3 gene and a specific primer located in UL5 were used in the polymerase chain reaction (PCR) to amplify a DNA product 2 086 bp in size. DNA sequence analysis revealed that a 714 bp open reading frame (ORF) of DEV encoding a 237 amino acid polypeptide is homologous to the family of herpesvirus UL4 proteins and therefore has been characterized as a DEV UL4 gene. Alignment of the DEV UL4 protein sequence with those of other alphaherpesviruses showed that 10 amino acid residues are completely conserved. Phylogenetic tree analysis showed that the seventeen alphaherpesviruses viruses analyzed were classified into four large groups, and the duck enteritis virus branched separately, closely related to the Mardiviruses group comprising Gallid herpesvirus 2 (GaHV-2), Gallid herpesvirus 3 (GaHV-3) and Meleagrid herpesvirus 1 (MeHV-1). The present study showed that the evolutionary relationship of the UL4 protein could be used for classification of alphaherpesviruses.  相似文献   

10.
人DNAJB6蛋白与人巨细胞病毒皮层蛋白pUL23相互作用的鉴定   总被引:1,自引:0,他引:1  
pUL23是人巨细胞病毒(HCMV)UL23基因编码的皮层蛋白. HCMV皮层蛋白与病毒颗粒的形成、病毒转移、免疫调控等病毒生活过程相关.利用GAL4 酵母双杂交系统筛选人胚肾cDNA文库,获得与人巨细胞病毒皮层蛋白pUL23相互作用的宿主蛋白分子DNAJB6 [DnaJ (Hsp40) homolog, subfamily B, member 6].回复酵母双杂交、体外GST-Pull down和免疫共沉淀试验再次确认两者之间的相互作用.该结果为进一步研究pUL23蛋白在HCMV生活周期中的作用机制提供依据.  相似文献   

11.
Microtubule-mediated anterograde transport is essential for the transport of herpes simplex virus type 1 (HSV-1) along axons, yet little is known regarding the mechanism and the machinery required for this process. Previously, we were able to reconstitute anterograde transport of HSV-1 on microtubules in an in vitro microchamber assay. Here we report that the large tegument protein UL36p is essential for this trafficking. Using a fluorescently labeled UL36 null HSV-1 strain, KΔUL36GFP, we found that it is possible to isolate a membrane-associated population of this virus. Although these viral particles contained normal amounts of tegument proteins VP16, vhs, and VP22, they displayed a 3-log decrease in infectivity and showed a different morphology compared to UL36p-containing virions. Membrane-associated KΔUL36GFP also displayed a slightly decreased binding to microtubules in our microchamber assay and a two-thirds decrease in the frequency of motility. This decrease in binding and motility was restored when UL36p was supplied in trans by a complementing cell line. These findings suggest that UL36p is necessary for HSV-1 anterograde transport.  相似文献   

12.
人巨细胞病毒(HCMV) UL23基因编码病毒皮层蛋白,该基因缺失时,病毒在人包皮成纤维细胞(HFF)中的繁殖速度加快.为进一步阐述HCMV UL23基因编码产物 pUL23的功能及调控机制,采用鸟枪法构建了融合于GAL4活性区域的HCMV Towne株 基因组随机表达文库.利用酵母双杂交技术,以pGBKT7 -UL23为诱饵质粒,从构建 的HCMV基因组表达文库中筛选到与pUL23相互作用的病毒编码蛋白pUL24. GST-pull down实验和免疫共沉淀实验进一步确认两种病毒蛋白之间的相互作用.结果 表明,构建的HCMV基因组表达文库能够用于GAL4酵母双杂交系统筛选与诱饵蛋白相互作用的病毒自身编码蛋白.病毒蛋白pUL23和pUL24之间具有相互作用,这为进一 步阐述pUL23在HCMV感染过程中的功能提供依据.该研究为揭示HCMV病毒感染机制奠定了基础.  相似文献   

13.
Duck enteritis virus (DEV) is a herpesvirus that causes an acute, contagious and fatal disease. In the present article, the DEV UL4 gene was cloned and sequenced from a vaccine virus. A degenerate oligonucleotide primer for the consensus site of herpesvirus UL3 gene and a specific primer located in UL5 were used in the polymerase chain reaction (PCR) to amplify a DNA product 2 086 bp in size. DNA sequence analysis revealed that a 714 bp open reading frame (ORF) of DEV encoding a 237 amino acid polypeptide is homologous to the family of herpesvirus UL4 proteins and therefore has been characterized as a DEV UL4 gene. Alignment of the DEV UL4 protein sequence with those of other alphaherpesviruses showed that 10 amino acid residues are completely conserved. Phylogenetic tree analysis showed that the seventeen alphaherpesviruses viruses analyzed were classified into four large groups, and the duck enteritis virus branched separately, closely related to the Mardiviruses group comprising Gallid herpesvirus 2 (GaHV-2), Gallid herpesvirus 3 (GaHV-3) and Meleagrid herpesvirus 1 (MeHV-1). The present study showed that the evolutionary relationship of the UL4 protein could be used for classification of alphaherpesviruses.   相似文献   

14.
The UL20 protein of herpes simplex virus 1, an intrinsic membrane protein, is required in infected Vero cells in which the Golgi apparatus is fragmented for the transport of virions from the space between the inner and outer nuclear membranes and for the transport of fully processed cell membrane-associated glycoproteins from the trans-Golgi to the plasma membrane. It is not required in the human 143TK- cell line, in which the Golgi apparatus remains intact. We report the following. (i) The UL20 protein was detected in infected cells beginning at 6 h postinfection and was regulated as a gamma 1 gene. (ii) Pulse-chase experiments revealed no detectable alteration in the mobility of the UL20 protein in polyacrylamide gels. (iii) In both infected Vero and infected 143TK- cells, the UL20 protein was detected by immunofluorescence in association with nuclear membranes and in the cytoplasm. Some of the cytoplasmic fluorescence colocalized with beta-COP, a protein associated with Golgi-derived transport vesicles. UL20 protein was present in virions purified from the extracellular space but could not be detected in the plasma membrane. These results are consistent with the hypothesis that UL20 is a component of virion envelopes and membranes of virion transport vesicles and is selectively retained from the latter in a Golgi compartment.  相似文献   

15.
N de Wind  F Wagenaar  J Pol  T Kimman    A Berns 《Journal of virology》1992,66(12):7096-7103
We mutagenized, mapped, and sequenced the pseudorabies virus (PRV) homology of gene UL21 of herpes simplex virus type 1. A polyclonal mouse antiserum against the protein encoded by the UL21 homolog was generated and used to monitor the expression and subcellular localization of the UL21-encoded protein. We found that the protein is identical to a previously detected PRV capsid protein. We analyzed viable PRV strains encoding mutant UL21 homologys, truncated by insertion of an oligonucleotide that contains stop codons in all reading frames. In two PRV mutants carrying the oligonucleotide at two sites within the gene, processing of newly replicated viral DNA was impaired. In addition, we show that one of the UL21 mutants has strongly reduced virulence for mice.  相似文献   

16.
NUAK1 is a serine/threonine kinase member of the AMPK-α family. NUAK1 regulates several processes in tumorigenesis; however, its regulation and molecular targets are still poorly understood. Bioinformatics analysis predicted that the majority of NUAK1 localizes in the nucleus. However, there are no studies about the regulation of NUAK1 subcellular distribution. Here, we analyzed NUAK1 localization in several human cell lines, mouse embryo fibroblasts, and normal mouse tissues. We found that NUAK1 is located in the nucleus and also in the cytoplasm. Through bioinformatics analysis and studies comparing subcellular localization of wild type and NUAK1 mutants, we identified a conserved bipartite nuclear localization signal at the N-terminal domain of NUAK1. Based on mass spectrometry analysis, we found that NUAK1 interacts with importin-β members including importin-β1 (KPNB1), importin-7 (IPO7), and importin-9 (IPO9). We confirmed that importin-β members are responsible for NUAK1 nuclear import through the inhibition of importin-β by Importazole and the knockdown of either IPO7 or IPO9. In addition, we found that oxidative stress induces NUAK1 cytoplasmic accumulation, indicating that oxidative stress affects NUAK1 nuclear transport. Thus, our study is the first evidence of an active nuclear transport mechanism regulating NUAK1 subcellular localization. These data will lead to investigations of the molecular targets of NUAK1 according to its subcellular distribution, which could be new biomarkers or targets for cancer therapies.  相似文献   

17.
The mRNA-binding protein CUGBP-1 is a multi-faceted factor, involved in a wide range of biological processes including splicing, translation initiation and mRNA degradation. Here we show that CUGBP-1 is a novel constituent of stress granule (SG), the translational silencing machinery assembled in response to environmental stress. CUGBP-1 was rapidly routed to SGs upon exposure to a variety of environmental stress, and actively shuttles between the nucleus and SGs. The linker domain located between the second and third RNA recognition motifs (RRMs) was found to be essential for the recruitment of CUGBP-1 to SGs. Importantly, we discovered that the linker domain is also required to direct CUGBP-1 to another subcellular structure, perinucleolar compartment (PNC). These results demonstrate the dynamic behavior of CUGBP-1 during stress response and that the linker region, in concert with RRMs, plays a significant role in defining its subcellular localization and dynamics.  相似文献   

18.
The protein encoded by the UL14 gene of herpes simplex virus type 1 (HSV-1) and HSV-2 is expressed late in infection and is a minor component of the virion tegument. An UL14-deficient HSV-1 mutant (UL14D) forms small plaques and exhibits an extended growth cycle at low multiplicities of infection (MOI) compared to wild-type virus. Although UL14 is likely to be involved in the process of viral maturation and egress, its precise role in viral replication is still enigmatic. In this study, we found that immediate-early viral mRNA expression was decreased in UL14D-infected cells. Transient coexpression of UL14 and VP16 in the absence of infection stimulated the nuclear accumulation of both proteins. We intended to visualize the fate of VP16 released from the infected virion and constructed UL14-null (14D-VP16G) and rescued (14R-VP16G) viruses that expressed a VP16-green fluorescent protein (GFP) fusion protein. Synchronous high-multiplicity infection of the viruses was performed at 4°C in the absence of de novo protein synthesis. We found that the presence of UL14 in the virion had an enhancing effect on the nuclear accumulation of VP16-GFP. The lack of UL14 did not significantly alter virus internalization but affected incoming capsid transport to the nuclear pore. These observations suggested that UL14 (i) enhanced VP16 nuclear localization at the immediately early phase, thus indirectly regulating the expression of immediate-early genes, and (ii) was associated with efficient nuclear targeting of capsids. The tegument protein UL14 could be part of the machinery that regulates HSV-1 replication.  相似文献   

19.
Herpes simplex virus 1 (HSV-1) UL13 is a viral protein kinase that regulates optimal viral replication in cell cultures. Identification of substrates of protein kinases is a crucial step to elucidate the mechanism by which they function. Using our developed system to analyze the specific protein kinase activity of UL13, we have shown that UL13 protein kinase directly phosphorylates the viral proteins ICP22 and UL49 previously reported to be putative substrates. We also identified UL41 as a previously unreported and novel substrate of UL13. These data will serve as a basis to clarify the mechanism by which UL13 influences viral replication.  相似文献   

20.
Viruses (e.g. Human immunodeficiency virus, Human simplex virus and Prototype foamy virus) are obligate intracellular parasites and therefore depend on the cellular machinery for cellular trafficking. Bovine foamy virus (BFV) is a member of the Spumaretrovirinae subfamily of Retroviruses, however, details of its cellular trafficking remain unknown. In this study, we cloned the BFV gag gene into prokaryotic expression vector pET28a and purified the denaturalized Gag protein. The protein was used to immunize BALB/c mouse to produce antiserum, which could specifically recognize the BFV Gag protein in BFV-infected cells through western blot assay. Additionally, these results demonstrated that both the optimal and suboptimal cleavage of Gag protein occur in BFV-infected cells. Subsequently, the Gag antiserum was used to investigate subcellular localization of BFV. In immunofluorescence microscopy assays, colocalization microtubules (MTs) and assembling viral particles were clearly observed, which implied that BFV may transport along cellular MTs in host cells. Furthermore, MTs-depolymerizing assay indicated MTs were required for the efficient replication of BFV. In conclusion, our study suggests that BFV has evolved the mechanism to hijack the cellular cytoskeleton for its replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号