首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study examined the combined effect of dopamine and 1-methyl-4-phenylpyridinium (MPP(+)) on the membrane permeability in isolated brain mitochondria and on cell viability in PC12 cells. MPP(+) increased effect of dopamine against the swelling, membrane potential, and Ca(2+) transport in isolated mitochondria, which was not inhibited by the addition of antioxidant enzymes (SOD and catalase). Dopamine or MPP(+) caused the decrease in transmembrane potential, increase in reactive oxygen species, depletion of GSH, and cell death in PC12 cells. Antioxidant enzymes reduced each effect of dopamine and MPP(+) against PC12 cells. Co-addition of dopamine and MPP(+) caused the decrease in the transmembrane potential and increase in the formation of reactive oxygen species in PC12 cells, in which they showed an additive effect. Dopamine plus MPP(+)-induced the depletion of GSH and cell death in PC12 cells were not decreased by the addition of antioxidant enzymes, rutin, diethylstilbestrol, and ascorbate. Melanin caused a cell viability loss in PC12 cells. The N-acetylcysteine, N-phenylthiourea, and 5-hydroxyindole decreased the cell death and the formation of dopamine quinone and melanin induced by co-addition of dopamine and MPP(+), whereas deprenyl and chlorgyline did not show an inhibitory effect. The results suggest that co-addition of dopamine and MPP(+) shows an enhancing effect on the change in mitochondrial membrane permeability and cell death, which may be accomplished by toxic quinone and melanin derived from the MPP(+)-stimulated dopamine oxidation.  相似文献   

2.
The present study elucidated the effects of indoleamines (serotonin, melatonin, and tryptophan) on oxidative damage of brain mitochondria and synaptosomes induced either by 6-hydroxydopamine (6-OHDA) or by iron plus ascorbate and on viability loss in dopamine-treated PC12 cells. Serotonin (1-100 microM), melatonin (100 microM), and antioxidant enzymes attenuated the effects of 6-OHDA, iron plus ascorbate, or 1-methyl-4-phenylpyridinium on mitochondrial swelling and membrane potential formation. Serotonin and melatonin decreased the attenuation of synaptosomal Ca(2+) uptake induced by either 6-OHDA alone or iron plus ascorbate. Serotonin and melatonin inhibited the production of reactive oxygen species, formation of malondialdehyde and carbonyls, and thiol oxidation in mitochondria and synaptosomes and decreased degradation of 2-deoxy-D-ribose. Unlike serotonin, melatonin did not reduce the iron plus ascorbate-induced thiol oxidation. Tryptophan decreased thiol oxidation and 2-deoxy-D-ribose degradation but did not inhibit the production of reactive oxygen species and formation of oxidation products in the brain tissues. Serotonin and melatonin attenuated the dopamine-induced viability loss, including apoptosis, in PC12 cells. The results suggest that serotonin may attenuate the oxidative damage of mitochondria and synaptosomes and the dopamine-induced viability loss in PC12 cells by a decomposing action on reactive oxygen species and inhibition of thiol oxidation and shows the effect comparable to melatonin. Serotonin may show a prominent protective effect on the iron-mediated neuronal damage.  相似文献   

3.
Although nicotine has been associated with a decreased risk of developing Parkinson disease, the underlying mechanisms are still unclear. By using isolated brain mitochondria, we found that nicotine inhibited N-methyl-4-phenylpyridine (MPP(+)) and calcium-induced mitochondria high amplitude swelling and cytochrome c release from intact mitochondria. Intra-mitochondria redox state was also maintained by nicotine, which could be attributed to an attenuation of mitochondria permeability transition. Further investigation revealed that nicotine did not prevent MPP(+)- or calcium-induced mitochondria membrane potential loss, but instead decreased the electron leak at the site of respiratory chain complex I. In the presence of mecamylamine hydrochloride, a nonselective nicotinic acetylcholine receptor inhibitor, nicotine significantly postponed mitochondria swelling and cytochrome c release induced by a mixture of neurotoxins (MPP(+) and 6-hydroxydopamine) in SH-SY5Y cells, suggesting that there is a receptor-independent nicotine-mediated neuroprotective effect of nicotine. These results show that interaction of nicotine with mitochondria respiratory chain together with its antioxidant effects should be considered in the neuroprotective effects of nicotine.  相似文献   

4.
The present study examined the effect of MAO inhibitors, deprenyl and harmaline, on the membrane permeability transition in brain mitochondria. Deprenyl, harmaline, and antioxidant enzymes (SOD and catalase) attenuated alteration of the swelling, membrane potential, cytochrome c release, and Ca2+ transport in mitochondria treated with dopamine. In contrast, deprenyl and harmaline did not reduce the peroxynitrite-induced change in membrane permeability. Deprenyl and harmaline inhibited the decrease in thioredoxin reductase activity and the thiol oxidation in mitochondria treated with dopamine but did not decrease the effect of peroxynitrite. Deprenyl and harmaline significantly decreased the formation of melanin from dopamine. The results suggest that deprenyl and harmaline may protect brain mitochondria against the toxic action of dopamine oxidation by the maintenance of thioredoxin reductase activity, inhibition of thiol oxidation, and inhibition of dopamine oxidation product formation. In contrast, MAO inhibitors may not defend brain mitochondria against damaging action of peroxynitrite.  相似文献   

5.
The present study elucidated the protective effect of beta-carbolines (harmaline, harmalol, and harmine) on oxidative neuronal damage. MPTP treatment increased activities of total superoxide dismutase, catalase, and glutathione peroxidase and levels of malondialdehyde and carbonyls in the basal ganglia, diencephalon plus midbrain of brain compared with control mouse brain. Coadministration of harmalol (48 mg/kg) attenuated the MPTP effect on the enzyme activities and formation of tissue peroxidation products. Harmaline, harmalol, and harmine attenuated both the 500 microM MPP(+)-induced inhibition of electron flow and membrane potential formation and the 100 microM dopamine-induced thiol oxidation and carbonyl formation in mitochondria. The scavenging action of beta-carbolines on hydroxyl radicals was represented by inhibition of 2-deoxy-D-ribose degradation. Harmaline and harmalol (100 microM) attenuated 200 microM dopamine-induced viability loss in PC12 cells. The beta-carbolines (50 microM) attenuated 50 microM dopamine-induced apoptosis in PC12 cells. The compounds alone did not exhibit significant cytotoxic effects. The results indicate that beta-carbolines attenuate brain damage in mice treated with MPTP and MPP(+)-induced mitochondrial damage. The compounds may prevent dopamine-induced mitochondrial damage and PC12 cell death through a scavenging action on reactive oxygen species and inhibition of monoamine oxidase and thiol oxidation.  相似文献   

6.
Mitochondrial permeability transition (MPT) is correlated with the opening of a nonspecific pore, the so-called transition pore, that triggers bidirectional traffic of inorganic solutes and metabolites across the mitochondrial membrane. This phenomenon is caused by supraphysiological Ca(2+) concentrations and by other compounds leading to oxidative stress, while cyclosporin A, ADP, bongkrekic acid, antioxidant agents and naturally occurring polyamines strongly inhibit it. The effects of polyamines, including the diamine agmatine, have been widely studied in several types of mitochondria. The effects of monoamines on MPT have to date, been less well-studied, even if they are involved in a variety of neurological and neuroendocrine processes. This study shows that in rat liver mitochondria (RLM), monoamines such as tyramine, serotonin and dopamine amplify the swelling induced by calcium, and increase the oxidation of thiol groups and the production of hydrogen peroxide, effects that are counteracted by the above-mentioned inhibitors. In rat brain mitochondria (RBM), the monoamines do not amplify calcium-induced swelling, even if they demonstrate increases in the extent of oxidation of thiol groups and hydrogen peroxide production. In these mitochondria, the antioxidants are not at all or scarcely effective in suppressing mitochondrial swelling. In conclusion, we hypothesize that different mechanisms induce the MPT in the two different types of mitochondria evaluated. Calcium and monoamines induce oxidative stress in RLM, which in turn appears to induce and amplify MPT. This process is not apparent in RBM, where MPT seems resistant to oxidative stress.  相似文献   

7.
When rat liver mitochondria are allowed to cycle Ca(2+) and are incubated in the presence of the pro-oxidant menadione, they undergo swelling, membrane potential (DeltaPsi) collapse, and ion release. These effects, which are inhibited by cyclosporin A (CsA), are fully consistent with the opening of the so-called permeability transition pore. However, when Ca(2+) cycling is abolished by EGTA, the mitochondria remain energized (DeltaPsi collapse and swelling are avoided), but Ca(2+) efflux, promoted by the chelating agent, is stimulated by menadione. This stimulation goes together with the release of Mg(2+), K(+), and adenine nucleotides (AdN) and is inhibited by bongkrekic acid (BKA). The effect of menadione is also characterized by biphasic NAD(P)H oxidation which becomes monophasic in the presence of BKA, CsA, or EGTA and by the oxidation of thiol groups not restrained by the above-mentioned inhibitors. These results suggest that BKA acts indirectly by preserving in the matrix a critical amount of AdN without modifying the monophasic oxidation of pyridine nucleotides by menadione. A critical number of thiol groups also seems to be involved in the phenomenon. Their oxidation most probably causes a conformational change on adenine nucleotide translocase with the opening of the "low-conductance state" of the mitochondrial permeability transition, resulting in ion permeability without DeltaPsi disruption and mitochondrial swelling.  相似文献   

8.
MPP(+)-induced mitochondrial dysfunction is potentiated by dopamine   总被引:2,自引:0,他引:2  
MPP(+), the major metabolite of the Parkinsonism-inducing compound MPTP, responsible for the destruction of the nigrostriatal pathway in primates and rodents, has been assayed in isolated rat liver mitochondria in the presence of physiological concentrations of dopamine or analogous concentrations of melanin-dopamine. 5 microM MPP(+) in the presence of 70 microM dopamine or melanin-dopamine, but not alone, decreased the heat production and oxygen consumption of a mitochondrial suspension activated with succinate and ADP. Both dopamine and oxidized dopamine plus MPP(+) also decreased the mitochondrial reductive power measured with MTT. Mitochondrial swelling was observed, associated with an increase in membrane mitochondrial potential, as a synergistic effect between low concentrations of MPP(+) and dopamine. It is suggested that cytosolic dopamine, by itself or via its autooxidation products, may play a relevant role in the mitochondrial toxicity of MPP(+). A failure in the regulation of the storage/release of dopamine could aggravate a mitochondrial damage and trigger the neurodegenerative process underlying MPTP toxicity and Parkinson's disease.  相似文献   

9.
We previously showed that Ca2+-induced cyclosporin A-sensitive membrane permeability transition (MPT) of mitochondria occurred with concomitant generation of reactive oxygen species (ROS) and release of cytochrome c (Free Rad. Res.38, 29-35, 2004). To elucidate the role of alpha-tocopherol in MPT, we investigated the effect of alpha-tocopherol on mitochondrial ROS generation, swelling and cytochrome c release induced by Ca2+ or hydroxyl radicals. Biochemical analysis revealed that alpha-tocopherol suppressed Ca2+-induced ROS generation and oxidation of critical thiol groups of mitochondrial adenine nucleotide translocase (ANT) but not swelling and cytochrome c release. Hydroxyl radicals also induced cyclosporin A-sensitive MPT of mitochondria. alpha-Tocopherol suppressed the hydroxyl radical-induced lipid peroxidation, swelling and cytochrome c release from mitochondria. These results indicate that alpha-tocopherol inhibits ROS generation, ANT oxidation, lipid peroxidation and the opening of MPT, thereby playing important roles in the prevention of oxidative cell death.  相似文献   

10.
B Frei  C Richter 《FEBS letters》1986,198(1):99-102
The nigrostriatal neurotoxin N-methyl-1,2,3,6-tetrahydropyridine (MPTP) causes Parkinsonism in humans and laboratory animals. MPTP neurotoxicity is dependent on its oxidation to N-methyl-4-phenylpyridine (MPP+). The mechanism by which MPP+ causes destruction of dopamine-containing nigrostriatal cells is unknown. Here we show that MPP+ but not MPTP is taken up by energized mitochondria. MPP+ in the presence of dopamine and particularly of 6-hydroxydopamine stimulates Ca2+ release from mitochondria. Ca2+ release is accompanied by hydrolysis of intramitochondrial pyridine nucleotides. Our findings suggest that the MPTP-induced model of Parkinson's disease may be due to a disturbed Ca2+ homeostasis in dopamine neurons.  相似文献   

11.
We have investigated the ability of pramipexole, a dopamine agonist used in the symptomatic treatment of Parkinson's disease (PD), to protect against cell death induced by 1-methyl-4-phenylpyridinium (MPP+) and rotenone in dopaminergic and non-dopaminergic cells. Pre-incubation with either the active (-)- or inactive (+)-enantiomer forms of pramipexole (10 microm) decreased cell death in response to MPP+ and rotenone in dopaminergic SHSY-5Y cells and in non-dopaminergic JK cells. The protective effect was not prevented by dopamine receptor blockade using sulpiride or clozapine. Protection occurred at concentrations at which pramipexole did not demonstrate antioxidant activity, as shown by the failure to maintain aconitase activity. However, pramipexole reduced caspase-3 activation, decreased the release of cytochrome c and prevented the fall in the mitochondrial membrane potential induced by MPP+ and rotenone. This suggests that pramipexole has anti-apoptotic actions. The results extend the evidence for the neuroprotective effects of pramipexole and indicate that this is not dependent on dopamine receptor occupation or antioxidant activity. Further evaluation is required to determine whether the neuroprotective action of pramipexole is translated to a disease-modifying effect in PD patients.  相似文献   

12.
Acetoacetate, an NADH oxidant, stimulated the ruthenium red-insensitive rat liver mitochondrial Ca(2+) efflux without significant release of state-4 respiration, disruption of membrane potential (Deltapsi) or mitochondrial swelling. This process is compatible with the opening of the currently designated low conductance state of the permeability transition pore (PTP) and, under our experimental conditions, was associated with a partial oxidation of the mitochondrial pyridine nucleotides. In contrast, diamide, a thiol oxidant, induced a fast mitochondrial Ca(2+) efflux associated with a release of state-4 respiration, a disruption of Deltapsi and a large amplitude mitochondrial swelling. This is compatible with the opening of the high conductance state of the PTP and was associated with extensive oxidation of pyridine nucleotides. Interestingly, the addition of carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone to the acetoacetate experiment promoted a fast shift from the low to the high conductance state of the PTP. Both acetoacetate and diamide-induced mitochondrial permeabilization were inhibited by exogenous catalase. We propose that the shift from a low to a high conductance state of the PTP can be promoted by the oxidation of NADPH. This impairs the antioxidant function of the glutathione reductase/peroxidase system, strongly strengthening the state of mitochondrial oxidative stress.  相似文献   

13.
The role of intramitochondrial K+ content on the increase in membrane permeability to Ca2+, as induced by carboxyatractyloside was studied. In mitochondria containing a high K+ concentration (83 nmol/mg), carboxyatractyloside induced a fast and extensive mitochondrial Ca2+ release, membrane de-energization, and swelling. Conversely, in K(+)-depleted mitochondria (11 nmol/mg), carboxyatractyloside was ineffective. The addition of 40 mM K+ to K(+)-depleted mitochondria restored the capability of atractyloside to induce an increase in membrane permeability to Ca2+ release. The determination of matrix free Ca2+ concentration showed that, at an external free-Ca2+ concentration of 0.8 microM, control mitochondria contained 3.9 microM of free Ca2+ whereas K(+)-depleted mitochondria contained 0.9 microM free Ca2+. It is proposed that intramitochondrial K+ affects the matrix free Ca2+ concentration required to induce a state of high membrane permeability.  相似文献   

14.
Treatment of human erythrocyte membranes with active forms of chlorine (hypochlorous acid and chloramine T) resulted in a concentration-dependent inhibition of the membrane Na(+), K(+)- and Mg(2+)-ATPases. Membrane protein thiol group oxidation was consistent with inactivation of enzymes and preceded oxidation of tryptophan residues and chloramine formation. Erythrocyte exposure to hypochlorous acid led to complex changes of cell membrane rigidity and cell morphological transformations: cell swelling, echinocyte formation, and haemolysis. The inhibition of ion pump ATPases of human erythrocyte membranes may be due to direct oxidation of essential residues of enzyme (thiol groups) and structural rearrangement of the membrane.  相似文献   

15.
In addition to their critical function in energy metabolism, mitochondria contain a permeability transition pore, which is regulated by adenine nucleotides. We investigated conditions required for ATP to induce a permeability transition in mammalian mitochondria. Mitochondrial swelling associated with mitochondria permeability transition (MPT) was initiated by adding succinate to a rat liver mitochondrial suspension containing alloxan, a diabetogenic agent. If alloxan was added immediately with or 5 min after adding succinate, MPT was strikingly decreased. MPT induced by alloxan was inhibited by EGTA and several agents causing thiol oxidation, suggesting that alloxan leads to permeability transition through a mechanism dependent on Ca(2+) uptake and sulfhydryl oxidation. Antimycin A and cyanide, inhibitors of electron transfer, carbonyl cyanide m-chlorophenylhydrazone, and oligomycin all inhibited MPT. During incubation with succinate, alloxan depleted ATP in mitochondria after an initial transient increase. However, in a mitochondrial suspension containing EGTA, ATP significantly increased in the presence of alloxan to a level greater than that of the control. These results suggest the involvement of energized transport of Ca(2+) in the MPT initiation. Addition of exogenous ATP, however, did not trigger MPT in the presence of alloxan and had no effect on MPT induced by alloxan. We conclude that alloxan-induced MPT requires mitochondrial energization, oxidation of protein thiols, and matrix ATP to promote energized uptake of Ca(2+).  相似文献   

16.
Long-chain fatty acids induce a rapid release of Mg(2+) from both energized and nonenergized rat liver mitochondria suspended at pH 8 in isotonic saline but not sucrose media. The effect is observed only with fatty acids that possess protonophoric activity. The most active saturated fatty acids are myristic and palmitic, while the most active unsaturated acids are oleic, linolenic, and arachidonic. The rate of Mg(2+) release drastically decreases with decreasing medium pH to 7.2-7.6. However, at those pH values this rate is doubled by energization of mitochondria with respiratory substrates. Mg(2+) release is accompanied by cyclosporin A-insensitive large-amplitude swelling of mitochondria. This swelling is similar to that produced by the divalent metal ionophore A23187 and is interpreted as being due to activation of the inner membrane anion channel, the K(+) uniporter, and the K(+)/H(+) exchanger. In energized mitochondria, both swelling and Mg(2+) release are blocked by the exogenous K(+)/H(+) exchanger nigericin. It is proposed that fatty acids under conditions of alkaline mitochondrial matrix activate latent Mg(2+)-sensitive ion-conducting pathways in the inner mitochondrial membrane, which mediate swelling and Mg(2+) release. It is hypothesized that fatty acids activate an intrinsic Mg(2+)/H(+) exchanger that is related to, or identical with, the K(+)/H(+) exchanger.  相似文献   

17.
Isolated mitochondria may undergo uncoupling, and in presence of Ca(2+) at different conditions, a mitochondrial permeability transition (MPT) linked to protein thiol oxidation, and demonstrated by CsA-sensitive mitochondrial swelling; these processes may cause cell death either by necrosis or by apoptosis. Isocoumarins isolated from the Brazilian plant Paepalanthus bromelioides (Eriocaulaceae) paepalantine (9,10-dihydroxy-5,7-dimethoxy-1H-naptho(2,3c)pyran-1-one), 8,8'-paepalantine dimer, and vioxanthin were assayed at 1-50 microM on isolated rat liver mitochondria, for respiration, MPT, protein thiol oxidation, and interaction with the mitochondrial membrane using 1,6-diphenyl-1,3,5-hexatriene (DPH). The isocoumarins did not significantly affect state 3 respiration of succinate-energized mitochondria; they did however, stimulate 4 respiration, indicating mitochondrial uncoupling. Induction of MPT and protein thiol oxidation were assessed in succinate-energized mitochondria exposed to 10 microM Ca(2+); inhibition of these processes was assessed in non-energized organelles in the presence of 300 microM t-butyl hydroperoxide plus 500 microM Ca(2+). Only paepalantine was an effective MPT/protein thiol oxidation inducer, also releasing cytochrome c from mitochondria; the protein thiol oxidation, unlike mitochondrial swelling, was neither inhibited by CsA nor dependent on the presence of Ca(2+). Vioxanthin was an effective inhibitor of MPT/protein thiol oxidation. All isocoumarins inserted deeply into the mitochondrial membrane, but only paepalantine dimer and vioxantin decreased the membrane's fluidity. A direct reaction with mitochondrial membrane protein thiols, involving an oxidation of these groups, is proposed to account for MPT induction by paepalantine, while a restriction of oxidation of these same thiol groups imposed by the decrease of membrane fluidity, is proposed to account for MPT inhibition by vioxanthin.  相似文献   

18.
1. Rapid choline oxidation and the onset of P(i)-induced swelling by liver mitochondria, incubated in a sucrose medium at or above pH7.0, required the addition of both P(i) and an uncoupling agent. Below pH7.0, P(i) alone was required for rapid choline oxidation and swelling. 2. Choline oxidation was inhibited by each of several reagents that also inhibited P(i)-induced swelling under similar conditions of incubation, including EGTA, mersalyl, Mg(2+), the Ca(2+)-ionophore A23187, rotenone and nupercaine. None of these reagents had any significant effect on the rate of choline oxidation by sonicated mitochondria. There was therefore a close correlation between the conditions required for rapid choline oxidation and for P(i)-induced swelling to occur, suggesting that in the absence of mitochondrial swelling the rate of choline oxidation is regulated by the rate of choline transport across the mitochondrial membrane. 3. Respiratory-chain inhibitors, uncoupling agents (at pH6.5) and ionophore A23187 caused a loss of endogenous Ca(2+) from mitochondria, whereas nupercaine and Mg(2+) had no significant effect on the Ca(2+) content. Inhibition of choline oxidation and mitochondrial swelling by ionophore A23187 was reversed by adding Ca(2+), but not by Mg(2+). It is concluded that added P(i) promotes the Ca(2+)-dependent activation of mitochondrial membrane phospholipase activity in respiring mitochondria, causing an increase in the permeability of the mitochondrial inner membrane to choline and therefore enabling rapid choline oxidation to occur. Nupercaine and Mg(2+) appear to block choline oxidation and swelling by inhibiting phospholipase activity. 4. Choline was oxidized slowly by tightly coupled mitochondria largely depleted of their endogenous adenine nucleotides, suggesting that these compounds are not directly concerned in the regulation of choline oxidation. 5. The results are discussed in relation to the possible mechanism of choline transport across the mitochondrial membrane in vivo and the influence of this process on the pathways of choline metabolism in the liver.  相似文献   

19.
Clonal rat pheochromocytoma (PC12) cells have been widely used to study the molecular mechanism of exocytosis. We have isolated variant PC12 subclones with deficiencies in stimulation-secretion coupling, by a single cell recloning, and investigated the defects. PC12-1G2 hardly released dopamine following high-K(+)-induced depolarization, but normal release was evoked by the Ca(2+)-ionophore, ionomycin. Fura-2 fluorometry indicated that a nicardipine-sensitive component of Ca(2+) influx was missing, suggesting that PC12-1G2 has defects in L-type Ca(2+) channel function. PC12-2B3 was not responsive to high-K(+)-induced depolarization and ionomycin, and voltage-dependent Ca(2+) entry was identical to that of the normal clone. Electron microscopy revealed that the number of vesicles adjacent or directly attached to the plasma membrane was decreased in PC12-2B3. The expression of presynaptic proteins was analyzed by immunoblotting using a panel of antibodies. Syntaxin 1, VAMP-2, SNAP-25, Munc18, Rab3C and Sec-6 were decreased compared to the control clone and that of synaptophysin was extremely low. PC12-D60 synthesized and released dopamine normally, but had almost lost its catecholamine-uptake activity. These results show that multiple PC12 cells variants are spontaneously generated, and that recloning can select PC12 subclones useful for the study of the molecular mechanisms of neurotransmitter release.  相似文献   

20.
The opening of mitochondrial membrane permeability transition (MPT) pores, which results in a cyclosporin A (CsA)-sensitive and Ca(2+)-dependent dissipation of the membrane potential (delta psi) and swelling (classical MPT), has been postulated to play an important role in the release of cytochrome c (Cyt.c) and also in apoptotic cell death. Recently, it has been reported that CsA-insensitive or Ca(2+)-independent MPT can be classified as non-classic MPT. Therefore, we studied the effects of apoptosis-inducing agents on mitochondrial functions with respect to their CsA-sensitivity and Ca(2+)-dependency. CsA-sensitive mitochondrial swelling, depolarization, and the release of Ca2+ and Cyt.c were induced by low concentrations of arachidonic acid, triiodothyronine (T3), or 6-hydroxdopamine but not by valinomycin and high concentrations of the fatty acid or T3. Fe2+/ADP and 2,2,-azobis-(2-amidinopropane) dihydrochloride (AAPH) induced swelling of mitochondria and the release of Ca2+ and Cyt.c were not coupled with depolarization or CsA-sensitivity while dibucaine-induced swelling occurred without depolarization, Cyt.c-release or by a CsA-sensitive mechanism. A protonophoric FCCP and SF-6847 induced depolarization and Ca(2+)-release occurred in a CsA-insensitive manner and failed to stimulate the release of Cyt.c. These results indicate that ambient conditions of mitochondria can greatly influence the state of membrane stability and that Cyt.c release may occur not only via a CsA-sensitive MPT but also by way of a CsA-insensitive membrane deterioration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号