首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microsatellites were isolated from a Aegilops tauschii (the D-genome donor of bread wheat) library enriched for various motifs. Primers generated from the flanking region of the microsatellites were used successfully to amplify the corresponding loci in the D genome of bread wheat. Additional amplification sometimes also occurred from the A and B genomes. The majority of the microsatellites contained (GA)(n) and (GT)(n) motifs. GA and GT repeats appeared to be both more abundant in this library and more polymorphic than other types of repeats. The allele number for both types of dinucleotide repeats fitted a Poisson distribution. Deviance analysis showed that GA and GT were more polymorphic than other motifs in bread wheat. Within each motif type (di-, tri- and tetra-nucleotide repeats), repeat number has no influence on polymorphism. The microsatellites were mapped using the Triticum aestivum Courtot x Chinese Spring mapping population. A total of 100 markers was developed on this intraspecific map, mainly on the D genome. For polyploid species, isolation of microsatellites from an ancestral diploid donor seems to be an efficient way of developing markers for the corresponding genome in the polyploid plant.  相似文献   

2.

Background  

Gene-based (genic) microsatellites are a useful tool for plant genetics and simple sequence repeat loci can often be found in coding regions of the genome. While EST sequencing can be used to discover genic microsatellites, direct screening of cDNA libraries for repeat motifs can save on overall sequencing costs. The objective of this research was to screen a large cDNA library from and Andean common bean genotype for six di-nucleotide and tri-nucleotide repeat motifs through a filter hybridization approach and to develop microsatellite markers from positive clones.  相似文献   

3.
Vascular plant species have shown a low level of microsatellite conservation compared to many animal species. Finding trans-specific microsatellites for plants may be improved by using a priori knowledge of genome organization. Fifteen triplet-repeat microsatellites from hard pine (Pinus taeda L.) were tested for trans-specific amplification across seven hard pines (P. palustris Mill., P. echinata Mill., P. radiata D. Don., P. patula Schiede et Deppe, P. halepensis Mill., P. kesiya Royle), a soft pine (P. strobus L.), and Picea rubens Sargent. Seven of 15 microsatellites had trans-specific amplification in both hard and soft pine subgenera. Two P. taeda microsatellites had conserved flanking regions and repeat motifs in all seven hard pines, soft pine P. strobus, and P. rubens. Perfect triplet-repeat P. taeda microsatellites appear to be better candidates for trans-specific polymorphism than compound microsatellites. Not all perfect triplet-repeat microsatellites were conserved, but all conserved microsatellites had perfect repeat motifs. Persistent microsatellites PtTX2123 and PtTX3020 had highly conserved flanking regions and a conserved repeat motif composition with variable repeat unit numbers. Using trinucleotide microsatellites improved trans-specific microsatellite recovery among hard and soft pine species.  相似文献   

4.
Microsatellites, as the tracts of repetitive DNA, are an essential constituent of the plant genome that holds important evolutionary significance, and have been extensively used to develop molecular makers for genetic analysis. To understand the microsatellite dynamics of quinoa genome and its relatives, in this study we performed a genome‐wide analysis of microsatellites in five Amaranthaceae species using available genome sequences. The results demonstrated that the microsatellites of the five Amaranthaceae species were characterised by relatively high proportions of mono‐, di‐ and trinucleotide repeats with A/T rich motifs, implying conservative organisation and composition of microsatellites in this family. Furthermore, a significant negative correlation between microsatellite frequencies and GC contents (r = ?.87) were observed. In total, 533,961 (89.57%) and 542,601 (89.86%) microsatellite loci could be used to develop simple sequence repeat (SSR) molecular markers, of which 7,178 were found to be polymorphic between the two sequenced quinoa cultivars, QQ74 and Real Blanca, through in silico PCR analysis. Finally, 15 SSR markers were randomly selected to validate their polymorphism across 12 quinoa accessions by wet‐lab PCR amplification. The newly developed genome‐wide SSR markers provide a useful resource for population genetics, gene mapping and molecular breeding studies in quinoa and beyond.  相似文献   

5.
The turbot is a flatfish species of great relevance to marine aquaculture in Europe. Only a limited number of microsatellites have been isolated to date in this species. To increase the number of potentially useful mapping markers, we screened simple sequence repeat (SSR)--enriched genomic libraries obtained from several di-, tri-, and tetranucleotide tandem repeat motifs. A total of 248 new polymorphic microsatellites were successfully optimized. The efficiency of the protocol applied (6.4%) was higher than that in other studies of fish that used the same method. Dinucleotide and perfect microsatellites were predominant in this species; the (AC)n motif was the most frequent class of repeat. Polymorphism and structural properties at these loci, together with 30 variable loci previously reported in turbot, were evaluated in 6 wild individuals. The number of alleles per locus ranged from 2 to 10, with an average of 4.046. The microsatellite markers characterized in this study will contribute to the development of the turbot genetic map, which can be used for quantitative trait locus (QTL) identification, marker-assisted selection programs, and other applications to improve its culture.  相似文献   

6.
The construction of high-density linkage maps for use in identifying loci underlying important traits requires the development of large numbers of polymorphic genetic markers spanning the entire genome at regularly spaced intervals. As part of our efforts to develop markers for rainbow trout (Oncorhynchus mykiss), we performed a comparison of allelic variation between microsatellite markers developed from expressed sequence tag (EST) data and anonymous markers identified from repeat-enriched libraries constructed from genomic DNA. A subset of 70 markers (37 from EST databases and 33 from repeat enriched libraries) was characterized with respect to polymorphism information content (PIC), number of alleles, repeat number, locus duplication within the genome and ability to amplify in other salmonid species. Higher PIC was detected in dinucleotide microsatellites derived from ESTs than anonymous markers (72.7% vs. 54.0%). In contrast, dinucleotide repeat numbers were higher for anonymous microsatellites than for EST derived microsatellites (27.4 vs.18.1). A higher rate of cross-species amplification was observed for EST microsatellites. Approximately half of each marker type was duplicated within the genome. Unlike single-copy markers, amplification of duplicated microsatellites in other salmonids was not correlated to phylogenetic distance. Genomic microsatellites proved more useful than EST derived microsatellites in discriminating among the salmonids. In total, 428 microsatellite markers were developed in this study for mapping and population genetic studies in rainbow trout.  相似文献   

7.
Microsatellite markers (also known as SSRs, Simple Sequence Repeats) are widely used in plant science and are among the most informative molecular markers for population genetic investigations, but the development of such markers presents substantial challenges. In this report, we discuss how next generation sequencing can replace the cloning, Sanger sequencing, identification of polymorphic loci, and testing cross-amplification that were previously required to develop microsatellites. We report the development of a large set of microsatellite markers for five species of the Neotropical cactus genus Pilosocereus using a restriction-site-associated DNA sequencing (RAD-seq) on a Roche 454 platform. We identified an average of 165 microsatellites per individual, with the absolute numbers across individuals proportional to the sequence reads obtained per individual. Frequency distribution of the repeat units was similar in the five species, with shorter motifs such as di- and trinucleotide being the most abundant repeats. In addition, we provide 72 microsatellites that could be potentially amplified in the sampled species and 22 polymorphic microsatellites validated in two populations of the species Pilosocereus machrisii. Although low coverage sequencing among individuals was observed for most of the loci, which we suggest to be more related to the nature of the microsatellite markers and the possible bias inserted by the restriction enzymes than to the genome size, our work demonstrates that an NGS approach is an efficient method to isolate multispecies microsatellites even in non-model organisms.  相似文献   

8.
Unigene derived microsatellite markers for the cereal genomes   总被引:6,自引:0,他引:6  
Unigene derived microsatellite (UGMS) markers have the advantage of assaying variation in the expressed component of the genome with unique identity and positions. We characterized the microsatellite motifs present in the unigenes of five cereal species namely, rice, wheat, maize, Sorghum and barley and compared with those in Arabidopsis. The overall UGMS frequency in the five cereal species was 1/7.6 kb. The maximum UGMS frequency was in rice (1/3.6 kb) and the lowest in wheat (1/10.6 kb). GC-rich trinucleotide repeat motifs coding for alanine followed by arginine and the dinucleotide repeat motif GA were found to be abundant UGMS classes across all the five cereal species. Primers could be designed for 95% (wheat and barley) to 97% (rice) of the identified microsatellites. The proportion and frequency of occurrence of long hypervariable class I (≥20 nucleotides) and potentially variable class II (12–20 nucleotides) UGMS across five cereal species were characterized. The class I UGMS markers were physically mapped in silico on to the finished rice genome and bin-mapped in wheat. Comparative mapping based on class I UGMS markers in rice and wheat revealed syntenic relationships between the two genomes. High degree of conservation and cross-transferability of the class I UGMS markers were evident among the five cereal species, which was validated experimentally. The class I UGMS-conserved orthologous set (COS) markers identified in this study would be useful for understanding the evolution of genes and genomes in cereals. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

9.
He X  Wang Y  Li F  Weng Q  Li M  Xu LA  Shi J  Gan S 《American journal of botany》2012,99(4):e134-e148
? Premise of the study: Expressed sequence tag (EST)-derived microsatellites were identified in Eucalyptus through screening the GenBank database. The loci were sequence-verified and explored for polymorphism among 20 genotypes. ? Methods and Results: In total, 198 novel microsatellites were developed from 8262 unigenes, with the identity of 73.6-100% to the original sequences and presence of the expected repeat motifs. One hundred and eighty-four markers proved to be polymorphic among 10 E. urophylla and 10 E. tereticornis genotypes, with the number of alleles per locus, observed heterozygosity, and polymorphic information content being 2-17 (mean: 7.11), 0-1.0 (mean: 0.4511), and 0.0940-0.9131 (mean: 0.6571), respectively. ? Conclusions: These markers will be useful for germplasm characterization, genome mapping, and gene tagging for economic traits in the two species examined and may have potential for genetic applications in Eucalyptus.  相似文献   

10.
The abundance and inherent potential for extensive allelic variations in simple sequence repeats (SSRs) or microsatellites resulted in valuable source for genetic markers in eukaryotes. In this study, we analyzed and compared the abundance and organisation of SSR in the genome of two important fungal pathogens of wheat, brown or leaf rust (Puccinia triticina) and black or stem rust (Puccinia graminis f. sp. tritici). P. triticina genome with two fold genome size as compared to P. graminis tritici has lower relative abundance and SSR density. The distribution pattern of different SSR motifs provides the evidence of greater accumulation of dinucleotide followed by trinucleotide repeats. More than two-hundred different types of repeat motifs were observed in the genomes. The longest SSR motifs varied in both genomes and some of the repeat motifs are found in higher frequency. The information about survey of relative abundance, relative density, length and frequency of different repeat motifs in Puccinia sp. will be useful for developing SSR markers that could find several applications in analysis of fungal genome such as genetic diversity, population genetics, race identification and acquisition of new virulence.  相似文献   

11.
Among the co-dominant molecular markers, microsatellite loci have a number of advantages in population genetic studies. However, the different methods to hunt these markers are expensive, time consuming, and they require sophisticated laboratory equipment. Using in one species the microsatellites primers originally described for another one saves time and reduces costs. Examples in the literature revealed that microsatellites described for Gracilaria gracilis from France have not worked for other members of the Gracilariales. The results were not very promising, at least for Gracilaria chilensis from Chile. In this study, a number of microsatellite loci described for Laminaria digitata (Laminariaceae) from France were amplified and sequenced in two Lessonia (Lessoniaceae) species from Chile. Preliminary results show a partial conservation of both, flanking and tandem repeat regions. Some polymorphism has also been detected in Lessonia spp. The higher molecular affinity (conservation of primer sites) observed in species belonging to different families of brown algae, respect to that observed among species of the same genus in the red algae, is surprising. Such a result is strikingly counterintuitive when observing the morphological disparity among the Laminariales, respect to the similarity observed in the Gracilariales. It also reminds one of an earlier discussion by Gary Saunders about "When a family is not a family".  相似文献   

12.
We have identified a set of informative microsatellite markers for genome analysis in kiwifruit and related Actinidia species. A small-insert genomic library was constructed from Actinidia chinensis DNA, and screened for microsatellites. About 1.2% of the total colonies hybridised to a (GA)8 probe, 0.4% to (GT)8, and 0.1% to a mixture of three different trinucleotide repeat probes, (CAA)5, (GAA)5 and (CTA)5. From the DNA sequences of 35 hybridising clones, 18 primer pairs were designed, and used to amplify genomic DNA from 38 individual plants, representing 30 different accessions of ten Actinidia species. The banding patterns for most of the dinucleotide repeats showed a high degree of polymorphism in the diploid and tetraploid A. chinensis, and in the hexaploid A. deliciosa (kiwifruit). Heterozygosity levels of up to 100% were found among eight diploid accessions of A. chinensis examined, and the number of different-sized bands among all the species varied from 3 to 36 for each microsatellite. One simple CT microsatellite gave 21 bands with sizes suggesting that the number of repeats ranged from 9 to 37. The highest number of bands (36) and the largest size variation (>100 bp) were observed with a complex microsatellite harbouring four different repeat motifs. The majority of primer pairs amplified bands from most of the ten Actinidia species tested. The most polymorphic primer pairs were used successfully to fingerprint a range of closely related varieties of kiwifruit (A. deliciosa).Abbreviations PCR polymerase chain reaction - RFLP restriction fragment length polymorphism - VNTR variable number of tandem repeats  相似文献   

13.
Trinucleotide microsatellites have proven to be the markers of choice in human genetic analysis because they are easier to genotype than dinucleotides. Their development can be more time-consuming due to their lower abundance in the genome. We isolated trinucleotide microsatellites in Norway spruce ( Picea abies K.) using an enrichment procedure for the genomic-library construction. Here we report on the characterisation of 85 ATC microsatellite-containing clones, from which 39 markers were developed. Many of the clones showed the occurrence of tandem repeats of higher order than the trinucleotide ones, often resembling minisatellite repeats. The sequencing of a sample of the alleles at one of the loci revealed size homoplasy due to base substitutions within the microsatellite region. The presence of ATC motifs within repetitive sequence families was observed. We found a significant relationship between the level of polymorphism and the length of the microsatellite. The levels of variability for ATC trinucleotide markers were lower than those for dinucleotides, both when tested on all loci in a set of six individuals and on a subset of loci in four natural populations. This difference is most likely attributable to lower mutation rates for trinucleotide than for dinucleotide loci. The availability of markers with different mutation rates allows one to select the proper marker set to investigate population processes on different time scales.  相似文献   

14.
赤拟谷盗全基因组和EST中微卫星的丰度   总被引:1,自引:0,他引:1  
微卫星是近年大力开发的一种分子标记,为了推进赤拟谷盗Tribolium castaneum(Herbst)遗传学相关研究,对赤拟谷盗全基因组和EST中由1~6个碱基重复单元组成的简单序列重复进行分析,进而对其微卫星的丰度和分布进行比较分析。微卫星在赤拟谷盗EST中的分布频率为1/0.87kb,其中单碱基重复序列占71.25%,是最丰富的重复单元,而六、三、四、二,五碱基重复单元序列分别占23.93%,2.94%,1.56%,0.17%,0.15%。全基因组中微卫星的分布频率为1/3.65kb,其中六碱基重复序列占61.96%,是最丰富的重复单元,而三,四,一,五,二碱基重复单元序列分别占14.35%,13.75%,4.68%,3.60%,1.69%。同时发现富含A和T碱基的微卫星占主导地位,富含G和C碱基的微卫星数量较少。进一步的分析显示,微卫星在每条染色体上的丰度存在很大的相似性。  相似文献   

15.
The tea plant (Camellia sinensis (L.) O. Kuntze) is one of the most popular non-alcoholic beverage crops worldwide. The availability of complete genome sequences for the Camellia sinensis var. ‘Shuchazao’ has provided the opportunity to identify all types of simple sequence repeat (SSR) markers by genome-wide scan. In this study, a total of 667,980 SSRs were identified in the ~?3.08 Gb genome, with an overall density of 216.88 SSRs/Mb. Dinucleotide repeats were predominant among microsatellites (72.25%), followed by trinucleotide repeats (15.35%), while the remaining SSRs accounted for less than 13%. The motif AG/CT (49.96%) and AT/TA (40.14%) were the most and the second most abundant among all identified SSR motifs, respectively; meanwhile, AAT/ATT (41.29%) and AAAT/ATTT (67.47%) were the most common among trinucleotides and tetranucleotides, respectively. A total of 300 primer pairs were designed to screen six tea cultivars for polymorphisms of SSR markers using the five selected repeat types of microsatellite sequences. The resulting 96 SSR markers that yielded polymorphic and unambiguous bands were further deployed on 47 tea cultivars for genetic diversity assessment, demonstrating high polymorphism of these SSR markers. Remarkably, the dendrogram revealed that the phylogenetic relationships among these tea cultivars are highly consistent with their genetic backgrounds or places of origin. The identified genome-wide SSRs and newly developed SSR markers will provide a powerful means for genetic researches in tea plant, including genetic diversity and evolutionary origin analysis, fingerprinting, QTL mapping, and marker-assisted selection for breeding.  相似文献   

16.
Variation in tandem repeats of two- to six-base nucleotide motifs (microsatellites) can be used to obtain inexpensive and highly informative multi-locus data on population genetics.We developed and tested a large set of cross-amplifiable sea star (Asterinidae) microsatellite markers from a mixed pool of genomic DNA from eight species. We describe cloned sequences, primers, and PCR conditions, and characterize population-level variation for some species and markers. A few clones containing microsatellites showed considerable similarity to sequences (including genes of known function) in other sea stars and in sea urchins (from the Strongylocentrotus purpuratus complete genome). The pooled genomic DNA method was an efficient way to sample microsatellites from many species: we cloned 2-10 microsatellites from each of eight species, and most could be cross-amplified in 1-7 other species. At 12 loci in two species, we found 1-10 alleles per microsatellite, with a broad range of inbreeding coefficients. Measures of polymorphism were negatively correlated with the extent of cross-amplification.  相似文献   

17.
红原鸡全基因组中微卫星分布规律研究   总被引:1,自引:0,他引:1  
本文对红原鸡Gallus gallus全基因组中微卫星数量及分布规律进行了分析,查找到l~6个碱基重复类型的微卫星序列共282728个,约占全基因组序列(1.1Gb)的0.49%,分布频率为1/3.89kb,微卫星序列的长度主要在12~70个碱基长度范围内。第1、2、3条染色体上微卫星分布频率较高,而32号染色体上无微卫星分布。不同类型微卫星中,单碱基重复类型数目最多,为184192个,占总数的65.1%;其次是四、二、三、五、六碱基重复单元序列,分别占到总数的12.8%、9.7%、7.2%、4.6%、0.8%。T、A、AT、GTTT、AAAC、G、C、ATTT、AC、GT、AAAT、ATT、AAC、AAT、GTT、AG、CT、CTTT、AAAG、GTTTT、AAACA、AAGG、CCTT是红原鸡基因组中最主要的微卫星重复类型。本研究为红原鸡微卫星标记的分离筛选、遗传多样性的研究以及不同物种微卫星的比较分析奠定了基础。  相似文献   

18.
Simple sequence repeats (SSRs) can be derived from the complete genome sequence. These markers are important for gene mapping as well as marker-assisted selection (MAS). To develop SSRs for cotton gene mapping, we selected the complete genome sequence of Gossypium raimondii, which consisted of 4447 non-redundant scaffolds. Out of 775.2 Mb sequence examined, a total of 136,345 microsatellites were identified with a density of 5.69 kb per SSR in the G. raimondii genome leading to development of 112,177 primer pairs. The distributions of SSRs in the genome were non-random. Among the different motifs ranging from 1 to 6 bp, penta-nucleotide repeats were most abundant (30.5%), followed by tetra-nucleotide repeats (18.2%) and di-nucleotide repeats (16.9%). Among all identified 457 motif types, the most frequently occurring repeat motifs were poly-AT/TA, which accounted for 79.8% of the total di-nt SSRs, followed by AAAT/TTTA with 51.5% of the total tetra-nucleotede. Further, 18,834 microsatellites were detected from the protein-coding genes, and the frequency of gene containing SSRs was 46.0% in 40,976 genes of G. raimondii. These genome-based SSRs developed in the present study will lay the groundwork for developing large numbers of SSR markers for genetic mapping, gene discovery, genetic diversity analysis, and MAS breeding in cotton.  相似文献   

19.
Among the co‐dominant molecular markers, microsatellite loci have a number of advantages in population genetic studies. However, the different methods to hunt these markers are expensive, time consuming, and they require sophisticated laboratory equipment. Using in one species the microsatellites primers originally described for another one saves time and reduces costs. Examples in the literature revealed that microsatellites described for Gracilaria gracilis from France have not worked for other members of the Gracilariales. The results were not very promising, at least for Gracilaria chilensis from Chile. In this study, a number of microsatellite loci described for Laminaria digitata (Laminariaceae) from France were amplified and sequenced in two Lessonia (Lessoniaceae) species from Chile. Preliminary results show a partial conservation of both, flanking and tandem repeat regions. Some polymorphism has also been detected in Lessonia spp. The higher molecular affinity (conservation of primer sites) observed in species belonging to different families of brown algae, respect to that observed among species of the same genus in the red algae, is surprising. Such a result is strikingly counterintuitive when observing the morphological disparity among the Laminariales, respect to the similarity observed in the Gracilariales. It also reminds one of an earlier discussion by Gary Saunders about “When a family is not a family”.  相似文献   

20.
Nearly 5 000 aphid species damage crops, either by sucking plant sap or as disease‐transmitting vectors. Microsatellites are used for understanding molecular diversity and eco‐geographical relationships among aphid species. Expressed sequence tag (EST)‐microsatellite motifs were identified through an in silico approach using inbuilt simple sequence repeat mining tools in aphid EST dataset. Microsatellite mining revealed one in every five aphid genes as containing a repeat motif, and out of 9 290 EST microsatellites mined from Aphis gossypii Glover and Acyrthosiphon pisum (Harris) (both Hemiptera: Aphididae), 80% were of A and/or T (AT, ATA, AAT, AATA, and ATTT) motifs, and the rest contained G and/or C motifs. All microsatellite sequences were annotated using BLAST. Primers for EST microsatellites were designed using the Primer 3.0 tool. 106 primer pairs of both dinucleotide repeats (DNRs) and trinucleotide repeats (TNRs), representing open reading frames (ORFs) and untranslated regions (UTRs), were synthesized to amplify 15 aphid species belonging to the subfamily Aphidinae, collected from diverse hosts. Four hundred forty‐five polymorphic alleles were amplified. Fifty TNR and 23 DNR microsatellites amplified across the species studied. Polymorphism information content values of microsatellites ranged from 0.23 to 0.91, amplifying 2–16 alleles. Genetic similarity indices were estimated using the ‘NTSYS‐pc’ software package. Unweighted pair group with arithmetic mean and principal component analysis resolved taxonomic relationships of the aphid species studied. The new aphid microsatellites developed will provide valuable information to researchers to study Indian aphid species diversity and genetic relationships.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号