首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The majority of familial breast and ovarian cancers arise from mutations in the BRCA1 and BRCA2 genes. Amplification at the 11q13.5 locus is commonly observed in breast and ovarian cancers. In 2003, Hughes-Davies et al. identified a novel gene (EMSY) at this locus which binds BRCA2 within a region deleted in some cancers. Although little is known about the cellular role of EMSY, indirect evidence suggests that this nuclear protein is capable of silencing the activation potential of BRCA2. In this study we aimed to investigate expression of the EMSY gene and its protein product in sporadic ovarian cancer. Real-time quantitative RT-PCR was performed in 50 ovarian cancer and 17 normal ovarian tissue samples. Overexpression of the EMSY gene was found in 6/50 cases (12%), but in none of the control samples. To determine the EMSY protein by Western blotting, semi-quantitative analysis of the EMSY protein was performed using the Scion Image Gel Analysis Program. Statistical analysis was performed using SPSS 11.5. All patients having EMSY overexpression also displayed increased levels of the EMSY protein. Sporadic ovarian cancer shows overexpression of EMSY at a prevalence similar to that found in breast cancer and the overexpression is correlated with the protein level.  相似文献   

3.
4.
5.
6.
7.
8.
EMSY is a large nuclear protein that binds to the transactivation domain of BRCA2. EMSY contains an approximately 100-residue segment at the amino terminus called the ENT (EMSY N-terminal) domain. Plant proteins containing ENT domains also contain members of the royal family of chromatin-remodelling domains. It has been proposed that EMSY may have a role in chromatin-related processes. This is supported by the observation that a number of chromatin-regulator proteins, including HP1beta and BS69, bind directly to EMSY by means of a conserved motif adjacent to the ENT domain. Here, we report the crystal structure of residues 1-108 of EMSY at 2.0 A resolution. The structure contains both the ENT domain and the HP1beta/BS69-binding motif. This binding motif forms an extended peptide-like conformation that adopts distinct orientations in each subunit of the dimer. Biophysical and nuclear magnetic resonance analyses show that the main complex formed by EMSY and the chromoshadow domain of HP1 (HP1-CSD) consists of one EMSY dimer sandwiched between two HP1-CSD dimers. The HP1beta-binding motif is necessary and sufficient for EMSY to bind to the chromoshadow domain of HP1beta.  相似文献   

9.
Sox B1 group genes, Sox1, Sox2, and Sox3 (Sox1-3), are involved in neurogenesis in various species. Here, we identified the Xenopus homolog of Sox1, and investigated its expression patterns and neural inducing activity. Sox1 was initially expressed in the anterior neural plate of Xenopus embryos, with expression restricted to the brain and optic vesicle by the tailbud stage. Expression subsequently decreased in the eye region by the tadpole stage. Sox1 expression in animal cap explants was induced by inhibition of BMP signaling in the same manner as Sox2, Sox3, and SoxD. In addition, overexpression of Sox1 induced neural markers in ventral ectoderm and in animal caps. These results implicate Xenopus Sox1 in neurogenesis, especially brain and eye development.  相似文献   

10.
Heterochromatin protein-1 (HP1) plays an essential role in both the assembly of higher-order chromatin structure and epigenetic inheritance. The C-terminal chromo shadow domain (CSD) of HP1 is responsible for homodimerization and interaction with a number of chromatin-associated nonhistone proteins, including EMSY, which is a BRCA2-interacting protein that has been implicated in the development of breast and ovarian cancer. We have determined the crystal structure of the HP1beta CSD in complex with the N-terminal domain of EMSY at 1.8 A resolution. Surprisingly, the structure reveals that EMSY is bound by two HP1 CSD homodimers, and the binding sequences differ from the consensus HP1 binding motif PXVXL. This structural information expands our understanding of HP1 binding specificity and provides insights into interactions between HP1 homodimers that are likely to be important for heterochromatin formation.  相似文献   

11.
Group B Sox-domain proteins encompass a class of conserved DNA-binding proteins expressed from the earliest stages of metazoan CNS development. In all higher organisms studied to date, related Group B Sox proteins are co-expressed in the developing CNS; in vertebrates there are three (Sox1, Sox2 and Sox3) and in Drosophila there are two (SoxNeuro and Dichaete). It has been suggested there may be a degree of functional redundancy in Sox function during CNS development. We describe the CNS phenotype of a null mutation in the Drosophila SoxNeuro gene and provide the first direct evidence for both redundant and differential Sox function during CNS development in DROSOPHILA: In the lateral neuroectoderm, where SoxNeuro is uniquely expressed, SoxNeuro mutants show a loss or reduction of achaete expression as well as a loss of many correctly specified lateral neuroblasts. By contrast, in the medial neuroectoderm, where the expression of SoxNeuro and Dichaete overlaps, the phenotypes of both single mutants are mild. In accordance with an at least partially redundant function in that region, SoxNeuro/Dichaete double mutant embryos show a severe neural hypoplasia throughout the central nervous system, as well as a dramatic loss of achaete expressing proneural clusters and medially derived neuroblasts. However, the finding that Dichaete and SoxN exhibit opposite effects on achaete expression within the intermediate neuroectoderm demonstrates that each protein also has region-specific unique functions during early CNS development in the Drosophila embryo.  相似文献   

12.
13.
The development of the human central nervous system represents a delicate moment of embryogenesis. The purpose of this study was to analyze the expression of multiple immunohistochemical markers in the stem/progenitor cells in the human cerebral cortex during the early phases of development. To this end, samples from cerebral cortex were obtained from 4 human embryos of 11 weeks of gestation. Each sample was formalin-fixed, paraffin embedded and immunostained with several markers including GFAP, WT1, Nestin, Vimentin, CD117, S100B, Sox2, PAX2, PAX5, Tβ4, Neurofilament, CD44, CD133, Synaptophysin and Cyclin D1. Our study shows the ability of the different immunohistochemical markers to evidence different zones of the developing human cerebral cortex, allowing the identification of the multiple stages of differentiation of neuronal and glial precursors. Three important markers of radial glial cells are evidenced in this early gestational age: Vimentin, Nestin and WT1. Sox2 was expressed by the stem/progenitor cells of the ventricular zone, whereas the postmitotic neurons of the cortical plate were immunostained by PAX2 and NSE. Future studies are needed to test other important stem/progenitor cells markers and to better analyze differences in the immunohistochemical expression of these markers during gestation.Key words: Cerebral cortex, human embryo, human development, immunohistochemistry, fetal stem cells  相似文献   

14.
15.
16.
The individual contributions of the three vertebrate GATA factors to endoderm formation have been unclear. Here we detail the early expression of GATA4, 5 and 6 in presumptive endoderm in Xenopus embryos and their induction of endodermal markers in presumptive ectoderm. Induction of HNF3beta by all three GATA factors was abolished when protein synthesis was inhibited, showing that these inductions are indirect. In contrast, whereas induction of Sox17alpha and HNF1beta by GATA4 and 5 was substantially reduced when protein synthesis was inhibited, induction by GATA6 was minimally affected, suggesting that GATA6 is a direct activator of these early endodermal genes. GATA4 induced GATA6 expression in the same assay and antisense morpholino oligonucleotides (MOs), designed to knock down translation of GATA6, blocked induction of Sox17alpha and HNF1beta by GATA4, suggesting that GATA4 induces these genes via GATA6 in this assay. All three GATA factors were induced by activin, although GATA4 and 6 required lower concentrations. GATA MOs inhibited Sox17alpha and HNF1beta induction by activin at low and high concentrations in the order: GATA6>GATA4>GATA5. Together with the timing of their expression and the effects of GATA MOs in vivo, these observations identify GATA6 as the predominant GATA factor in the maintenance of endodermal gene expression by TGFbeta signaling in gastrulating embryos. In addition, examination of gene expression and morphology in later embryos, revealed GATA5 and 6 as the most critical for the development of the gut and the liver.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号