首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Introduction

Several aspects of the epidemiology of 2009 (H1N1) pandemic influenza have not been accurately determined. We sought to study whether the age distribution of cases differs in comparison with seasonal influenza.

Methods

We searched for official, publicly available data through the internet from different countries worldwide on the age distribution of cases of influenza during the 2009 (H1N1) pandemic influenza period and most recent seasonal influenza periods. Data had to be recorded through the same surveillance system for both compared periods.

Results

For 2009 pandemic influenza versus recent influenza seasons, in USA, visits for influenza-like illness to sentinel providers were more likely to involve the age groups of 5–24, 25–64 and 0–4 years compared with the reference group of >64 years [odds ratio (OR) (95% confidence interval (CI)): 2.43 (2.39–2.47), 1.66 (1.64–1.69), and 1.51 (1.48–1.54), respectively]. Pediatric deaths were less likely in the age groups of 2–4 and <2 years than the reference group of 5–17 years [OR (95% CI): 0.46 (0.25–0.85) and 0.49 (0.30–0.81), respectively]. In Australia, notifications for laboratory-confirmed influenza were more likely in the age groups of 10–19, 5–9, 20–44, 45–64 and 0–4 years than the reference group of >65 years [OR (95% CI): 7.19 (6.67–7.75), 5.33 (4.90–5.79), 5.04 (4.70–5.41), 3.12 (2.89–3.36) and 1.89 (1.75–2.05), respectively]. In New Zealand, consultations for influenza-like illness by sentinel providers were more likely in the age groups of <1, 1–4, 35–49, 5–19, 20–34 and 50–64 years than the reference group of >65 years [OR (95% CI): 2.38 (1.74–3.26), 1.99 (1.62–2.45), 1.57 (1.30–1.89), 1.57 (1.30–1.88), 1.40 (1.17–1.69) and 1.39 (1.14–1.70), respectively].

Conclusions

The greatest increase in influenza cases during 2009 (H1N1) pandemic influenza period, in comparison with most recent seasonal influenza periods, was seen for school-aged children, adolescents, and younger adults.  相似文献   

2.

Background

This study is to determine the seroprevalence of the pandemic influenza A H1N1 virus (pH1N1) in Taiwan before and after the 2009 pandemic, and to estimate the relative severity of pH1N1 infections among different age groups.

Methodology/Principal Findings

A total of 1544 and 1558 random serum samples were collected from the general population in Taiwan in 2007 and 2010, respectively. Seropositivity was defined by a hemagglutination inhibition titer to pH1N1 (A/Taiwan/126/09) ≥1:40. The seropositivity rate of pH1N1 among the unvaccinated subjects and national surveillance data were used to compare the proportion of infections that led to severe diseases and fatalities among different age groups. The overall seroprevalence of pH1N1 was 0.91% (95% confidence interval [CI] 0.43–1.38) in 2007 and significantly increased to 29.9% (95% CI 27.6–32.2) in 2010 (p<0.0001), with the peak attack rate (55.4%) in 10–17 year-old adolescents, the lowest in elderly ≥65 years (14.1%). The overall attack rates were 20.6% (188/912) in unvaccinated subjects. Among the unvaccinated but infected populations, the estimated attack rates of severe cases per 100,000 infections were significantly higher in children aged 0–5 years (54.9 cases, odds ratio [OR] 4.23, 95% CI 3.04–5.90) and elderly ≥ 65years (22.4 cases, OR 2.76, 95% CI 1.99–3.83) compared to adolescents aged 10–17 years (13.0 cases). The overall case-fatality rate was 0.98 per 100,000 infections without a significant difference in different age groups.

Conclusions/Significance

Pre-existing immunity against pH1N1 was rarely identified in Taiwanese at any age in 2007. Young children and elderly – the two most lower seroprotection groups showed the greatest vulnerability to clinical severity after the pH1N1 infections. These results imply that both age groups should have higher priority for immunization in the coming flu season.  相似文献   

3.
Masoodi TA  Shaik NA  Shafi G  Munshi A  Ahamed AK  Masoodi ZA 《Gene》2012,491(2):200-204
To gain insight into the possible origin of the hemagglutinin of 2009 outbreak, we performed its comparative analysis with hemagglutinin of influenza viral strains from 2005 to 2008 and the past pandemics of 1977, 1968, 1957 and 1918. This insilico analysis showed a maximum sequence similarity between 2009 and 1918 pandemics. Primary structure analysis, antigenic and glycosylation site analyses revealed that this protein has evolved from 1918 pandemic. Phylogenetic analysis of HA amino acid sequence of 2009 influenza A(H1N1) viruses indicated that this virus possesses a distinctive evolutionary trait with 1918 influenza A virus. Although the disordered sequences are different among all the isolates, the disordered positions and sequences between 2009 and 1918 isolates show a greater similarity. Thus these analyses contribute to the evidence of the evolution of 2009 pandemic from 1918 influenza pandemic. This is the first computational evolutionary analysis of HA protein of 2009 H1N1 pandemic.  相似文献   

4.

Background

Mexico''s local and national authorities initiated an intense public health response during the early stages of the 2009 A/H1N1 pandemic. In this study we analyzed the epidemiological patterns of the pandemic during April–December 2009 in Mexico and evaluated the impact of nonmedical interventions, school cycles, and demographic factors on influenza transmission.

Methods and Findings

We used influenza surveillance data compiled by the Mexican Institute for Social Security, representing 40% of the population, to study patterns in influenza-like illness (ILIs) hospitalizations, deaths, and case-fatality rate by pandemic wave and geographical region. We also estimated the reproduction number (R) on the basis of the growth rate of daily cases, and used a transmission model to evaluate the effectiveness of mitigation strategies initiated during the spring pandemic wave. A total of 117,626 ILI cases were identified during April–December 2009, of which 30.6% were tested for influenza, and 23.3% were positive for the influenza A/H1N1 pandemic virus. A three-wave pandemic profile was identified, with an initial wave in April–May (Mexico City area), a second wave in June–July (southeastern states), and a geographically widespread third wave in August–December. The median age of laboratory confirmed ILI cases was ∼18 years overall and increased to ∼31 years during autumn (p<0.0001). The case-fatality ratio among ILI cases was 1.2% overall, and highest (5.5%) among people over 60 years. The regional R estimates were 1.8–2.1, 1.6–1.9, and 1.2–1.3 for the spring, summer, and fall waves, respectively. We estimate that the 18-day period of mandatory school closures and other social distancing measures implemented in the greater Mexico City area was associated with a 29%–37% reduction in influenza transmission in spring 2009. In addition, an increase in R was observed in late May and early June in the southeast states, after mandatory school suspension resumed and before summer vacation started. State-specific fall pandemic waves began 2–5 weeks after school reopened for the fall term, coinciding with an age shift in influenza cases.

Conclusions

We documented three spatially heterogeneous waves of the 2009 A/H1N1 pandemic virus in Mexico, which were characterized by a relatively young age distribution of cases. Our study highlights the importance of school cycles on the transmission dynamics of this pandemic influenza strain and suggests that school closure and other mitigation measures could be useful to mitigate future influenza pandemics. Please see later in the article for the Editors'' Summary  相似文献   

5.
The effect of risk perception on the 2009 H1N1 pandemic influenza dynamics   总被引:1,自引:0,他引:1  
Poletti P  Ajelli M  Merler S 《PloS one》2011,6(2):e16460

Background

The 2009 H1N1 pandemic influenza dynamics in Italy was characterized by a notable pattern: as it emerged from the analysis of influenza-like illness data, after an initial period (September–mid-October 2009) characterized by a slow exponential increase in the weekly incidence, a sudden and sharp increase of the growth rate was observed by mid-October. The aim here is to understand whether spontaneous behavioral changes in the population could be responsible for such a pattern of epidemic spread.

Methodology/Principal Findings

In order to face this issue, a mathematical model of influenza transmission, accounting for spontaneous behavioral changes driven by cost/benefit considerations on the perceived risk of infection, is proposed and validated against empirical epidemiological data. The performed investigation revealed that an initial overestimation of the risk of infection in the general population, possibly induced by the high concern for the emergence of a new influenza pandemic, results in a pattern of spread compliant with the observed one. This finding is also supported by the analysis of antiviral drugs purchase over the epidemic period. Moreover, by assuming a generation time of 2.5 days, the initially diffuse misperception of the risk of infection led to a relatively low value of the reproductive number , which increased to in the subsequent phase of the pandemic.

Conclusions/Significance

This study highlights that spontaneous behavioral changes in the population, not accounted by the large majority of influenza transmission models, can not be neglected to correctly inform public health decisions. In fact, individual choices can drastically affect the epidemic spread, by altering timing, dynamics and overall number of cases.  相似文献   

6.
The 2009 H1N1 pandemic influenza virus represents the greatest incidence of human infection with an influenza virus of swine origin to date. Moreover, triple-reassortant swine (TRS) H1N1 viruses, which share similar host and lineage origins with 2009 H1N1 viruses, have been responsible for sporadic human cases since 2005. Similar to 2009 H1N1 viruses, TRS viruses are capable of causing severe disease in previously healthy individuals and frequently manifest with gastrointestinal symptoms; however, their ability to cause severe disease has not been extensively studied. Here, we evaluated the pathogenicity and transmissibility of two TRS viruses associated with disease in humans in the ferret model. TRS and 2009 H1N1 viruses exhibited comparable viral titers and histopathologies following virus infection and were similarly unable to transmit efficiently via respiratory droplets in the ferret model. Utilizing TRS and 2009 H1N1 viruses, we conducted extensive hematologic and blood serum analyses on infected ferrets to identify lymphohematopoietic parameters associated with mild to severe influenza virus infection. Following H1N1 or H5N1 influenza virus infection, ferrets were found to recapitulate several laboratory abnormalities previously documented with human disease, furthering the utility of the ferret model for the assessment of influenza virus pathogenicity.  相似文献   

7.
8.
Xu C  Bai T  Iuliano AD  Wang M  Yang L  Wen L  Zeng Y  Li X  Chen T  Wang W  Hu Y  Yang L  Li Z  Zou S  Li D  Wang S  Feng Z  Zhang Y  Yu H  Yang W  Wang Y  Widdowson MA  Shu Y 《PloS one》2011,6(4):e17919

Background

Mainland China experienced pandemic influenza H1N1 (2009) virus (pH1N1) with peak activity during November-December 2009. To understand the geographic extent, risk factors, and attack rate of pH1N1 infection in China we conducted a nationwide serological survey to determine the prevalence of antibodies to pH1N1.

Methodology/Principal Findings

Stored serum samples (n = 2,379) collected during 2006-2008 were used to estimate baseline serum reactogenicity to pH1N1. In January 2010, we used a multistage-stratified random sampling method to select 50,111 subjects who met eligibility criteria and collected serum samples and administered a standardized questionnaire. Antibody response to pH1N1 was measured using haemagglutination inhibition (HI) assay and the weighted seroprevalence was calculated using the Taylor series linearization method. Multivariable logistic regression analyses were used to examine risk factors for pH1N1 seropositivity. Baseline seroprevalence of pH1N1 antibody (HI titer ≥40) was 1.2%. The weighted seroprevalence of pH1N1 among the Chinese population was 21.5%(vaccinated: 62.0%; unvaccinated: 17.1%). Among unvaccinated participants, those aged 6-15 years (32.9%) and 16-24 years (30.3%) had higher seroprevalence compared with participants aged 25–59 years (10.7%) and ≥60 years (9.9%, P<0.0001). Children in kindergarten and students had higher odds of seropositivity than children in family care (OR: 1.36 and 2.05, respectively). We estimated that 207.7 million individuals (15.9%) experienced pH1N1 infection in China.

Conclusions/Significance

The Chinese population had low pre-existing immunity to pH1N1 and experienced a relatively high attack rate in 2009 of this virus. We recommend routine control measures such as vaccination to reduce transmission and spread of seasonal and pandemic influenza viruses.  相似文献   

9.
In this paper, we analysed the haemagglutinin (HA) gene identified by polymerase chain reaction from 90 influenza A H1N1 virus strains that circulated in Brazil from April 2009-June 2010. A World Health Organization sequencing protocol allowed us to identify amino acid mutations in the HA protein at positions S220T (71%), D239G/N/S (20%), Y247H (4.5%), E252K (3.3%), M274V (2.2%), Q310H (26.7%) and E391K (12%). A fatal outcome was associated with the D239G mutation (p < 0.0001). Brazilian HA genetic diversity, in comparison to a reference strain from California, highlights the role of influenza virus surveillance for study of viral evolution, in addition to monitoring the spread of the virus worldwide.  相似文献   

10.
Pandemic influenza viruses often cause severe disease in middle-aged adults without preexisting comorbidities. The mechanism of illness associated with severe disease in this age group is not well understood. Here we find preexisting serum antibodies that cross-react with, but do not protect against, 2009 H1N1 influenza virus in middle-aged adults. Nonprotective antibody is associated with immune complex-mediated disease after infection. We detected high titers of serum antibody of low avidity for H1-2009 antigen, and low-avidity pulmonary immune complexes against the same protein, in severely ill individuals. Moreover, C4d deposition--a marker of complement activation mediated by immune complexes--was present in lung sections of fatal cases. Archived lung sections from middle-aged adults with confirmed fatal influenza 1957 H2N2 infection revealed a similar mechanism of illness. These observations provide a previously unknown biological mechanism for the unusual age distribution of severe cases during influenza pandemics.  相似文献   

11.
Influenza virus hemagglutinin (HA) is the viral envelope protein that mediates viral attachment to host cells and elicits membrane fusion. The HA receptor-binding specificity is a key determinant for the host range and transmissibility of influenza viruses. In human pandemics of the 20th century, the HA normally has acquired specificity for human-like receptors before widespread infection. Crystal structures of the H1 HA from the 2009 human pandemic (A/California/04/2009 [CA04]) in complex with human and avian receptor analogs reveal conserved recognition of the terminal sialic acid of the glycan ligands. However, favorable interactions beyond the sialic acid are found only for α2-6-linked glycans and are mediated by Asp190 and Asp225, which hydrogen bond with Gal-2 and GlcNAc-3. For α2-3-linked glycan receptors, no specific interactions beyond the terminal sialic acid are observed. Our structural and glycan microarray analyses, in the context of other high-resolution HA structures with α2-6- and α2-3-linked glycans, now elucidate the structural basis of receptor-binding specificity for H1 HAs in human and avian viruses and provide a structural explanation for the preference for α2-6 siaylated glycan receptors for the 2009 pandemic swine flu virus.  相似文献   

12.
The emergence of the influenza (H1N1) 2009 virus provided a unique opportunity to study the evolution of a pandemic virus following its introduction into the human population. Virological and clinical surveillance in the UK were comprehensive during the first and second waves of the pandemic in 2009, with extensive laboratory confirmation of infection allowing a detailed sampling of representative circulating viruses. We sequenced the complete coding region of the haemagglutinin (HA) segment of 685 H1N1 pandemic viruses selected without bias during two waves of pandemic in the UK (April-December 2009). Phylogenetic analysis showed that although temporal accumulation of amino acid changes was observed in the HA sequences, the overall diversity was less than that typically seen for seasonal influenza A H1N1 or H3N2. There was co-circulation of multiple variants as characterised by signature amino acid changes in the HA. A specific substitution (S203T) became predominant both in UK and global isolates. No antigenic drift occurred during 2009 as viruses with greater than four-fold reduction in their haemagglutination inhibition (HI) titre ("low reactors") were detected in a low proportion (3%) and occurred sporadically. Although some limited antigenic divergence in viruses with four-fold reduction in HI titre might be related to the presence of 203T, additional studies are needed to test this hypothesis.  相似文献   

13.
A novel H1N1 influenza virus emerged in 2009 (pH1N1) to become the first influenza pandemic of the 21st century. This virus is now cocirculating with highly pathogenic H5N1 avian influenza viruses in many parts of the world, raising concerns that a reassortment event may lead to highly pathogenic influenza strains with the capacity to infect humans more readily and cause severe disease. To investigate the virulence of pH1N1-H5N1 reassortant viruses, we created pH1N1 (A/California/04/2009) viruses expressing individual genes from an avian H5N1 influenza strain (A/Hong Kong/483/1997). Using several in vitro models of virus replication, we observed increased replication for a reassortant CA/09 virus expressing the hemagglutinin (HA) gene of HK/483 (CA/09-483HA) relative to that of either parental CA/09 virus or reassortant CA/09 expressing other HK/483 genes. This increased replication correlated with enhanced pathogenicity in infected mice similar to that of the parental HK/483 strain. The serial passage of the CA/09 parental virus and the CA/09-483HA virus through primary human lung epithelial cells resulted in increased pathogenicity, suggesting that these viruses easily adapt to humans and become more virulent. In contrast, serial passage attenuated the parental HK/483 virus in vitro and resulted in slightly reduced morbidity in vivo, suggesting that sustained replication in humans attenuates H5N1 avian influenza viruses. Taken together, these data suggest that reassortment between cocirculating human pH1N1 and avian H5N1 influenza strains will result in a virus with the potential for increased pathogenicity in mammals.  相似文献   

14.
While in Northern hemisphere countries, the pandemic H1N1 virus (H1N1pdm) was introduced outside of the typical influenza season, Southern hemisphere countries experienced a single wave of transmission during their 2009 winter season. This provides a unique opportunity to compare the spread of a single virus in different countries and study the factors influencing its transmission. Here, we estimate and compare transmission characteristics of H1N1pdm for eight Southern hemisphere countries/states: Argentina, Australia, Bolivia, Brazil, Chile, New Zealand, South Africa and Victoria (Australia). Weekly incidence of cases and age-distribution of cumulative cases were extracted from public reports of countries'' surveillance systems. Estimates of the reproduction numbers, R 0, empirically derived from the country-epidemics'' early exponential phase, were positively associated with the proportion of children in the populations (p = 0.004). To explore the role of demography in explaining differences in transmission intensity, we then fitted a dynamic age-structured model of influenza transmission to available incidence data for each country independently, and for all the countries simultaneously. Posterior median estimates of R 0 ranged 1.2–1.8 for the country-specific fits, and 1.29–1.47 for the global fits. Corresponding estimates for overall attack-rate were in the range 20–50%. All model fits indicated a significant decrease in susceptibility to infection with age. These results confirm the transmissibility of the 2009 H1N1 pandemic virus was relatively low compared with past pandemics. The pattern of age-dependent susceptibility found confirms that older populations had substantial – though partial - pre-existing immunity, presumably due to exposure to heterologous influenza strains. Our analysis indicates that between-country-differences in transmission were at least partly due to differences in population demography.  相似文献   

15.
16.

Background

Pandemic influenza A(H1N1) (pH1N1) was first identified in North America in April 2009. Vaccination against pH1N1 commenced in the U.S. in October 2009 and continued through January 2010. The objective of this study was to evaluate the cost-effectiveness of pH1N1 vaccination.

Methodology

A computer simulation model was developed to predict costs and health outcomes for a pH1N1 vaccination program using inactivated vaccine compared to no vaccination. Probabilities, costs and quality-of-life weights were derived from emerging primary data on pH1N1 infections in the US, published and unpublished data for seasonal and pH1N1 illnesses, supplemented by expert opinion. The modeled target population included hypothetical cohorts of persons aged 6 months and older stratified by age and risk. The analysis used a one-year time horizon for most endpoints but also includes longer-term costs and consequences of long-term sequelae deaths. A societal perspective was used. Indirect effects (i.e., herd effects) were not included in the primary analysis. The main endpoint was the incremental cost-effectiveness ratio in dollars per quality-adjusted life year (QALY) gained. Sensitivity analyses were conducted.

Results

For vaccination initiated prior to the outbreak, pH1N1 vaccination was cost-saving for persons 6 months to 64 years under many assumptions. For those without high risk conditions, incremental cost-effectiveness ratios ranged from $8,000–$52,000/QALY depending on age and risk status. Results were sensitive to the number of vaccine doses needed, costs of vaccination, illness rates, and timing of vaccine delivery.

Conclusions

Vaccination for pH1N1 for children and working-age adults is cost-effective compared to other preventive health interventions under a wide range of scenarios. The economic evidence was consistent with target recommendations that were in place for pH1N1 vaccination. We also found that the delays in vaccine availability had a substantial impact on the cost-effectiveness of vaccination.  相似文献   

17.
18.

Background

In Finland, the first infections caused by the 2009 pandemic influenza A(H1N1) virus were identified on May 10. During the next three months almost all infections were found from patients who had recently traveled abroad. In September 2009 the pandemic virus started to spread in the general population, leading to localized outbreaks and peak epidemic activity was reached during weeks 43–48.

Methods/Results

The nucleotide sequences of the hemagglutinin (HA) and neuraminidase (NA) genes from viruses collected from 138 patients were determined. The analyzed viruses represented mild and severe infections and different geographic regions and time periods. Based on HA and NA gene sequences, the Finnish pandemic viruses clustered in four groups. Finnish epidemic viruses and A/California/07/2009 vaccine virus strain varied from 2–8 and 0–5 amino acids in HA and NA molecules, respectively, giving a respective maximal evolution speed of 1.4% and 1.1%. Most amino acid changes in HA and NA molecules accumulated on the surface of the molecule and were partly located in antigenic sites. Three severe infections were detected with a mutation at HA residue 222, in two viruses with a change D222G, and in one virus D222Y. Also viruses with change D222E were identified. All Finnish pandemic viruses were sensitive to oseltamivir having the amino acid histidine at residue 275 of the neuraminidase molecule.

Conclusions

The Finnish pandemic viruses were quite closely related to A/California/07/2009 vaccine virus. Neither in the HA nor in the NA were changes identified that may lead to the selection of a virus with increased epidemic potential or exceptionally high virulence. Continued laboratory-based surveillance of the 2009 pandemic influenza A(H1N1) is important in order to rapidly identify drug resistant viruses and/or virus variants with potential ability to cause severe forms of infection and an ability to circumvent vaccine-induced immunity.  相似文献   

19.
刘超  陈薇  李艳梅 《生命科学》2011,(10):1034-1039
2009年4月初,在墨西哥和美国出现一种新型甲型(H1N1)流感病毒。该病毒通过人-人传播迅速在全球范围蔓延。该病毒拥有来自人流感病毒、禽流感病毒和猪流感病毒的基因片段,其HA基因与引发1918年大流行的流感病毒株的HA基因同源性很高。该病毒倾向于感染儿童、青少年、孕妇,以及具有心肺疾病的人。据观察,它在人群中的传播能力高于季节性流感。部分感染患者具有在季节性流感中罕见的呕吐和腹泻症状。先前的流感病毒大流行和2009年爆发的甲型H1N1流感病毒大流行表明,由于流感病毒变异速度快、容易发生基因重排,新产生的变异毒株很可能造成新的大流行,威胁人类健康。由于禽流感病毒和人流感病毒都能感染猪,猪被认为是通过基因重排生成新的大流行病毒的"混合容器"。  相似文献   

20.

Background

In April 2009, a novel triple-reassortant swine influenza A H1N1 virus (“A/H1N1pdm”; also known as SOIV) was detected and spread globally as the first influenza pandemic of the 21st century. Sequencing has since been conducted at an unprecedented rate globally in order to monitor the diversification of this emergent virus and to track mutations that may affect virus behavior.

Methodology/Principal Findings

By Sanger sequencing, we determined consensus whole-genome sequences for A/H1N1pdm viruses sampled nationwide in Canada over 33 weeks during the 2009 first and second pandemic waves. A total of 235 virus genomes sampled from unique subjects were analyzed, providing insight into the temporal and spatial trajectory of A/H1N1pdm lineages within Canada. Three clades (2, 3, and 7) were identifiable within the first two weeks of A/H1N1pdm appearance, with clades 5 and 6 appearing thereafter; further diversification was not apparent. Only two viral sites displayed evidence of adaptive evolution, located in hemagglutinin (HA) corresponding to D222 in the HA receptor-binding site, and to E374 at HA2-subunit position 47. Among the Canadian sampled viruses, we observed notable genetic diversity (1.47×10−3 amino acid substitutions per site) in the gene encoding PB1, particularly within the viral genomic RNA (vRNA)-binding domain (residues 493–757). This genome data set supports the conclusion that A/H1N1pdm is evolving but not excessively relative to other H1N1 influenza A viruses. Entropy analysis was used to investigate whether any mutated A/H1N1pdm protein residues were associated with infection severity; however no virus genotypes were observed to trend with infection severity. One virus that harboured heterozygote coding mutations, including PB2 D567D/G, was attributed to a severe and potentially mixed infection; yet the functional significance of this PB2 mutation remains unknown.

Conclusions/Significance

These findings contribute to enhanced understanding of Influenza A/H1N1pdm viral dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号