首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Capsaicin ion channels are highly expressed in peripheral nervous terminals and involved in pain and thermal sensations. One characteristic of the cloned VR1 receptor is its multimodal responses to various types of noxious stimuli. The channel is independently activated by capsaicin and related vanilloids at submicromolar range, by heat above 40 degrees C, and by protons at pH below 6.5. Furthermore, simultaneous applications of two or more stimuli lead to cross sensitization of the receptor, with an apparent increase in the sensitivity to any individual stimulus when applied alone. We studied here the mechanism underlying such cross-sensitization; in particular, between capsaicin and pH, two prototypical stimuli for the channel. By analyzing single-channel currents recorded from excised-patches expressing single recombinant VR1 receptors, we examined the effect of pH on burst properties of capsaicin activation at low concentrations and the effect on gating kinetics at high concentrations. Our results indicate that pH has dual effects on both capsaicin binding and channel gating. Lowering pH enhances the apparent binding affinity of capsaicin, promotes the occurrences of long openings and short closures, and stabilizes at least one of the open conformations of the channel. Our data also demonstrate that capsaicin binding and protonation of the receptor interact allosterically, where the effect of one can be offset by the effect of the other. These results provide important basis to further understand the nature of the activation pathways of the channel evoked by different stimuli as well as the general mechanism underling the cross-sensitization of pain.  相似文献   

2.
Liu B  Hui K  Qin F 《Biophysical journal》2003,85(5):2988-3006
Temperature affects functions of all ion channels, but few of them can be gated directly. The vanilloid receptor VR1 provides one exception. As a pain receptor, it is activated by heat >42 degrees C in addition to other noxious stimuli, e.g. acids and vanilloids. Although it is understood how ligand- and voltage-gated channels might detect their stimuli, little is known on how heat could be sensed and activate a channel. In this study, we characterized the heat-induced single-channel activity of VR1, in an attempt to localize the temperature-dependent components involved in the activation of the channel. At <42 degrees C, openings were few and brief. Raising the ambient temperature rapidly increased the frequency of openings. Despite the large temperature coefficient of the apparent activity (Q(10) approximately 27), the unitary current, the open dwell-times, and the intraburst closures were all only weakly temperature dependent (Q(10) < 2). Instead, heat had a localized effect on the reduction of long closures between bursts (Q(10) approximately 7) and the elongation of burst durations (Q(10) approximately 32). Both membrane lipids and solution ionic strength affected the temperature threshold of the activation, but neither diminished the response. The thermodynamic basis of heat activation is discussed, to elucidate what makes a thermal-sensitive channel unique.  相似文献   

3.
The functional mechanisms of noncompetitive blockade of the nicotinic acetylcholine receptor from the BC3H-1 cell line were examined using single-channel currents recorded from cell-attached patches. Channel open times were distributed as sums of two exponentials and the closed times as sums of at least four exponentials. The single-channel currents of the receptor were analyzed in terms of activation schemes in which the receptor exists in two open states and a number of closed or blocked states. The existence of two distinct open states for the acetylcholine receptor allows for predictions to be made that will distinguish between different mechanisms of blockade. Notably, predictions could be made based on the model for the sequential block of open channels, that would allow us to discriminate such a mechanism, even for ligands that appear to dissociate so slowly that sequential openings of the same channel do not appear as distinct bursts. Four noncompetitive blockers of the acetylcholine receptor were studied: tetracaine, phencyclidine, and the (+) and (-) isomers of N-allylnormetazocine (SKF-10047). All four of these ligands decreased the duration of single-channel currents without increasing the number of fast closures per burst. The data suggest that the ligands block the channel in at least two distinct ways, one of which involves a specific interaction with open channels and the other is most consistent with the blockade of channels that may be either open or closed. In addition, the duration of the open state may be allosterically lengthened by the interaction of certain blockers with another class of sites.  相似文献   

4.
The functional properties of rat homomeric alpha 1 glycine receptors were investigated using whole-cell and outside-out recording from human embryonic kidney cells transfected with rat alpha1 subunit cDNA. Whole-cell dose-response curves gave EC(50) estimates between 30 and 120 microM and a Hill slope of approximately 3.3. Single channel recordings were obtained by steady-state application of glycine (0.3, 1, or 10 microM) to outside-out patches. Single channel conductances were mostly 60-90 pS, but smaller conductances of approximately 40 pS were also seen (10% of the events) with a relative frequency that did not depend on agonist concentration. The time constants of the apparent open time distributions did not vary with agonist concentration, but short events were more frequent at low glycine concentrations. There was also evidence of a previously missed short-lived open state that was more common at lower glycine concentrations. The time constants for the different components of the burst length distributions were found to have similar values at different concentrations. Nevertheless, the mean burst length increased with increasing glycine. This was because the relative area of each burst-length component was concentration dependent and short bursts were favored at lower glycine concentrations. Durations of adjacent open and shut times were found to be strongly (negatively) correlated. Additionally, long bursts were made up of longer than average openings separated by short gaps, whereas short bursts usually consisted of single isolated short openings. The most plausible explanation for these findings is that long bursts are generated when a higher proportion of the five potential agonist binding sites on the receptor is occupied by glycine. On the basis of the concentration dependence and the intraburst structure we provide a preliminary kinetic scheme for the activation of the homomeric glycine receptor, in which any number of glycine molecules from one to five can open the channel, although not with equal efficiency.  相似文献   

5.
Single Ca2+ release channels from vesicles of sheep cardiac junctional sarcoplasmic reticulum have been incorporated into uncharged planar lipid bilayers. Single-channel currents were recorded from Ca2(+)-activated channels that had a Ca2+ conductance of approximately 90 pS. Channel open probability increased sublinearly as the concentration of free Ca2+ was raised at the myoplasmic face, and without additional agonists the channels could not be fully activated even by 100 microM free Ca2+. Lifetime analysis revealed a minimum of two open and three closed states, and indicates that Ca2+ activated the channels by interacting with at least one of the closed states to increase the rate of channel opening. Correlations between adjacent lifetimes suggested there were at least two pathways between the open- and closed-state aggregates. An analysis of bursting behavior also revealed correlations between successive burst lengths and the number of openings per burst. The latter had two geometric components, providing additional evidence for at least two open states. One component appeared to comprise unit bursts, and the lifetime of most of these fell within the dominant shorter open-time distribution associated with over 90% of all openings. A cyclic gating scheme is proposed, with channel activation regulated by the binding of Ca2+ to a closed conformation of the channel protein. Mg2+ may inhibit activation by competing for this binding site, but lifetime and fluctuation analysis suggested that once activated the channels continue to gate normally.  相似文献   

6.
Vanilloid receptor 1 (VR1), a capsaicin receptor, is known to play a major role in mediating inflammatory thermal nociception. Although the physiological role and biophysical properties of VR1 are known, the mechanism of its activation by ligands is poorly understood. Here we show that VR1 must be phosphorylated by Ca2+-calmodulin dependent kinase II (CaMKII) before its activation by capsaicin. In contrast, the dephosphorylation of VR1 by calcineurin leads to a desensitization of the receptor. Moreover, point mutations in VR1 at two putative consensus sites for CaMKII failed to elicit capsaicin-sensitive currents and caused a concomitant reduction in VR1 phosphorylation in vivo. Such mutants also lost their high affinity binding with [3H]resiniferatoxin, a potent capsaicin receptor agonist. We conclude that the dynamic balance between the phosphorylation and dephosphorylation of the VR1 channel by CaMKII and calcineurin, respectively, controls the activation/desensitization states by regulating VR1 binding. Furthermore, because sensitization by protein kinase A and C converge at these sites, phosphorylation stress in the cell appears to control a wide range of excitabilities in response to various adverse stimuli.  相似文献   

7.
The ATP-sensitive potassium (K(ATP)) channel exhibits spontaneous bursts of rapid openings, which are separated by long closed intervals. Previous studies have shown that mutations at the internal mouth of the pore-forming (Kir6.2) subunit of this channel affect the burst duration and the long interburst closings, but do not alter the fast intraburst kinetics. In this study, we have investigated the nature of the intraburst kinetics by using recombinant Kir6.2/SUR1 K(ATP) channels heterologously expressed in Xenopus oocytes. Single-channel currents were studied in inside-out membrane patches. Mutations within the pore loop of Kir6.2 (V127T, G135F, and M137C) dramatically affected the mean open time (tau(o)) and the short closed time (tauC1) within a burst, and the number of openings per burst, but did not alter the burst duration, the interburst closed time, or the channel open probability. Thus, the V127T and M137C mutations produced longer tau(o), shorter tauC1, and fewer openings per burst, whereas the G135F mutation had the opposite effect. All three mutations also reduced the single-channel conductance: from 70 pS for the wild-type channel to 62 pS (G135F), 50 pS (M137C), and 38 pS (V127T). These results are consistent with the idea that the K(ATP) channel possesses a gate that governs the intraburst kinetics, which lies close to the selectivity filter. This gate appears to be able to operate independently of that which regulates the long interburst closings.  相似文献   

8.
Summary Potassium channels in membranes of isolatedNecturus enterocytes were studied using the patch-clamp technique. The most frequent channel observed had a conductance of 170 pS and reversal potential of 0 mV in symmetrical potassium-rich solutions. Channels were highly K+ selective. Channel activity was modulated by membrane potential and cytosolic Ca2+ concentration. Channel openings occurred in characteristic bursts separated by long closures. During bursts openings were interrupted by brief closures. Two gating modes controlled channel opening. The primary gate's sensitivity to intracellular Ca2+ concentration and membrane potential crucially determined long duration closures and bursting. In comparison, the second gate determining brief closures was largely insensitive to voltage and intracellular Ca2+ concentration. The channel was reversibly blocked by cytosolic barium exposure in a voltage-sensitive manner. Blockade reduced open-state probability without altering single-channel conductance and could be described, at relatively high Ca2+ concentration, by a three-state model where Ba2+ interacted with the open channel with a dissociation constant of about 10–4 m at 0 mV.  相似文献   

9.
Single channel activity of the cardiac ryanodine-sensitive calcium-release channel in planar lipid membranes was studied in order to elucidate the calcium-dependent mechanism of its steady-state behavior. The single channel kinetics, observed with Cs+ as the charge carrier at different activating (cis) Ca2+ concentrations in the absence of ATP and Mg2+, were similar to earlier reports and were extended by analysis of channel modal behavior. The channel displayed three episodic levels of open probability defining three gating modes: H (high activity), L (low activity), and I (no activity). The large difference in open probabilities between the two active modes resulted from different bursting patterns and different proportions of two distinct channel open states. I-mode was without openings and can be regarded as the inactivated mode of the channel; L-mode was composed of short and sparse openings; and H-mode openings were longer and grouped into bursts. Modal gating may explain calcium-release channel adaptation (as transient prevalence of H-mode after Ca2+ binding) and the inhibitory effects of drugs (as stabilization of mode I), and it provides a basis for understanding the regulation of calcium release.  相似文献   

10.
Kinetics of unliganded acetylcholine receptor channel gating.   总被引:9,自引:1,他引:9       下载免费PDF全文
Open- and closed-state lifetimes of unliganded acetylcholine receptor channel activity were analyzed by the method of likelihood maximazation. For both open times and closed times, the best-fitting density is most often a sum of two exponentials. These multiple open states cannot depend on the number of receptor binding sites occupied since they are observed in the absence of ligand. The rate of spontaneous opening and the faster decay constant of closing increased as the membrane was hyperpolarized. The voltage dependence of the rate of spontaneous opening is stronger than that for curare-liganded channels. Evidence that the acetylcholine receptor channel can open spontaneously in the absence of ligand has been presented previously (Sanchez et al, 1983; Brehm et al, 1984; Jackson, 1984). To add to this evidence, alpha-bungarotoxin was added to the patch electrode, causing the frequency of openings to decay with time. The rate constant determined from this decay is similar to rate constants reported for the binding of iodinated alpha-bungarotoxin to the acetylcholine receptor. The frequency of unliganded channel opening has been estimated as 2 X 10(-3) s-1 per receptor. A comparison of carbamylcholine-liganded and spontaneous gating transition rates suggests that ligand binding increases the rate of opening by a factor of 1.4 X 10(7). Carbamylcholine binding increases the mean open time by a factor of 5. Thus, a cholinergic agonist activates the acetylcholine receptor by destabilizing the closed state. The liganded and unliganded channel gating rates were used to analyze the energetics of ligand activation of the acetylcholine receptor channel, and to relate the open channel dissociation constant to the closed channel dissociation constant.  相似文献   

11.
Zinc accumulates in the synaptic vesicles of certain glutamatergic forebrain neurons and modulates neuronal excitability and synaptic plasticity by multiple poorly understood mechanisms. Zinc directly inhibits NMDA-sensitive glutamate-gated channels by two separate mechanisms: high-affinity binding to N-terminal domains of GluN2A subunits reduces channel open probability, and low-affinity voltage-dependent binding to pore-lining residues blocks the channel. Insight into the high-affinity allosteric effect has been hampered by the receptor's complex gating; multiple, sometimes coupled, modulatory mechanisms; and practical difficulties in avoiding transient block by residual Mg2+. To sidestep these challenges, we examined how nanomolar zinc concentrations changed the gating kinetics of individual block-resistant receptors. We found that block-insensitive channels had lower intrinsic open probabilities but retained high sensitivity to zinc inhibition. Binding of zinc to these receptors resulted in longer closures and shorter openings within bursts of activity but had no effect on interburst intervals. Based on kinetic modeling of these data, we conclude that zinc-bound receptors have higher energy barriers to opening and less stable open states. We tested this model for its ability to predict zinc-dependent changes in macroscopic responses and to infer the impact of nanomolar zinc concentrations on synaptic currents mediated by 2A-type NMDA receptors.  相似文献   

12.
Human P2X7 receptors were expressed in Xenopus laevis oocytes and single channels were recorded using the patch-clamp technique in the outside-out configuration. ATP4- evoked two types of P2X7 receptor-mediated single channel currents characterized by short-lived and long-lived openings. The short- and long-lasting open states had mean open times of approximately 5 and approximately 20 ms and slope conductances near -60 mV of 9 and 13 pS, respectively. The open probabilities of the short and long openings were strongly [ATP4-]-dependent with EC50 values of approximately 0.3 mM and approximately 0.1 mM ATP4-, respectively. The channel kinetics did not change significantly during sustained P2X7 receptor activation for several minutes, as was also observed in recordings in the cell-attached patch-clamp configuration. Activation and deactivation of the short openings followed exponential time courses with time constants in the range of 20 ms, and displayed a shallow [ATP4-] dependence of the activation process. The kinetics of the short channel openings at negative membrane potentials fitted well to a linear C-C-C-O model with two ATP4- binding steps at equal binding sites with a dissociation constant Kd of 139 microM.  相似文献   

13.
Kinetic diversity of Na+ channel bursts in frog skeletal muscle   总被引:4,自引:2,他引:2       下载免费PDF全文
Individual Na+ channels of dissociated frog skeletal muscle cells at 10 degrees C fail to inactivate in 0.02% of depolarizing pulses, thus producing bursts of openings lasting hundreds of milliseconds. We present here a kinetic analysis of 87 such bursts that were recorded in multi-channel patches at four pulse potentials. We used standard dwell-time histograms as well as fluctuation analysis to analyze the gating kinetics of the bursting channels. Since each burst contained only 75-150 openings, detailed characterization of the kinetics from single bursts was not possible. Nevertheless, at this low kinetic resolution, the open and closed times could be well fitted by single exponentials (or Lorentzians for the power spectra). The best estimates of both the open and closed time constants produced by either technique were much more broadly dispersed then expected from experimental or analytical variability, with values varying by as much as an order of magnitude. Furthermore, the values of the open and closed time constants were not significantly correlated with one another from burst to burst. The bursts thus expressed diverse kinetic behaviors, all of which appear to be manifestations of a single type of Na+ channel. Although the opening and closing rates were dispersed, their average values were close to those of alpha m and 2 beta m derived from fits to the early transient Na+ currents over the same voltage range. We propose a model in which the channel has both primary states (e.g., open, closed, and inactivated), as well as "modes" that are associated with independent alterations in the rate constants for transition between each of these primary states.  相似文献   

14.
Coexpression of the beta subunit (KV,Cabeta) with the alpha subunit of mammalian large conductance Ca2+- activated K+ (BK) channels greatly increases the apparent Ca2+ sensitivity of the channel. Using single-channel analysis to investigate the mechanism for this increase, we found that the beta subunit increased open probability (Po) by increasing burst duration 20-100-fold, while having little effect on the durations of the gaps (closed intervals) between bursts or on the numbers of detected open and closed states entered during gating. The effect of the beta subunit was not equivalent to raising intracellular Ca2+ in the absence of the beta subunit, suggesting that the beta subunit does not act by increasing all the Ca2+ binding rates proportionally. The beta subunit also inhibited transitions to subconductance levels. It is the retention of the BK channel in the bursting states by the beta subunit that increases the apparent Ca2+ sensitivity of the channel. In the presence of the beta subunit, each burst of openings is greatly amplified in duration through increases in both the numbers of openings per burst and in the mean open times. Native BK channels from cultured rat skeletal muscle were found to have bursting kinetics similar to channels expressed from alpha subunits alone.  相似文献   

15.
Single voltage-activated Na+ channel currents were obtained from membrane patches of isolated ventricular cells of guinea pig hearts. The currents were compared when measured from cell-attached patches and from the same patch but at least 20 minutes after manual excision. The averaged currents showed a distinctly delayed decay in the excised patches due to the appearance of long lasting openings or bursts of openings. In contrast to control patches, the open time distribution in excised patches requires at least two exponentials. A short mean open time was voltage independent for cell-attached patches (0.38 ms +/- 0.07 ms between -60 and -20 mV, 6 cell-attached patches; and 0.41 +/- 0.1 ms, 7 excised patches). The long mean open time found in excised patches was clearly voltage dependent and increased from 0.48 +/- 0.14 ms (-80 mV) to 2.87 +/- 0.35 ms (-20 mV, regression coefficient +0.88, 7 patches). Sweeps with long openings appeared in clusters. The clustering of records with long openings, short openings, or without openings (nulls) was quantified by a runs analysis which showed a highly significant nonrandom ordering. The results show that in excised patches inactivation is temporally hibernating.  相似文献   

16.
Permeation, gating, and their interrelationship in an inwardly rectifying potassium (K+) channel, ROMK2, were studied using heterologous expression in Xenopus oocytes. Patch-clamp recordings of single channels were obtained in the cell-attached mode. The gating kinetics of ROMK2 were well described by a model having one open and two closed states. One closed state was short lived (∼1 ms) and the other was longer lived (∼40 ms) and less frequent (∼1%). The long closed state was abolished by EDTA, suggesting that it was due to block by divalent cations. These closures exhibit a biphasic voltage dependence, implying that the divalent blockers can permeate the channel. The short closures had a similar biphasic voltage dependence, suggesting that they could be due to block by monovalent, permeating cations. The rate of entering the short closed state varied with the K+ concentration and was proportional to current amplitude, suggesting that permeating K+ ions may be related to the short closures. To explain the results, we propose a variable intrapore energy well model in which a shallow well may change into a deep one, resulting in a normally permeant K+ ion becoming a blocker of its own channel.  相似文献   

17.
Summary Single sodium-channel currents were measured in neuroblastoma cells after inhibition of inactivation by chloramine-T (CHL-T), sea anemone toxin II (ATX-II) and scorpion toxin (SCT). The decaying phase of the averaged single-channel currents recorded with 90-msec pulses in cell-attached patches was clearly slower than that of the unmodified channels, suggesting inhibition of macroscopic inactivation. Each substance caused repetitive openings and a moderate increase in the channel open time. AtV m =RP+20 mV andT=12°C, the mean channel open times were 1.4, 1.6 and 1.8 msec for CHL-T, ATX-II and SCT, respectively, as opposed to 1.07 msec for native channels. Open-time histograms could be best fitted by the sum of two exponentials. The time constants of the fits were similar for histograms constructed from single openings and from openings during bursts. This suggests that the population of channels is homogeneous and that in bursts the same open conformations of channels occur as in single openings. Mean burst durations for bursts consisting of more than one opening atV m =RP+20 mV were 4.9, 5.8 and 6.1 msec for CHL-T, ATX-II and SCT, respectively. Burst open-time histograms constructed from two or three openings were fitted by the gamma function. The different time constants of the fits obtained for ATX-II and SCT suggested multiple open conformations of channels for openings of bursts. However, significantly different open-time histograms constructed from the first, second and third openings of bursts could not be obtained systematically. A positive correlation was found for the dwell time of the first and the second, as well as for the second and the third opening of bursts with each substance, but a negative one for the dwell time of an opening and the neighboring closing of bursts with ATX-II. The results suggest a model with multiple open and inactivated states. In this model the inactivated states are weakly absorbing.  相似文献   

18.
Vanilloid receptor 1 (VR1), a ligand-gated ion channel activated by vanilloids, acid, and heat, is a molecular detector that integrates multiple modes of pain. Although the function and the biophysical properties of the channel are now known, the regions of VR1 that recognize ligands are largely unknown. By the stepwise deletion of VR1 and by chimera construction using its capsaicin-insensitive homologue, VRL1, we localized key amino acids, Arg-114 and Glu-761, in the N- and C-cytosolic tails, respectively, that determine ligand binding. Point mutations of the two key residues resulted in a loss of sensitivity to capsaicin and a concomitant loss of specific binding to [(3)H]resiniferatoxin, a potent vanilloid. Furthermore, changes in the charges of the two amino acids blocked capsaicin-sensitive currents and ligand binding without affecting current responses to heat. Thus, these two regions in the cytoplasmic tails of VR1 provide structural elements for its hydrophilic interaction with vanilloids and might constitute a long-suspected binding pocket.  相似文献   

19.
S S Lin  D Dagan  I B Levitan 《Neuron》1989,3(1):95-102
A novel 100 pS K(+)-selective ion channel is frequently observed in cell-attached membrane patches from cultured Aplysia neurons. The activity of this channel is moderately voltage-dependent, but channel openings are rare and brief even when the patch is strongly depolarized. However, the activity of the channel is increased dramatically by the addition of the lectin concanavalin A (Con A), to the patch pipette. The channel is also activated by Con A in the bathing medium, suggesting that the lectin's action is via an as yet unidentified intracellular second messenger. In the one single-channel patch studied, Con A had no effect on the channel mean open time; rather it decreased the average duration of the long closed times between bursts of openings. Thus Con A increases either the open probability of single channels, the number of functional channels in the patch, or both. The functional significance of the Con A-induced modulation of K+ channel activity remains to be determined.  相似文献   

20.
Activation of a nicotinic acetylcholine receptor.   总被引:7,自引:2,他引:7       下载免费PDF全文
We studied activation of the nicotinic acetylcholine (ACh) receptor on cells of a mouse clonal muscle cell line (BC3H1). We analyzed single-channel currents through outside-out patches elicited with various concentrations of acetylcholine (ACh), carbamylcholine (Carb) and suberyldicholine (Sub). Our goal is to determine a likely reaction scheme for receptor activation by agonist and to determine values of rate constants for transitions in that scheme. Over a wide range of agonist concentrations the open-time duration histograms are not described by single exponential functions, but are well-described by the sum of two exponentials, a brief-duration and a long-duration component. At high concentration, channel openings occur in groups and these groups contain an excess number of brief openings. We conclude that there are two open states of the ACh receptor with different mean open times and that a single receptor may open to either open state. The concentration dependence of the numbers of brief and long openings indicates that brief openings do not result from the opening of channels of receptors which have only one agonist molecule bound to them. Closed-time duration histograms exhibit a major brief component at low concentrations. We have used the method proposed by Colquhoun and Sakmann (1981) to analyze these brief closings and to extract estimates for the rates of channel opening (beta) and agonist dissociation (k-2). We find that this estimate of beta does not predict our closed-time histograms at high agonist concentration (ACh: 30-300 microM; Carb: 300-1,000 microM). We conclude that brief closings at low agonist concentrations do not result solely from transitions between the doubly-liganded open and the doubly-liganded closed states. Instead, we postulate the existence of a second closed-channel state coupled to the open state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号