首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We sequenced two maize bacterial artificial chromosome (BAC) clones anchored by the centromere-specific satellite repeat CentC. The two BACs, consisting of approximately 200 kb of cytologically defined centromeric DNA, are composed exclusively of satellite sequences and retrotransposons that can be classified as centromere specific or noncentromere specific on the basis of their distribution in the maize genome. Sequence analysis suggests that the original maize sequences were composed of CentC arrays that were expanded by retrotransposon invasions. Seven centromere-specific retrotransposons of maize (CRM) were found in BAC 16H10. The CRM elements inserted randomly into either CentC monomers or other retrotransposons. Sequence comparisons of the long terminal repeats (LTRs) of individual CRM elements indicated that these elements transposed within the last 1.22 million years. We observed that all of the previously reported centromere-specific retrotransposons in rice and barley, which belong to the same family as the CRM elements, also recently transposed with the oldest element having transposed approximately 3.8 million years ago. Highly conserved sequence motifs were found in the LTRs of the centromere-specific retrotransposons in the grass species, suggesting that the LTRs may be important for the centromere specificity of this retrotransposon family.  相似文献   

2.
The centromere is a repeat-rich structure essential for chromosome segregation; with the long-term aim of understanding centromere structure and function, we set out to identify cotton centromere sequences. To isolate centromere-associated sequences from cotton, (Gossypium hirsutum) we surveyed tandem and dispersed repetitive DNA in the genus. Centromere-associated elements in other plants include tandem repeats and, in some cases, centromere-specific retroelements. Examination of cotton genomic survey sequences for tandem repeats yielded sequences that did not localize to the centromere. However, among the repetitive sequences we also identified a gypsy-like LTR retrotransposon (Centromere Retroelement Gossypium, CRG) that localizes to the centromere region of all chromosomes in domestic upland cotton, Gossypium hirsutum, the major commercially grown cotton. The location of the functional centromere was confirmed by immunostaining with antiserum to the centromere-specific histone CENH3, which co-localizes with CRG hybridization on metaphase mitotic chromosomes. G. hirsutum is an allotetraploid composed of A and D genomes and CRG is also present in the centromere regions of other AD cotton species. Furthermore, FISH and genomic dot blot hybridization revealed that CRG is found in D-genome diploid cotton species, but not in A-genome diploid species, indicating that this retroelement may have invaded the A-genome centromeres during allopolyploid formation and amplified during evolutionary history. CRG is also found in other diploid Gossypium species, including B and E2 genome species, but not in the C, E1, F, and G genome species tested. Isolation of this centromere-specific retrotransposon from Gossypium provides a probe for further understanding of centromere structure, and a tool for future engineering of centromere mini-chromosomes in this important crop species.  相似文献   

3.
The maize (Zea mays) B centromere is composed of B centromere–specific repeats (ZmBs), centromere-specific satellite repeats (CentC), and centromeric retrotransposons of maize (CRM). Here we describe a newly formed B centromere in maize, which has lost CentC sequences and has dramatically reduced CRM and ZmBs sequences, but still retains the molecular features of functional centromeres, such as CENH3, H2A phosphorylation at Thr-133, H3 phosphorylation at Ser-10, and Thr-3 immunostaining signals. This new centromere is stable and can be transmitted to offspring through meiosis. Anti-CENH3 chromatin immunoprecipitation sequencing revealed that a 723-kb region from the short arm of chromosome 9 (9S) was involved in the formation of the new centromere. The 723-kb region, which is gene poor and enriched for transposons, contains two abundant DNA motifs. Genes in the new centromere region are still transcribed. The original 723-kb region showed a higher DNA methylation level compared with native centromeres but was not significantly changed when it was involved in new centromere formation. Our results indicate that functional centromeres may be formed without the known centromere-specific sequences, yet the maintenance of a high DNA methylation level seems to be crucial for the proper function of a new centromere.  相似文献   

4.
Structural features of the rice chromosome 4 centromere   总被引:23,自引:0,他引:23       下载免费PDF全文
Zhang Y  Huang Y  Zhang L  Li Y  Lu T  Lu Y  Feng Q  Zhao Q  Cheng Z  Xue Y  Wing RA  Han B 《Nucleic acids research》2004,32(6):2023-2030
  相似文献   

5.
A circular minichromosome carrying functional centromere sequences (cen2) from Schizosaccharomyces pombe chromosome II behaves as a stable, independent genetic linkage group in S. pombe. The cen2 region was found to be organized into four large tandemly repeated sequence units which span over 80 kilobase pairs (kb) of untranscribed DNA. Two of these units occurred in a 31-kb inverted repeat that flanked a 7-kb central core of nonhomology. The inverted repeat region had centromere function, but neither the central core alone nor one arm of the inverted repeat was functional. Deletion of a portion of the repeated sequences that flank the central core had no effect on mitotic segregation functions or on meiotic segregation of a minichromosome to two of the four haploid progeny, but drastically impaired centromere-mediated maintenance of sister chromatid attachment in meiosis I. This requirement for centromere-specific repeated sequences could not be satisfied by introduction of random DNA sequences. These observations suggest a function for the heterochromatic repeated DNA sequences found in the centromere regions of higher eucaryotes.  相似文献   

6.
Rice (Oryza sativa L.) centromeres are composed of 155-bp satellite repeats (CentO), centromere-specific retrotransposon (CRR), and a variety of other repeats. Previous studies have shown that CentO and CRR elements are both parts of the functional centromere/kinetochore complex. In this study, a naturally occurring karyotype rearrangement involving a reciprocal translocation between chromosomes 9 and 11 in an indica rice Zhongxian 3037 has been identified. The recombinant centromere in Chr11L?·?9L has two CentO tandem arrays, separated by a long array of 5S rDNAs. Chromatin immunoprecipitation and immunostaining showed that centromere-specific histone H3 (cenH3) variant was bound to the two flanking CentO arrays, but not to the 5S rDNAs residing between the CentO repeats. No obvious difference was detected in H3K4me2 and H3K9ac modification of the 5S rDNAs between the wild type and the mutant. Therefore, the translocation results in a recombinant stable chromosome with interrupted centromeric domains. A lack of cenH3 binding in 5S rDNA sequences residing within the centromeric core suggests that not all centromeric sequences confer centromere identity in rice.  相似文献   

7.
Jin W  Lamb JC  Vega JM  Dawe RK  Birchler JA  Jiang J 《The Plant cell》2005,17(5):1412-1423
The centromere of the maize (Zea mays) B chromosome contains several megabases of a B-specific repeat (ZmBs), a 156-bp satellite repeat (CentC), and centromere-specific retrotransposons (CRM elements). Here, we demonstrate that only a small fraction of the ZmBs repeats interacts with CENH3, the histone H3 variant specific to centromeres. CentC, which marks the CENH3-associated chromatin in maize A centromeres, is restricted to an approximately 700-kb domain within the larger context of the ZmBs repeats. The breakpoints of five B centromere misdivision derivatives are mapped within this domain. In addition, the fraction of this domain remaining after misdivision correlates well with the quantity of CENH3 on the centromere. Thus, the functional boundaries of the B centromere are mapped to a relatively small CentC- and CRM-rich region that is embedded within multimegabase arrays of the ZmBs repeat. Our results demonstrate that the amount of CENH3 at the B centromere can be varied, but with decreasing amounts, the function of the centromere becomes impaired.  相似文献   

8.
Molecular Characterization of a Maize B Chromosome Centric Sequence   总被引:28,自引:0,他引:28       下载免费PDF全文
Supernumerary chromosomes are widespread in the plant kingdom but little is known of their molecular nature or mechanism of origin. We report here the initial cloning of sequences from the maize B chromosome. Our analysis suggests that many sequences are highly repetitive and shared with the normal A chromosomes. However, all clones selected for B-specificity contain at least one copy of a particular repeat. Cytological mapping using B chromosome derivatives and in situ hybridization show that the B specific repeats are derived from the centric region of the chromosome. Sequence analysis of this repeat shows homology to motifs mapped to various plant and animal centromeres and to the maize neocentromere. A precise localization of these sequences among breakpoints within the B centromere and an homology to a facultative centromere, suggest a role for this sequence in centromere function.  相似文献   

9.
In the course of a chromosomal walk towards the centromere of chromosome IV of Aspergillus nidulans, several cross-hybridizing genomic cosmid clones were isolated. Restriction mapping of two such clones revealed that their restriction patterns were similar in a region of at least 15 kb, indicating the presence of a large repeat. The nature of the repeat was further investigated by sequencing and Southern analysis. The study revealed a family of long dispersed repeats with a high degree of sequence similarity. The number and location of the repeats vary between wild isolates. Two copies of the repeat contained degenerated long-terminal-repeat (LTR) retrotransposons, which were named Dane1 and Dane2 (for Degenerated Aspergillus nidulans element). The pattern of degeneration suggested that a process similar to the repeat-induced point-mutation (RIP) phenomenon, first described in Neurospora crassa, may have operated in A. nidulans. The data indicate that this family of repeats has assimilated mobile elements that subsequently degenerated but then underwent further duplications as a part of the host repeats.  相似文献   

10.
We have determined the structural organization and functional roles of centromere-specific DNA sequence repeats in cen1, the centromere region from chromosome I of the fission yeast Schizosaccharomyces pombe. cen1 is composed of various classes of repeated sequences designated K', K"(dgl), L, and B', arranged in a 34-kb inverted repeat surrounding a 4- to 5-kb nonhomologous central core. Artificial chromosomes containing various portions of the cen1 region were constructed and assayed for mitotic and meiotic centromere function in S. pombe. Deleting K' and L from the distal portion of one arm of the inverted repeat had no effect on mitotic centromere function but resulted in greatly increased precocious sister chromatid separation in the first meiotic division. A centromere completely lacking K' and L, but containing the central core, one copy of B' and K" in one arm, and approximately 2.5 kb of the core-proximal portion of B' in the other arm, was also fully functional mitotically but again did not maintain sister chromatid attachment in meiosis I. However, deletion of K" from this minichromosome resulted in complete loss of centromere function. Thus, one copy of at least a portion of the K" (dgl) repeat is absolutely required but is not sufficient for S. pombe centromere function. The long centromeric inverted-repeat region must be relatively intact to maintain sister chromatid attachment in meiosis I.  相似文献   

11.
Roy B  Sanyal K 《Eukaryotic cell》2011,10(11):1384-1395
A centromere is a chromosomal region on which several proteins assemble to form the kinetochore. The centromere-kinetochore complex helps in the attachment of chromosomes to spindle microtubules to mediate segregation of chromosomes to daughter cells during mitosis and meiosis. In several budding yeast species, the centromere forms in a DNA sequence-dependent manner, whereas in most other fungi, factors other than the DNA sequence also determine the centromere location, as centromeres were able to form on nonnative sequences (neocentromeres) when native centromeres were deleted in engineered strains. Thus, in the absence of a common DNA sequence, the cues that have facilitated centromere formation on a specific DNA sequence for millions of years remain a mystery. Kinetochore formation is facilitated by binding of a centromere-specific histone protein member of the centromeric protein A (CENP-A) family that replaces a canonical histone H3 to form a specialized centromeric chromatin structure. However, the process of kinetochore formation on the rapidly evolving and seemingly diverse centromere DNAs in different fungal species is largely unknown. More interestingly, studies in various yeasts suggest that the factors required for de novo centromere formation (establishment) may be different from those required for maintenance (propagation) of an already established centromere. Apart from the DNA sequence and CENP-A, many other factors, such as posttranslational modification (PTM) of histones at centric and pericentric chromatin, RNA interference, and DNA methylation, are also involved in centromere formation, albeit in a species-specific manner. In this review, we discuss how several genetic and epigenetic factors influence the evolution of structure and function of centromeres in fungal species.  相似文献   

12.
The centromere is a functional chromosome domain that is essential for faithful chromosome segregation during cell division and that can be reliably identified by the presence of the centromere-specific histone H3 variant CenH3. In monocentric chromosomes, the centromere is characterized by a single CenH3-containing region within a morphologically distinct primary constriction. This region usually spans up to a few Mbp composed mainly of centromere-specific satellite DNA common to all chromosomes of a given species. In holocentric chromosomes, there is no primary constriction; the centromere is composed of many CenH3 loci distributed along the entire length of a chromosome. Using correlative fluorescence light microscopy and high-resolution electron microscopy, we show that pea (Pisum sativum) chromosomes exhibit remarkably long primary constrictions that contain 3-5 explicit CenH3-containing regions, a novelty in centromere organization. In addition, we estimate that the size of the chromosome segment delimited by two outermost domains varies between 69 Mbp and 107 Mbp, several factors larger than any known centromere length. These domains are almost entirely composed of repetitive DNA sequences belonging to 13 distinct families of satellite DNA and one family of centromeric retrotransposons, all of which are unevenly distributed among pea chromosomes. We present the centromeres of Pisum as novel "meta-polycentric" functional domains. Our results demonstrate that the organization and DNA composition of functional centromere domains can be far more complex than previously thought, do not require single repetitive elements, and do not require single centromere domains in order to segregate properly. Based on these findings, we propose Pisum as a useful model for investigation of centromere architecture and the still poorly understood role of repetitive DNA in centromere evolution, determination, and function.  相似文献   

13.

Background  

It has been hypothesized that rapid divergence in centromere sequences accompanies rapid karyotypic change during speciation. However, the reuse of breakpoints coincident with centromeres in the evolution of divergent karyotypes poses a potential paradox. In distantly related species where the same centromere breakpoints are used in the independent derivation of karyotypes, centromere-specific sequences may undergo convergent evolution rather than rapid sequence divergence. To determine whether centromere sequence composition follows the phylogenetic history of species evolution or patterns of convergent breakpoint reuse through chromosome evolution, we examined the phylogenetic trajectory of centromere sequences within a group of karyotypically diverse mammals, macropodine marsupials (wallabies, wallaroos and kangaroos).  相似文献   

14.
15.
16.
The restriction enzyme TaqI digests 0.2% of the genomic DNA from the grasshopper Caledia captiva to a family of sequences 168 bp in length (length of consensus sequence). The sequence variation of this "Taq family" of repeat units was examined among four races from C. captiva to assay the pattern of evolution within this highly repeated DNA. The Taq-family repeats are located in C-banded heterochromatin on at least one member of each homologous pair of chromosomes; the locations range from centromeric to telomeric. Thirty-nine cloned repeats isolated from two population 1A individuals along with 11 clones from seven populations taken from three of the races demonstrated sequence variation at 72 positions. Pairwise comparisons of the cloned repeats, both within an individual and between different races, indicate that levels of intraspecific divergence, as measured by reproductive incompatibility, do not correlate with sequence divergence among the 168-bp repeats. A number of subsequences within the repeat remain unchanged among all 50 clones; the longest of these is 18 bp. That the same 18-bp subsequence is present in all clones examined is a finding that departs significantly (P less than 0.01) from what would be expected to occur at random. Two other cloned repeats, from a reproductively isolated race of C. captiva, have sequences that show 56% identity with this 18-bp conserved region. An analysis showed that the frequency of occurrence of an RsaI recognition site within the 168- bp repeat in the entire Taq family agreed with that found in the cloned sequences. These data, along with a partial sequence for the entire Taq family obtained by sequencing uncloned repeats, suggest that the consensus sequence from the cloned copies is representative of this highly repeated family and is not a biased sample resulting from the cloning procedure. The 18-bp conserved sequence is part of a 42-bp sequence that possesses dyad symmetry typical of protein-binding sites. We speculate that this may be significant in the evolution of the Taq family of sequences.   相似文献   

17.
This paper presents the first report on the structure of a 14-kb centromere sequence in a cereal genome that includes 1.9-kb direct repeats. The cereal centromeric sequence (CCS1) conserved in some Gramineae species contains a 17-bp motif similar to the CENP-B box, which serves as the binding site for the centromere-specific protein CENP-B in human. To isolate centromeric units from rice (Oryza sativa L.), we performed PCR using the CENP-B box-like sequences (CBLS) as primers. A 264-bp clone was amplified by this method, and called RCS1516. It appeared to be a novel member of the CCS1 family, sharing about 60% identity with the CCS1 sequences of other cereals. Then, a 14-kb genomic clone, λRCB11, carrying the RCS1516 sequence was isolated and sequenced. It was found to contain three copies of a 1.9-kb direct repeat, RCE1, separated by 5.1- and 1.7-kb. A 300-bp sequence at the 3′ end of RCE1 is highly conserved in all three copies (>90%) and is almost identical to the RCS1516 sequence including the CBLS motif. The copy number of RCE1 was estimated to range from 102 to 103 in the haploid genome of rice. Cloned RCE1 units were used for fluorescent in situ hybridization (FISH) analysis, and signals were observed on almost every primary constriction of rice chromosomes. Thus it was concluded that RCE1 is a significant component of the rice centromere. The λRCB11 clone contained at least four A/T-rich regions, which are candidate for matrix attachment regions (MARs), in the sequences between the RCE1 repeats. Other elements that are homologous to the short centromeric repetitive sequences pSau3A9 and pRG5, detected in both sorghum and rice, were also found in the clone. Received: 9 June 1998 / Accepted: 16 September 1998  相似文献   

18.
The human centromere proteins A (CENP-A) and B (CENP-B) are the fundamental centromere components of chromosomes. CENP-A is the centromere-specific histone H3 variant, and CENP-B specifically binds a 17-base pair sequence (the CENP-B box), which appears within every other alpha-satellite DNA repeat. In the present study, we demonstrated centromere-specific nucleosome formation in vitro with recombinant proteins, including histones H2A, H2B, H4, CENP-A, and the DNA-binding domain of CENP-B. The CENP-A nucleosome wraps 147 base pairs of the alpha-satellite sequence within its nucleosome core particle, like the canonical H3 nucleosome. Surprisingly, CENP-B binds to nucleosomal DNA when the CENP-B box is wrapped within the nucleosome core particle and induces translational positioning of the nucleosome without affecting its rotational setting. This CENP-B-induced translational positioning only occurs when the CENP-B box sequence is settled in the proper rotational setting with respect to the histone octamer surface. Therefore, CENP-B may be a determinant for translational positioning of the centromere-specific nucleosomes through its binding to the nucleosomal CENP-B box.  相似文献   

19.
The Epstein-Barr virus (EBV) latent origin of plasmid replication (oriP) contains two essential regions, a family of repeats with 20 imperfect copies of a 30-bp sequence and a dyad symmetry element with four similar 30-bp repeats. Each of the repeats has an internal palindromic sequence and can bind EBNA 1, a protein that together with oriP constitutes the only viral element necessary for EBV maintenance and replication. Using single-strand-specific nucleases, we have probed plasmids containing oriP-derived sequences for the presence of secondary structural elements. Multiple single-stranded structures were detected within the oriP region. Of the two essential elements of oriP, the family of repeats seemed to extrude these structures at a much higher frequency than did sequences within the dyad symmetry region. Though negative supercoiling was found to stabilize the single-stranded structures, they showed significant stability even after linearization of the oriP plasmids. Two major single-stranded structures detected involved approximately 12 bp of DNA. These loci could be transiently unwound regions that form because of negative supercoiling and the high A + T content of this region of DNA, or they could be cruciform structures extruded within the palindromic sequences of oriP that may be important sites for protein-DNA interactions in the EBV oriP.  相似文献   

20.
The chromosomal location of centromere-specific histone H3 (CENH3) is the assembly site for the kinetochore complex of active centromeres. Chromatin immunoprecipitation data indicated that CENH3 interacts in barley with cereba, a centromeric retroelement (CR)-like element conserved among cereal centromeres and barley-specific GC-rich centromeric satellite sequences. Anti-CENH3 signals on extended chromatin fibers always colocalized with the centromeric sequences but did not encompass the entire area covered by such centromeric repeats. This indicates that the CENH3 protein is bound only to a fraction of the centromeric repeats. At mitotic metaphase, CENH3, histone H3, and serine 10 phosphorylated histone H3 predominated within distinct structural subdomains of the centromere, as demonstrated by immunogold labeling for high resolution scanning electron microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号