首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
A series of carbo- and heterocyclic alpha-hydroxy amide-derived bradykinin B1 antagonists was prepared and evaluated. A 4,4-difluorocyclohexyl alpha-hydroxy amide was incorporated along with a 2-methyl tetrazole in lieu of an oxadiazole to afford a suitable compound with good pharmacokinetic properties, CNS penetration, and clearance by multiple metabolic pathways.  相似文献   

2.
2-Carboxy indolines were synthesised as potential antagonists at the glycine site of the NMDA receptor, based on a pharmacophore developed from other series. None of the indolines had significant potency, possibly due to the lack of coplanarity of the carboxyl with the aromatic ring. The corresponding indoles are potent antagonists, as exemplified by 19, IC50 27 nM.

Molecular modelling suggests that 2-carboxyindolines may not bind to the Glycine/NMDA receptor due to the lack of coplanarity between the aromatic ring and the carboxylate.  相似文献   


3.
Highly open porous biodegradable scaffolds, based on gelatin A3, were fabricated with the aim of using them for tissue-engineering applications. The fabrication process is based on an emulsion-templating technique. In the preparation of gelatin scaffolds two different cross-linking procedures were adopted: (I) radical polymerization of the methacrylate functionalities, previously introduced onto the gelatin chains and (II) formation of isopeptide bridges among the gelatin chains promoted by the enzyme microbial transglutaminase. The method of cross-linking exerts a pronounced effect on the morphology of the porous biomaterials: radical polymerization of methacrylated gelatin allowed the production of scaffolds with a better defined porous structure, while the enzymatically cross-linked scaffolds were characterized by a thinner skeletal framework. A suitable sample of each kind of the differently cross-linked porous biomaterials was tested for the culture of hepatocytes. The scaffold obtained by radical polymerization possessed a morphology characterized by relatively large voids and interconnects, and as a consequence, it was more suitable for hepatocytes colonization. On the other hand, the enzymatically cross-linked scaffold resulted in less cytotoxicity and the cultured hepatocytes expressed a better differentiated phenotype, as evidenced by a greater expression and more correct localization of key adhesion proteins.  相似文献   

4.
Both 4,6-dimethyl-2-thipyrimidine and its 1-methyl derivative undergo polarographic reduction in aqueous medium, via a 1e/1H+ reduction to a free radical which rapidly dimerizes to products isolates and identified as 4,4'-bis-(4,6-dimethyl-3,4-dihydropyrimidin-2-thione) and the corresponding 1-methyl dimer. The dimers may be oxidized electrolytically to regenerate the parent monomers. Both dimers also undergo photodissociation to quantitatively regenerate the parent monomers, in high quantum yield, 0.23 and 0.35 M/Einstein. The correlation between electrochemical and photochemical reductions of 2-thiopyrimidines are discussed, as well as the significance of the dimer photodissociation reactions in relation to nucleic acid photochemistry.  相似文献   

5.
Abstract

Carbonic anhydrases (CAs) are widespread metalloenzymes in higher vertebrates including humans. A series of phenolic compounds, including guaiacol, 4-methylguaiacol, 4-propylguaiacol, eugenol, isoeugenol, vanillin, syringaldehyde, catechol, 3-methyl catechol, 4-methyl catechol and 3-methoxy catechol were investigated for their inhibition of all the catalytically active mammalian isozymes of the Zn2+-containing CA (EC 4.2.1.1). All the phenolic compounds effectively inhibited human carbonic anhydrase isoenzymes (hCA I, II, IX and XII), with Kis in the range of 2.20–515.98?μM. The various isozymes showed diverse inhibition profiles. Among the tested phenolic derivatives, compounds 4-methyl catechol and 3-methoxy catechol showed potent activity as inhibitors of the tumour-associated transmembrane isoforms (hCA IX and XII) in the submicromolar range, with high selectivity. The results obtained from this research may lead to the design of more effective carbonic anhydrase isoenzyme inhibitors (CAIs) based on such phenolic compound scaffolds.  相似文献   

6.
Abstract

O-2′ phenoxythionocarbonate of 8-vinyladenosine gives under Barton-McCombie conditions a C-2′ radical that reacts intramolecularly with the vinyl group to afford a 6-endocycloproduct.  相似文献   

7.
Emulsion templated scaffolds that include gelatin and glycosaminoglycans   总被引:1,自引:0,他引:1  
Gelatin is one of the most commonly used biopolymer for creating cellular scaffolds due to its innocuous nature. To create stable gelatin scaffolds at physiological temperature (37 degrees C), chemical cross-linking is a necessary step. In a previous paper (Biomacromolecules 2006, 7, 3059-3068), cross-linking was carried out by either radical polymerization of the methacrylated derivative of gelatin (GMA) or through the formation of isopeptide bonds catalyzed by transglutaminase. The method of scaffold production was based on emulsion templating in which an organic phase is dispersed in the form of discrete droplets into a continuous aqueous solution of the biopolymer. Both kinds of scaffolds were tested as culture medium for hepatocytes. It turned out that the enzymatic cross-linked scaffold performed superiorily in this respect, even though it was mechanically less stable than the GMA scaffold. In the present paper, in an attempt to improve the biocompatibility of the GMA-based scaffold, biopolymers present in the extracellular matrix (ECM) were included in scaffold formulation, namely, chondroitin sulfate and hyaluronic acid. These biopolymers were derivatized with methacrylic moieties to undergo radical polymerization together with GMA. The morphology of the scaffolds was tuned to some extent by varying the volume fraction of the internal phase and to a larger extent by inducing a controlled destabilization of the precursor emulsion through the use of additives. In this way, scaffolds with 44% of the void volume attributable to voids with a diameter exceeding 60 microm and with 79% of the interconnect area attributable to interconnects with a diameter exceeding 20 microm in diameter could be successfully synthesized. To test whether the inclusion of ECM components into scaffold formulation resolves in an improvement of their biocompatibility with respect to GMA scaffolds, hepatocytes were seeded on both kinds of scaffolds and cell viability and function assays were carried out and compared.  相似文献   

8.
This Letter describes the on-going SAR efforts based on two scaffolds, a PLD1-biased piperidinyl benzimidazolone and a PLD2-biased piperidinyl triazaspirone, with the goal of enhancing PLD inhibitory potency and isoform selectivity. Here, we found that addition of an α-methyl moiety within the PLD2-biased piperidinyl triazaspirone scaffold abolished PLD2 preference, while the incorporation of substituents onto the piperidine moiety of the PLD1-biased piperidinyl benzimidazolone, or replacement with a bioisosteric [3.3.0] core, generally retained PLD1 preference, but at diminished significance. The SAR uncovered within these two allosteric PLD inhibitor series further highlights the inherent challenges of developing isoform selective PLD inhibitors.  相似文献   

9.
Phytochemical investigations of Calotropis procera leaves have led to the isolation of two new compounds: quercetagetin-6-methyl ether 3-O-beta-D-4C1-galacturonopyranoside (3) and (E)-3-(4-methoxyphenyl-2-O-beta-D-4C1 -glucopyranoside)-methyl propenoate (4), along with eleven known metabolites: nine flavonol and two cinnamic acid derivatives. All metabolites were isolated for the first time from the genus Calotropis, except for 1 isolated previously from Calotropis gigantea. The structures were determined by spectroscopic methods (UV, ESI-MS, 1H, 13C NMR, 1H-1H COSY, HSQC, and HMBC). The radical scavenging activity of the aqueous methanol extract and compounds 8-13 was measured by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) method. Cytotoxic screening of the same compounds was carried out on brine shrimps as well.  相似文献   

10.
As part of a program to identify novel scaffolds that adopt defined secondary structure when incorporated into peptides, we have designed and prepared a library of constrained eight-membered ring lactams based upon 7-amino-8-oxo-1,2,3,6,7-pentahydroazocine-2-carboxylic acid. Ring closing metathesis (RCM) was employed as the key step, proceeding in high yields to afford the Z olefin. In this reaction sequence, the first generation benzylidene ruthenium RCM catalyst was superior to the second-generation imidazoline catalyst, which gave extensive oligomerization at higher concentrations. Conformational analysis of the 2S,7S and 2R,7S stereoisomers revealed that the 2R,7S isomer is a Type VIa beta-turn in the solid state (X-ray crystal structure) and in water (NMR analysis). The Type VIa beta-turn is relatively rare, typically bearing the cis amide bond found in proline-containing sequences. The 2S,7S diastereomer has an extended geometry of the pendent amide chains. The corresponding saturated derivatives (7-amino-8-oxoazocane-2-carboxylic acid) were also synthesized and investigated. The 2S,7S azocane bears an extended geometry and mimics the C(+) conformer of ox-[Cys-Cys], found in a variety of naturally occurring peptides. The scaffolds described here are useful for the design of constrained peptidomimics with defined secondary structure.  相似文献   

11.
The highly constitutively active G-protein coupled receptor US28 of human cytomegalovirus (HCMV) is an interesting pharmacological target because of its implication on viral dissemination, cardiovascular diseases and tumorigenesis. We found that dihydroisoquinolinone and tetrahydroisoquinoline scaffolds may be promising lead structures for novel US28 allosteric inverse agonists. These scaffolds were rapidly synthesized by radical carboamination reactions followed by non-radical transformations. Our novel US28 allosteric modulators provide valuable scaffolds for further ligand optimization and may be helpful chemical tools to investigate molecular mechanisms of US28 constitutive signaling and its role in pathogenesis.  相似文献   

12.
ESR studies on DNA cleavage induced by enediyne C-1027 chromophore   总被引:1,自引:0,他引:1  
C-1027 belongs to the family of chromoprotein antitumor antibiotics, which contain a carrier apoprotein and a highly unstable enediyne chromophore. The enediyne spontaneously aromatizes to generate p-benzyne biradical, and subsequently abstracts hydrogens from the DNA sugar backbone, resulting in cleavage of the double strand. Using spin-trapping methods, we obtained direct proof of radical intermediates during an DNA cleavage, and found intriguing difference in behavior between the trapping agents 2-methyl-2-nitrosopropane (MNP) and 5,5-dimethyl-1-pyrroline N-oxide (DMPO): MNP added to the sugar radicals of the DNA, whereas DMPO directly trapped a phenyl radical or p-benzyne biradical derived from the C-1027 chromophore.  相似文献   

13.
Free radical intermediates were detected by the electron paramagnetic resonance spin trapping technique upon protonation/deprotonation reactions of carotenoid and beta-ionone radical ions. The hyperfine coupling constants of their spin adducts obtained by spectral simulation indicate that carbon-centered radicals were trapped. The formation of these species was shown to be a result of chemical oxidation of neutral compounds by Fe(3+) or I(2) followed by deprotonation of the corresponding radical cations or addition of nucleophilic agents to them. Bulk electrolysis reduction of beta-ionone and carotenoids also leads to the formation of free radicals via protonation of the radical anions. Two different spin adducts were detected in the reaction of carotenoid polyenes with piperidine in the presence of 2-methyl-2-nitroso-propane (MNP). One is attributable to piperidine radicals (C(5)H(10)N*) trapped by MNP and the other was identified as trapped neutral carotenoid (beta-ionone) radical produced via protonation of the radical anion. Formation of these radical anions was confirmed by ultraviolet-visible spectroscopy. It was found that the ability of carotenoid radical anions/cations to produce neutral radicals via protonation/deprotonation is more pronounced for unsymmetrical carotenoids with terminal electron-withdrawing groups. This effect was confirmed by the radical cation deprotonation energy (H(D)) estimated by semiempirical calculations. The results indicate that the ability of carotenoid radical cations to deprotonate decreases in the sequence: beta-ionone > unsymmetrical carotenoids > symmetrical carotenoids. The minimum H(D) values were obtained for proton abstraction from the C(4) atom and the C(5)-methyl group of the cyclohexene ring. It was assumed that deprotonation reaction occurs preferentially at these positions.  相似文献   

14.
The radical-scavenging reaction of fisetin, a natural antioxidant found in strawberries, is known to proceed via hydrogen transfer to produce a fisetin radical intermediate. Thus, introduction of an electron-donating group into the fisetin molecule is expected to stabilize the radical, leading to enhanced radical-scavenging activity. In this study, fisetin derivatives in which methyl substituents were introduced at the ortho positions relative to the catechol hydroxyl groups were synthesized and their radical scavenging activities were evaluated and compared with that of the parent fisetin molecule. Among the methyl derivatives, 5′-methyl fisetin, in which the inherent planar structure of fisetin was retained, exhibited the strongest radical scavenging activity. Introduction of methyl substituents may be effective for the enhancement of various biological activities of antioxidants, particularly radical-scavenging activity.  相似文献   

15.
The goal of this protocol is to report a simple method for generating nanofiber scaffolds with gradations in fiber organization and test their possible applications in controlling cell morphology/orientation. Nanofiber organization is controlled with a new fabrication apparatus that enables the gradual decrease of fiber organization in a scaffold. Changing the alignment of fibers is achieved through decreasing deposition time of random electrospun fibers on a uniaxially aligned fiber mat. By covering the collector with a moving barrier/mask, along the same axis as fiber deposition, the organizational structure is easily controlled. For tissue engineering purposes, adipose-derived stem cells can be seeded to these scaffolds. Stem cells undergo morphological changes as a result of their position on the varied organizational structure, and can potentially differentiate into different cell types depending on their locations. Additionally, the graded organization of fibers enhances the biomimicry of nanofiber scaffolds so they more closely resemble the natural orientations of collagen nanofibers at tendon-to-bone insertion site compared to traditional scaffolds. Through nanoencapsulation, the gradated fibers also afford the possibility to construct chemical gradients in fiber scaffolds, and thereby further strengthen their potential applications in fast screening of cell-materials interaction and interfacial tissue regeneration. This technique enables the production of continuous gradient scaffolds, but it also can potentially produce fibers in discrete steps by controlling the movement of the moving barrier/mask in a discrete fashion.  相似文献   

16.
Methodologies for the synthesis of C10-C-unsaturated clarithromycin congeners have been developed from corresponding C10-methyl erythromycin A ketolides. Activation of the unreactive C10-methyl group and subsequent Pd-catalyzed cross-coupling reactions afford novel C-10-unsaturated clarithromycins for antibacterial screening programs. By related methodology azides can be prepared and used for the preparation of corresponding 1,2,3-triazoles by click chemistry. The work demonstrates the importance of transition metal catalysis in natural product semi-synthesis and potential SAR studies. The in vitro MIC values from screening the products against strains of respiratory pathogens of S. pneumoniae and S. aureus indicate that the new antibacterials are close to equipotent with the clarithromycin reference compound.  相似文献   

17.
The antioxidant activity of some amido-carbonyl oximes containing a C=O and –NH–R adjacent to the oxime group, [Phenyl-C(=O)-C(=N-OH)-N(-H)-Phenyl(-R)] where R= H, 4-chloro, 4-methyl, 4-methoxy, 3,4-dichloro, 3,4-dimethyl, 3-chloro-4-dimethyl, 3-chloro-4-methoxy, naphthyl and an amido-carbonyl dioxime were investigated in vitro by ferric thiocyanate, total reducing power by potassium ferricyanide reduction, 1,1-diphenyl-2- picryl-hydrazyl (DPPH·) free radical scavenging, ferrous ions chelating, superoxide anion radical scavenging and hydrogen peroxide scavenging activity assays. The results indicated that the amido-carbonyl oximes have powerful antioxidant capacity.  相似文献   

18.
2-Hydroxy 3-methyl 1,4-benzoquinone 5,6 epoxide was identified as secondary metabolite of a strain ofAspergillus terreus, a common contaminant of animal feeds. In addition, the following compounds were also tentatively identified to be produced by this organism: 2-hYdroxy 3-methyl 1,4-benzoquinone; 2-methyl 1,4-benzoquinone 5,6-epoxide; naphthazarin epoxide; and 2-hydroxy 3-methyl 1,4-benzoquinone 5, 6-epoxide.  相似文献   

19.
Novel indoline ribonucleosides with the alpha-N-glycoside configuration are synthesized with very high regioselectivity in 90-96%yield, using TMS protected indolines and 2,3-O-(1-methylethylidene)-5-O-(triphenylmethyl)-alpha/beta-D-ribofuranose. The structures of these ribonucleosides were elucidated with X-ray crystallography as well as 2D (NOESY, COSY, and HMQC) NMR spectroscopy.  相似文献   

20.
Radical formation and hole transfer were investigated in crystals of cytosine.HCl (C.HCl) doped with 0-1.1 mol-% 5-methylcytosine x HCl (5MC x HCl). The doping level was determined by NMR spectroscopy. Crystals and polycrystalline samples were X-irradiated at 295 K, 77 K and 12 K and studied with EPR, ENDOR and FSE spectroscopy at these temperatures. At 295 K the dominant radicals were the so-called 3alphaH radical, formed in 5MC by a net H-abstraction from the methyl group, and the cytosine C6 H-addition (5-yl) radical. At 12 K five radicals were identified. These were the 3alphaH radical, cytosine reduction and oxidation products, and the cytosine C6 and C5 H-addition (5-yl and 6-yl, respectively) radicals. The spectroscopic parameters for the 3alphaH radical are very similar to those of a radical observed previously in the crystalline cytosine derivatives cytidine (CR), 2'deoxycytidine hydrochloride (CdR x HCl), 5'dCMP and 3'CMP as well as in the uracil derivative 2-thiouracil (2-TU). It was shown that amounts of the order of tenths of a percent 5MC x HCl doped into crystals of C.HCl give rise to a considerable yield of 3alphaH radicals after exposure to ionizing radiation both at room temperature and at lower temperatures. This supports a previous suggestion that naturally occurring 5-methylated cytosine impurities may be responsible for the formation of 3alphaH radicals in the crystalline cytosine derivatives CR, CdR.HCl, 5'dCMP and 3'CMP and suggests that the 3alphaH radical in these systems is a 5-methylated base-centered radical. The total radical yield in doped C x HCl crystals increased considerably with the doping level, both at low temperatures and at room temperature, implying that the 3alphaH radical is more stable than the primary cytosine radicals. The relative amounts of the 3alphaH radical were obtained by using simulated benchmark spectra to reconstruct experimental EPR spectra of doped polycrystalline samples. Evidence is presented suggesting that the enhanced yield of the 3alphaH radical in doped samples is due to holes originally formed at cytosine bases and transferred to 5-methylcytosine bases in addition to the 3alphaH radical being less exposed to recombination than other cytosine radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号