首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Here we introduce a quantitative structure-driven computational domain-fusion method, which we used to predict the structures of proteins believed to be involved in regulation of the subtilin pathway in Bacillus subtilis, and used to predict a protein-protein complex formed by interaction between the proteins. Homology modeling of SpaK and SpaR yielded preliminary structural models based on a best template for SpaK comprising a dimer of a histidine kinase, and for SpaR a response regulator protein. Our LGA code was used to identify multi-domain proteins with structure homology to both modeled structures, yielding a set of domain-fusion templates then used to model a hypothetical SpaK/SpaR complex. The models were used to identify putative functional residues and residues at the protein-protein interface, and bioinformatics was used to compare functionally and structurally relevant residues in corresponding positions among proteins with structural homology to the templates. Models of the complex were evaluated in light of known properties of the functional residues within two-component systems involving His-Asp phosphorelays. Based on this analysis, a phosphotransferase complexed with a beryllofluoride was selected as the optimal template for modeling a SpaK/SpaR complex conformation. In vitro phosphorylation studies performed using wild type and site-directed SpaK mutant proteins validated the predictions derived from application of the structure-driven domain-fusion method: SpaK was phosphorylated in the presence of 32P-ATP and the phosphate moiety was subsequently transferred to SpaR, supporting the hypothesis that SpaK and SpaR function as sensor and response regulator, respectively, in a two-component signal transduction system, and furthermore suggesting that the structure-driven domain-fusion approach correctly predicted a physical interaction between SpaK and SpaR. Our domain-fusion algorithm leverages quantitative structure information and provides a tool for generation of hypotheses regarding protein function, which can then be tested using empirical methods.  相似文献   

3.
The complete amino acid sequence of DNA binding protein II from Bacillus stearothermophilus has been determined. The protein contains 90 amino acid residues and has a calculated Mr of 9716. The sequence is compared to homologous molecules from Escherichia coli, Thermoplasma acidophilum, and Pseudomonas aeruginosa (where only a partial sequence is available). The B. stearothermophilus molecule has 58% and 59% residues identical with the two forms of the E. coli protein and 32% with the T. acidophilum protein. There are totally conserved residues at positions 46-48 and 61-65 with an intervening cluster of basic amino acids in all four proteins.  相似文献   

4.
5.
Olfactory receptors (ORs) are a large family of proteins involved in the recognition and discrimination of numerous odorants. These receptors belong to the G-protein coupled receptor (GPCR) hyperfamily, for which little structural data are available. In this study we predict the binding site residues of OR proteins by analyzing a set of 1441 OR protein sequences from mouse and human. The central insight utilized is that functional contact residues would be conserved among pairs of orthologous receptors, but considerably less conserved among paralogous pairs. Using judiciously selected subsets of 218 ortholog pairs and 518 paralog pairs, we have identified 22 sequence positions that are both highly conserved among the putative orthologs and variable among paralogs. These residues are disposed on transmembrane helices 2 to 7, and on the second extracellular loop of the receptor. Strikingly, although the prediction makes no assumption about the location of the binding site, these amino acid positions are clustered around a pocket in a structural homology model of ORs, mostly facing the inner lumen. We propose that the identified positions constitute the odorant binding site. This conclusion is supported by the observation that all but one of the predicted binding site residues correspond to ligand-contact positions in other rhodopsin-like GPCRs.  相似文献   

6.
Expression of human GLVR1 in mouse cells confers susceptibility to infection by gibbon ape leukemia virus (GALV), while the normally expressed mouse Glvr-1 does not. Since human and murine GLVR1 proteins differ at 64 positions in their sequences, some of the residues differing between the two proteins are critical for infection. To identify these, a series of hybrids and in vitro-constructed mutants were tested for the ability to confer susceptibility to infection. The results indicated that human GLVR1 residues 550 to 551, located in a cluster of seven of the sites that differ between the human and mouse proteins, are the only residues differing between the two which must be in the human protein form to allow infection. Sequencing of a portion of GLVR1 from the rat (which is infectible) confirmed the importance of this cluster in that it contained the only notable differences between the rat and mouse proteins. This region, which also differs substantially between the rat and the human proteins, therefore exhibits a pronounced tendency for polymorphism.  相似文献   

7.
Le L  Leluk J 《PloS one》2011,6(8):e22970
M2 channel, an influenza virus transmembrane protein, serves as an important target for antiviral drug design. There are still discordances concerning the role of some residues involved in proton transfer as well as the mechanism of inhibition by commercial drugs. The viral M2 proteins show high conservativity; about 3/4 of the positions are occupied by one residue in over 95%. Nine M2 proteins from the H3N2 strain and possibly two proteins from H2N2 strains make a phylogenic cluster closely related to 2RLF. The variability range is limited to 4 residues/position with one exception. The 2RLF protein stands out by the presence of 2 serines at the positions 19 and 50, which are in most other M2 proteins occupied by cysteines. The study of correlated mutations shows that there are several positions with significant mutational correlation that have not been described so far as functionally important. That there are 5 more residues potentially involved in the M2 mechanism of action. The original software used in this work (Consensus Constructor, SSSSg, Corm, Talana) is freely accessible as stand-alone offline applications upon request to the authors. The other software used in this work is freely available online for noncommercial purposes at public services on bioinformatics such as ExPASy or NCBI. The study on mutational variability, evolutionary relationship, and correlated mutation presented in this paper is a potential way to explain more completely the role of significant factors in proton channel action and to clarify the inhibition mechanism by specific drugs.  相似文献   

8.
Hydrophobic cluster analysis (HCA) is a protein sequence comparison method based on alpha-helical representations of the sequences where the size, shape and orientation of the clusters of hydrophobic residues are primarily compared. The effectiveness of HCA has been suggested to originate from its potential ability to focus on the residues forming the hydrophobic core of globular proteins. We have addressed the robustness of the bidimensional representation used for HCA in its ability to detect the regular secondary structure elements of proteins. Various parameters have been studied such as those governing cluster size and limits, the hydrophobic residues constituting the clusters as well as the potential shift of the cluster positions with respect to the position of the regular secondary structure elements. The following results have been found to support the alpha-helical bidimensional representation used in HCA: (i) there is a positive correlation (clearly above background noise) between the hydrophobic clusters and the regular secondary structure elements in proteins; (ii) the hydrophobic clusters are centred on the regular secondary structure elements; (iii) the pitch of the helical representation which gives the best correspondence is that of an alpha-helix. The correspondence between hydrophobic clusters and regular secondary structure elements suggests a way to implement variable gap penalties during the automatic alignment of protein sequences.  相似文献   

9.
As part of a project intending to assess the evolutionary kinship between the RNA coliphages and RNA bacteriophages of other bacterial genera, we have sequenced the coat protein of Pseudomonas, aeruginosa RNA phage PP7. Like the coat proteins of coliphages MS2 and Qβ and of the broad host range RNA phage PRR1, PP7 coat protein (127 residues) is highly hydrophobic, and contains a cluster of basic residues between positions 40 to 60. Minimal mutation distance values were calculated for comparison of PP7 coat protein with each MS2, Qβ and PRR1 coat proteins. Application of the Moore-Goodman criterion to those values, shows that these four RNA bacteriophage coat proteins very likely descent from a common ancestor.  相似文献   

10.
Lee KH  Kuczera K 《Biopolymers》2003,69(2):260-269
Two forms of cytochrome b(5) have been identified, associated with the outer membrane of liver mitochondria (OM cyt b(5)) and with the membrane of the endoplasmic reticulum (microsomal, Mc cyt b(5)). These proteins have very similar structures, but differ significantly in physical properties, with the OM cyt b(5) exhibiting a more negative reduction potential, higher stability, and stronger interactions with the heme. We perform molecular dynamics simulations to probe the structures and fluctuations of the two proteins in solution, to help explain the observed physical differences. We find that the structures of the two proteins, highly similar in the crystal, differ in position of a surface loop involving residues 49-51 in solution. Hydrophobic residues Ala-18, Ile-32, Leu-36, and Leu-47 tend to cluster together on the surface of rat OM cyt b(5), blocking water access to the protein interior. In bovine Mc cyt b(5), two of these positions, Ser-18 and Arg-47, are occupied by hydrophilic residues. This leads to breaking the hydrophobic cluster and allowing the protein to occupy a more open conformation. A measure of this structural transition is the opening of a cleft on the protein surface, which is 5 A wider in the OM cyt b(5) simulation compared to the Mc form. The OM protein also appears to have a more compact hydrophobic core in its beta-sheet region. These effects may be used to explain observed stability differences between the two proteins.  相似文献   

11.
Amino acid sequence of [2Fe-2S] ferredoxin from Clostridium pasteurianum   总被引:4,自引:0,他引:4  
The complete amino acid sequence of the [2Fe-2S] ferredoxin from the saccharolytic anaerobe Clostridium pasteurianum has been determined by automated Edman degradation of the whole protein and of peptides obtained by tryptic and by staphylococcal protease digestion. The polypeptide chain consists of 102 amino acids, including 5 cysteine residues in positions 11, 14, 24, 56, and 60. The sequence has been analyzed for hydrophilicity and for secondary structure predictions. In its native state the protein is a dimer, each subunit containing one [2Fe-2S] cluster, and it has a molecular weight of 23,174, including the four iron and inorganic sulfur atoms. The extinction coefficient of the native protein is 19,400 M-1 cm-1 at 463 nm. The positions of the cysteine residues, four of which are most probably the ligands of the [2Fe-2S] cluster, on the polypeptide chain of this protein are very different from those found in other [2Fe-2S] proteins, and in other ferredoxins in general. In addition, whole sequence comparisons of the [2Fe-2S] ferredoxin from C. pasteurianum with a number of other ferredoxins did not reveal any significant homologies. The likely occurrence of several phylogenetically unrelated ferredoxin families is discussed in the light of these observations.  相似文献   

12.
Gliding motility in the developmental bacterium Myxococcus xanthus involves two genetically distinct motility systems, designated adventurous (A) and social (S). Directed motility responses, which facilitate both vegetative swarming and developmental aggregation, additionally require the 'frizzy' (Frz) signal transduction pathway. In this study, we have analysed a new gene (frzS), which is positioned upstream of the frzA-F operon. Insertion mutations in frzS caused both vegetative spreading and developmental defects, including 'frizzy' aggregates in the FB strain background. The 'frizzy' phenotype was previously considered to result only from defective directed motility responses. However, deletion of the frzS gene in an A-S+ motility background demonstrated that FrzS is a new component of the S-motility system, as the A-frzS double mutant was non-spreading (A-S-). Compared with known S-motility mutants, the frzS mutants appear similar to pilT mutants, in that both produce type IV pili, extracellular fibrils and lipopolysaccharide (LPS) O-antigen, and both agglutinate rapidly in a cohesion assay. The FrzS protein has an unusual domain composition for a bacterial protein. The N-terminal domain shows similarity to the receiver domains of the two-component response regulator proteins. The C-terminal domain is composed of up to 38 heptad repeats (a b c d e f g)38, in which residues at positions a and d are predominantly hydrophobic, whereas residues at positions e and g are predominantly charged. This periodic disposition of specific residues suggests that the domain forms a long coiled-coil structure, similar to those found in the alpha-fibrous proteins, such as myosin. Overexpression of this domain in Escherichia coli resulted in the formation of an unusual striated protein lattice that filled the cells. We speculate on the role that this novel protein could play in gliding motility.  相似文献   

13.
Proteins from Sendai virus particles and from infected cells were analyzed in a protein-blotting protein-overlay assay for their interaction with in vitro-synthesized, [35S]methionine-labeled viral proteins NP, P, and M. After separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, transfer onto polyvinylidene difluoride membranes, and renaturation, the immobilized proteins were found to interact specifically with radiolabeled proteins. NP proteins from virus particles and from infected cells retained 35S-P protein equally well. Conversely, P protein from virus particles and from infected cells retained 35S-NP protein. 35S-M protein was retained mainly by NP protein but also by several cellular proteins. To determine the domains on NP protein required for binding to immobilized P protein, a series of truncated and internally deleted 35S-NP proteins was constructed. The only deletion that did not affect binding resides between residues 426 and 497. The carboxyl-terminal 27 residues (positions 498 to 524) contribute significantly to the binding affinity. Removal of 20 residues (positions 225 to 244) in the hydrophobic middle part of NP protein completely abolished its binding to P protein.  相似文献   

14.
Time-resolved fluorescence experiments were carried out on a variety of apomyoglobins with one or two tryptophan (Trp) residues located at invariant positions 7 and 14 in the primary sequence. In all cases, the Trp fluorescence kinetics were resolved adequately into two discrete lifetime domains, and decay-associated spectra (DAS) were obtained for each decay component. The DAS resolved for unfolded proteins were indistinguishable by position of the emission maxima and the spectral shapes. The folded proteins revealed noticeable differences in the DAS, which relate to the diverse local environments around the Trp residues in the individual proteins. Furthermore, the DAS of wild-type protein possessing two Trp residues were simulated well by that of one Trp mutants either in the native, molten globule, or unfolded states. Overall, employing Trp fluorescence and site-directed mutagenesis allowed us to highlight the conformational changes induced by the single amino acid replacement and generate novel structural information on equilibrium folding intermediates. Specifically, it was found that conformational fluctuations in the local cluster around the evolutionarily conserved Trp(14) are very similar in the native and molten globule states of apomyoglobins. This result indicates that residues in the E and B helices contributing to this cluster are most likely involved in the stabilization of the overall architecture of the structured molten globule intermediate.  相似文献   

15.
Two exposed amino acid residues confer thermostability on a cold shock protein   总被引:14,自引:0,他引:14  
Thermophilic organisms produce proteins of exceptional stability. To understand protein thermostability at the molecular level we studied a pair of cold shock proteins, one of mesophilic and one of thermophilic origin, by systematic mutagenesis. Although the two proteins differ in sequence at 12 positions, two surface-exposed residues are responsible for the increase in stability of the thermophilic protein (by 15.8 kJ mol-1 at 70 degrees C). 11.5 kJ mol-1 originate from a predominantly electrostatic contribution of Arg 3 and 5.2 kJ mol-1 from hydrophobic interactions of Leu 66 at the carboxy terminus. The mesophilic protein could be converted to a highly thermostable form by changing the Glu residues at positions 3 and 66 to Arg and Leu, respectively. The variation of surface residues may thus provide a simple and powerful approach for increasing the thermostability of a protein.  相似文献   

16.
17.
《Journal of molecular biology》2019,431(7):1397-1408
GFP-like proteins from lancelets (lanFPs) is a new and least studied group that already generated several outstanding biomarkers (mNeonGreen is the brightest FP to date) and has some unique features. Here, we report the study of four homologous lanFPs with GYG and GYA chromophores. Until recently, it was accepted that the third chromophore-forming residue in GFP-like proteins should be glycine, and efforts to replace it were in vain. Now, we have the first structure of a fluorescent protein with a successfully matured chromophore that has alanine as the third chromophore-forming residue. Consideration of the protein structures revealed two alternative routes of posttranslational transformation, resulting in either chromophore maturation or hydrolysis of GYG/GYA tripeptide. Both transformations are catalyzed by the same set of catalytic residues, Arg88 and Glu35–Wat–Glu211 cluster, whereas the residues in positions 62 and 102 shift the equilibrium between chromophore maturation and hydrolysis.  相似文献   

18.
19.
The peptide Leu-Asp-Asp-Ser-Lys-Arg-Val-Ala-Lys-Arg-Lys-Leu-Ile-Glu, which corresponds to sequence 124 to 137 of c-erb-A protein, was synthesized and tested as substrate for protein kinase C (PKC). Although a typical recognition sequence for PKC, consisting of a cluster of basic residues, is found on the C-terminus side of serine, its phosphorylation was totally prevented by the presence of the two acidic residues on the amino-terminus side. Three analogs in which aspartyl residues were successively replaced with alanine were studied and the influence of the acidic side chain in modulating phosphorylation by PKC was thus possible to determine. The results show that the presence of a single aspartyl residue located in positions i-1 or i-2 with respect to the phosphorylable residue can almost totally abolish the positive effect of a highly favorable cluster of basic residues. These observations highlight the role of negative substrate specificity determinants in settling the protein substrate profile of protein kinase C.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号