首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
The phase of the cell cycle can determine whether a cancer cell can respond to a given drug. We report here on the results of monitoring of real-time cell cycle dynamics of cancer cells throughout a live tumor intravitally using a fluorescence ubiquitination cell cycle indicator (FUCCI) before, during, and after chemotherapy. In nascent tumors in nude mice, approximately 30% of the cells in the center of the tumor are in G0/G1 and 70% in S/G2/M. In contrast, approximately 90% of cancer cells in the center and 80% of total cells of an established tumor are in G0/G1 phase. Similarly, approximately 75% of cancer cells far from (>100 µm) tumor blood vessels of an established tumor are in G0/G1. Longitudinal real-time imaging demonstrated that cytotoxic agents killed only proliferating cancer cells at the surface and, in contrast, had little effect on quiescent cancer cells, which are the vast majority of an established tumor. Moreover, resistant quiescent cancer cells restarted cycling after the cessation of chemotherapy. Our results suggest why most drugs currently in clinical use, which target cancer cells in S/G2/M, are mostly ineffective on solid tumors. The results also suggest that drugs that target quiescent cancer cells are urgently needed.  相似文献   

2.
We previously reported real-time monitoring of cell cycle dynamics of cancer cells throughout a live tumor intravitally using a fluorescence ubiquitination cell cycle indicator (FUCCI). Approximately 90% of cancer cells in the center and 80% of total cells of an established tumor are in G0/G1 phase. Longitudinal real-time FUCCI imaging demonstrated that cytotoxic agents killed only proliferating cancer cells at the surface and, in contrast, and had little effect on the quiescent cancer cells. Resistant quiescent cancer cells restarted cycling after the cessation of chemotherapy. Thus cytotoxic chemotherapy which targets cells in S/G2/M, is mostly ineffective on solid tumors, but causes toxic side effects on tissues with high fractions of cycling cells, such as hair follicles, bone marrow and the intestinal lining. We have termed this phenomenon tumor intrinsic chemoresistance (TIC). We previously demonstrated that tumor-targeting Salmonella typhimurium A1-R (S. typhimurium A1-R) decoyed quiescent cancer cells in tumors to cycle from G0/G1 to S/G2/M demonstrated by FUCCI imaging. We have also previously shown that when cancer cells were treated with recombinant methioninase (rMETase), the cancer cells were selectively trapped in S/G2, shown by cell sorting as well as by FUCCI. In the present study, we show that sequential treatment of FUCCI-expressing stomach cancer MKN45 in vivo with S. typhimurium A1-R to decoy quiescent cancer cells to cycle, with subsequent rMETase to selectively trap the decoyed cancer cells in S/G2 phase, followed by cisplatinum (CDDP) or paclitaxel (PTX) chemotherapy to kill the decoyed and trapped cancer cells completely prevented or regressed tumor growth. These results demonstrate the effectiveness of the praradigm of “decoy, trap and shoot” chemotherapy.  相似文献   

3.
The phase of the cell cycle can determine whether a cancer cell can respond to a given drug. We previously reported monitoring of real-time cell cycle dynamics of cancer cells throughout a live tumor, intravitally in live mice, using a fluorescence ubiquitination-based cell-cycle indicator (FUCCI). Approximately 90% of cancer cells in the center and 80% of total cells of an established tumor are in G0/G1 phase. Longitudinal real-time imaging demonstrated that cytotoxic agents killed only proliferating cancer cells at the surface and, in contrast, had little effect on quiescent cancer cells, which are the vast majority of an established tumor. Moreover, resistant quiescent cancer cells restarted cycling after cessation of chemotherapy. These results suggested why most drugs currently in clinical use, which target cancer cells in S/G2/M, are mostly ineffective on solid tumors. In the present report, we used FUCCI imaging and Gelfoam® collagen-sponge-gel histoculture, to demonstrate in real time, that the cell-cycle phase distribution of cancer cells in Gelfoam® and in vivo tumors is highly similar, whereby only the surface cells proliferate and interior cells are quiescent in G0/G1. This is in contrast to 2D culture where most cancer cells cycle. Similarly, the cancer cells responded similarly to toxic chemotherapy in Gelfoam® culture as in vivo, and very differently than cancer cells in 2D culture which were much more chemosensitive. Gelfoam® culture of FUCCI-expressing cancer cells offers the opportunity to image the cell cycle of cancer cells continuously and to screen for novel effective therapies to target quiescent cells, which are the majority in a tumor and which would have a strong probability to be effective in vivo.  相似文献   

4.
Quiescent cancer cells are resistant to cytotoxic agents which target only proliferating cancer cells. Time-lapse imaging demonstrated that tumor-targeting Salmonella typhimurium A1-R (A1-R) decoyed cancer cells in monolayer culture and in tumor spheres to cycle from G0/G1 to S/G2/M, as demonstrated by fluorescence ubiquitination-based cell cycle indicator (FUCCI) imaging. A1-R infection of FUCCI-expressing subcutaneous tumors growing in nude mice also decoyed quiescent cancer cells, which were the majority of the cells in the tumors, to cycle from G0/G1 to S/G2/M, thereby making them sensitive to cytotoxic agents. The combination of A1-R and cisplatinum or paclitaxel reduced tumor size compared with A1-R monotherapy or cisplatinum or paclitaxel alone. The results of this study demonstrate that A1-R can decoy quiescent cancer cells to cycle to S/G2/M and sensitize them to cytotoxic chemotherapy. These results suggest a new paradigm of bacterial-decoy chemotherapy of cancer.  相似文献   

5.
In this report, we investigated the in vivo cell biology of cancer cells during immune rejection. The use of nestin-driven green fluorescent protein (ND-GFP) transgenic mice as hosts, in which nascent blood vessels express GFP, and implanted dual-color mouse mammary tumor 060562 (MMT) cells, in which the cytoplasm expresses red fluorescent protein (RFP) and the nuclei express GFP, allowed very important novel observations of angiogenesis and subcellular death pathways during immune rejection of a tumor. Nascent blood vessels did not form in the initially-growing mouse mammary tumor in ND-GFP immunocompetent mice. In contrast, in ND-GFP immunodeficient nude mice, numerous GFP-expressing nascent blood vessels grew into the tumor. The results suggest that insufficient nascent tumor angiogenesis was important in tumor rejection. During immune rejection, the cancer cells deformed their cytoplasm and nuclei, which were readily imaged by RFP and GFP, respectively. The nuclear membrane of the cancer cells ruptured, and chromatin extruded during partition of cytoplasm and nuclei. T lymphocytes infiltrated into the initially-growing tumor in the nestin-GFP transgenic immunocompetent mice. The cytotoxic role of the sensitized T lymphocytes was confirmed in vitro when they were co-cultured with MMT cells. The CD8a-positive lymphocytes attached to the cancer cells and caused nuclear condensation, deformation, and partition from their cytoplasm, similar to what occurred in vivo. The color-coded subcellular fluorescence-imaging model of immune rejection of cancer cells can provide a comprehensive system for further testing of immune-based treatment for cancer.  相似文献   

6.
Invasive cancer cells are a critical target in order to prevent metastasis. In the present report, we demonstrate real-time visualization of cell cycle kinetics of invading cancer cells in 3-dimensional (3D) Gelfoam® histoculture, which is in vivo-like. A fluorescence ubiquitination cell cycle indicator (FUCCI) whereby G0/G1 cells express a red fluorescent protein and S/G2/M cells express a green fluorescent protein was used to determine the cell cycle position of invading and non-invading cells. With FUCCI 3D confocal imaging, we observed that cancer cells in G0/G1 phase in Gelfoam® histoculture migrated more rapidly and further than cancer cells in S/G2/M phases. Cancer cells ceased migrating when they entered S/G2/M phases and restarted migrating after cell division when the cells re-entered G0/G1. Migrating cancer cells also were resistant to cytotoxic chemotherapy, since they were preponderantly in G0/G1, where cytotoxic chemotherapy is not effective. The results of the present report suggest that novel therapy targeting G0/G1 cancer cells should be developed to prevent metastasis.  相似文献   

7.
Essentially every population of cancer cells within a tumor is heterogeneous, especially with regard to chemosensitivity and resistance. In the present study, we utilized the fluorescence ubiquitination-based cell cycle indicator (FUCCI) imaging system to investigate the correlation between cell-cycle behavior and apoptosis after treatment of cancer cells with chemotherapeutic drugs. HeLa cells expressing FUCCI were treated with doxorubicin (DOX) (5 μM) or cisplatinum (CDDP) (5 μM) for 3 h. Cell-cycle progression and apoptosis were monitored by time-lapse FUCCI imaging for 72 h. Time-lapse FUCCI imaging demonstrated that both DOX and CDDP could induce cell cycle arrest in S/G2/M in almost all the cells, but a subpopulation of the cells could escape the block and undergo mitosis. The subpopulation which went through mitosis subsequently underwent apoptosis, while the cells arrested in S/G2/M survived. The present results demonstrate that chemoresistant cells can be readily identified in a heterogeneous population of cancer cells by S/G2/M arrest, which can serve in future studies as a visible target for novel agents that kill cell-cycle-arrested cells.  相似文献   

8.
Visualization of GFP-expressing tumors and metastasis in vivo   总被引:4,自引:0,他引:4  
Hoffman RM 《BioTechniques》2001,30(5):1016-22, 1024-6
We have developed mouse models of metastatic cancer with genetically fluorescent tumors that can be imaged in fresh tissue, in situ, as well as externally. To achieve this capability, we have transduced the green fluorescent protein (GFP) gene, cloned from the bioluminescent jellyfish Aequorea victoria, into a series of human and rodent cancer cell lines that were selected in vitro to stably express GFP in vivo after transplantation to metastatic rodent models. Techniques were also developed for transduction of tumors by GFP in vivo. With this fluorescent tool, we detected and visualized for the first time tumors and metastasis in fresh viable tissue or in situ in host organs down to the single-cell level. GFP tumors on the colon, prostate, breast, brain, liver, lymph nodes, lung, pancreas, bone, and other organs can also be visualized externally, transcutaneously by quantitative whole-body fluorescence optical imaging. Real-time tumor and metastatic growth and angiogenesis and inhibition by representative drugs can be imaged and quantified for rapid antitumor, antimetastatic, and antiangiogenesis drug screening. The GFP-transfected tumor cells enabled a fundamental advance in the visualization of tumor growth and metastasis in real time in vivo.  相似文献   

9.
Essentially every population of cancer cells within a tumor is heterogeneous, especially with regard to chemosensitivity and resistance. In the present study, we utilized the fluorescence ubiquitination-based cell cycle indicator (FUCCI) imaging system to investigate the correlation between cell-cycle behavior and apoptosis after treatment of cancer cells with chemotherapeutic drugs. HeLa cells expressing FUCCI were treated with doxorubicin (DOX) (5 μM) or cisplatinum (CDDP) (5 μM) for 3 h. Cell-cycle progression and apoptosis were monitored by time-lapse FUCCI imaging for 72 h. Time-lapse FUCCI imaging demonstrated that both DOX and CDDP could induce cell cycle arrest in S/G2/M in almost all the cells, but a subpopulation of the cells could escape the block and undergo mitosis. The subpopulation which went through mitosis subsequently underwent apoptosis, while the cells arrested in S/G2/M survived. The present results demonstrate that chemoresistant cells can be readily identified in a heterogeneous population of cancer cells by S/G2/M arrest, which can serve in future studies as a visible target for novel agents that kill cell-cycle-arrested cells.  相似文献   

10.
Unlike Western medicine that generally uses purified compounds and aims to target a single molecule or pathway, traditional Chinese medicine (TCM) compositions usually comprise multiple herbs and components that are necessary for efficacy. Despite the very long-time and wide-spread use of TCM, there are very few direct comparisons of TCM and standard cytotoxic chemotherapy. In the present report, we compared the efficacy of the TCM herbal mixture LQ against lung cancer in mouse models with doxorubicin (DOX) and cyclophosphamide (CTX). LQ inhibited tumor size and weight measured directly as well as by fluorescent-protein imaging in subcutaneous, orthotopic, spontaneous experimental metastasis and angiogenesis mouse models of lung cancer. LQ was efficacious against primary and metastatic lung cancer without weight loss and organ toxicity. In contrast, CTX and DOX, although efficacious in the lung cancer models caused significant weight loss, and organ toxicity. LQ also had anti-angiogenic activity as observed in lung tumors growing in nestin-driven green fluorescent protein (ND-GFP) transgenic nude mice, which selectively express GFP in nascent blood vessels. Survival of tumor-bearing mice was also prolonged by LQ, comparable to DOX. In vitro, lung cancer cells were killed by LQ as observed by time-lapse imaging, comparable to cisplatinum. LQ was more potent to induce cell death on cancer cell lines than normal cell lines unlike cytotoxic chemotherapy. The results indicate that LQ has non-toxic efficacy against metastatic lung cancer.  相似文献   

11.
The fluorescent ubiquitination-based cell cycle indicator, also known as FUCCI, allows the visualization of the G1 and S/G2/M cell cycle phases of individual cells. FUCCI consists of two fluorescent probes, so that cells in the G1 phase fluoresce red and cells in the S/G2/M phase fluoresce green. FUCCI reveals real-time information about cell cycle dynamics of individual cells, and can be used to explore how the cell cycle relates to the location of individual cells, local cell density, and different cellular microenvironments. In particular, FUCCI is used in experimental studies examining cell migration, such as malignant invasion and wound healing. Here we present, to our knowledge, new mathematical models that can describe cell migration and cell cycle dynamics as indicated by FUCCI. The fundamental model describes the two cell cycle phases, G1 and S/G2/M, which FUCCI directly labels. The extended model includes a third phase, early S, which FUCCI indirectly labels. We present experimental data from scratch assays using FUCCI-transduced melanoma cells, and show that the predictions of spatial and temporal patterns of cell density in the experiments can be described by the fundamental model. We obtain numerical solutions of both the fundamental and extended models, which can take the form of traveling waves. These solutions are mathematically interesting because they are a combination of moving wavefronts and moving pulses. We derive and confirm a simple analytical expression for the minimum wave speed, as well as exploring how the wave speed depends on the spatial decay rate of the initial condition.  相似文献   

12.
Quiescent prostate cancer (PCa) cells are common in tumors but are often resistant to chemotherapy. Quiescent PCa cells are also enriched for a stem-like tumor initiating population, and can lead to recurrence after dormancy. Unfortunately, quiescent PCa cells are difficult to identify and / or target with treatment in part because the relevant markers are intracellular and regulated by protein stability. We addressed this problem by utilizing PCa cells expressing fluorescent markers for CDKN1B (p27) and CDT1, which can separate viable PCa cells into G0, G1, or combined S/G2/M populations. We used FACS to collect G1 and G0 PC3 PCa cells, isolated membrane proteins, and analyzed protein abundance in G0 vs G1 cells by gas chromatography mass spectrometry. Enrichment analysis identified nucleocytoplasmic transport as the most significantly different pathway. To identify cell surface proteins potentially identifying quiescent PCa cells for future patient samples or for antibody based therapeutic research, we focused on differentially abundant plasma membrane proteins, and identified ERBB2 (HER2) as a cell surface protein enriched on G0 PCa cells. High HER2 on the cell membrane is associated with quiescence in PCa cells and likely induced by the bone microenvironment. Using a drug conjugated anti-HER2 antibody (trastuzumab emtansine) in a mouse PCa xenograft model delayed metastatic tumor growth, suggesting approaches that target HER2-high cells may be beneficial in treating PCa. We propose that HER2 is deserving of further study in PCa as a target on quiescent cells to prevent recurrence, decrease chemotherapy resistance, or eradicate minimal residual disease.  相似文献   

13.
Our laboratory has previously developed a tumor-targeting double-auxotrophic mutant of Salmonella typhimurium termed A1-R. The present report demonstrates that S. typhimurium A1-R destroys tumor blood vessels and this is enhanced in tumors with high vascularity. Red fluorescent protein (RFP)-expressing Lewis lung cancer cells (LLC-RFP) were transplanted subcutaneously in the ear, back skin and footpad of nestin-driven green fluorescent protein (ND-GFP) transgenic nude mice, which selectively express GFP in nascent blood vessels. Color-coded in vivo imaging demonstrated that the LLC-RFP ear tumor had the highest cell density and the footpad tumor had the least. The ear tumor had more abundant blood vessels than that on the back or footpad. The tumor-bearing mice were treated with A1-R bacteria via tail-vein injection. Tumors in the ear were the earliest responders to bacterial therapy and hemorrhaged severely the day after A1-R administration. Tumors growing in the back were the second fastest responders to bacterial treatment and appeared necrotic 3 days after A1-R administration. Tumors growing in the footpad had the least vascularity and were the last responders to A1-R. Therefore, tumor vascularity correlated positively with tumor efficacy of A1-R. The present study suggests that bacteria efficacy on tumors involves vessel destruction which depends on the extent of vascularity of the tumor.Key words: tumor targeting bacteria, Salmonella typhimurium A1-R, Lewis lung carcinoma, RFP, GFP, nestin, nude mice  相似文献   

14.
As a result of excessive production of angiogenic molecules, tumor vessels become abnormal in structure and function. By impairing oxygen delivery, abnormal vessels fuel a vicious cycle of non-productive angiogenesis, which creates a hostile microenvironment from where tumor cells escape through leaky vessels and which renders tumors less responsive to chemoradiation. While anti-angiogenic strategies focused on inhibiting new vessel growth and destroying pre-existing vessels, clinical studies showed modest anti-tumor effects. For many solid tumors, anti-VEGF treatment offers greater clinical benefit when combined with chemotherapy. This is partly due to a normalization of the tumor vasculature, which improves cytotoxic drug delivery and efficacy and offers unprecedented opportunities for anti-cancer treatment. Here, we overview key novel molecular players that induce vessel normalization.  相似文献   

15.
Our laboratory has previously developed a tumor-targeting double-auxotrophic mutant of Salmonella typhimurium termed A1-R. The present report demonstrates that S. typhimurium A1-R destroys tumor blood vessels and this is enhanced in tumors with high vascularity. Red fluorescent protein (RFP)-expressing Lewis lung cancer cells (LLC-RFP) were transplanted subcutaneously in the ear, back skin, and footpad of nestin-driven green fluorescent protein (ND-GFP) transgenic nude mice, which selectively express GFP in nascent blood vessels. Color-coded in vivo imaging demonstrated that the LLC-RFP ear tumor had the highest cell density and the footpad tumor had the least with the ear tumor having more abundant blood vessels than that on the back or footpad. The tumor-bearing mice were treated with A1-R bacteria via tail-vein injection. Tumors in the ear were the earliest responders to bacterial therapy and hemorrhaged severely the day after A1-R administration. Tumors growing in the back were the second fastest responders to bacterial treatment and appeared necrotic 3 days after A1-R administration. Tumors growing in the footpad had the least vascularity and were the last responders to A1-R. Therefore, tumor vascularity correlated positively with tumor efficacy of A1-R. The present study suggests that bacteria efficacy on tumors involved vessel destruction which depends on the extent of vascularity of the tumor.  相似文献   

16.
Three-dimensional (3D) tumor spheroids are utilized in cancer research as a more accurate model of the in vivo tumor microenvironment, compared to traditional two-dimensional (2D) cell culture. The spheroid model is able to mimic the effects of cell-cell interaction, hypoxia and nutrient deprivation, and drug penetration. One characteristic of this model is the development of a necrotic core, surrounded by a ring of G1 arrested cells, with proliferating cells on the outer layers of the spheroid. Of interest in the cancer field is how different regions of the spheroid respond to drug therapies as well as genetic or environmental manipulation. We describe here the use of the fluorescence ubiquitination cell cycle indicator (FUCCI) system along with cytometry and image analysis using commercial software to characterize the cell cycle status of cells with respect to their position inside melanoma spheroids. These methods may be used to track changes in cell cycle status, gene/protein expression or cell viability in different sub-regions of tumor spheroids over time and under different conditions.  相似文献   

17.
The genes that regulate the formation of blood vessels in adult tissues represent promising therapeutic targets because angiogenesis plays a role in many diseases, including cancer. We wished to develop a mouse model allowing characterization of gene function in adult angiogenic vasculature while minimizing effects on embryonic vasculature or adult quiescent vasculature. Here we describe a transgenic mouse model that allows expression of proteins in the endothelial cells of newly forming blood vessels in the adult using a selective retroviral gene delivery system. We generated transgenic mouse lines that express the TVA receptor for the RCAS avian-specific retrovirus from Flk1 gene regulatory elements that drive expression in proliferating endothelial cells. Several of these Flk1-TVA lines expressed TVA mRNA in the embryonic vasculature and TVA protein in new blood vessels growing into subcutaneous extracellular matrix implants in adult mice. In a Flk1-TVA line that was crossed with the MMTV-PyMT transgenic mammary tumor model, tumor endothelial cells also expressed the TVA protein. Furthermore, endothelial cells in extracellular matrix implants and the tumors of Flk1-TVA mice were susceptible to RCAS infection, as determined by expression of green fluorescent protein encoded by the virus. The Flk1-TVA mouse model in conjunction with the RCAS gene delivery system will be useful to study molecular mechanisms underlying adult forms of angiogenesis.  相似文献   

18.
19.
A method is reported for the study of early phases of neovascularization in syngeneic murine tumors and human tumor xenografts in nude mice. Using this method, the effect of irradiation of tumor cells or tumor bed on tumor angiogenesis was studied. Tumor cells were injected intradermally in the abdominal skin flap, which was reopened at 2-day intervals to quantify newly formed blood vessels at the site of tumor cell injection. Both tumor cell injection and blood vessel counting were performed under a dissecting microscope. Using three syngeneic murine tumors and two clones of a human colonic adenocarcinoma, it was observed that new blood vessels started appearing within a few days after tumor cell injection and that this event preceded measurable tumor growth. The number of blood vessels increased exponentially for several days but then their further growth slowed. The extent of angiogenesis depended on the tumor type and the number of tumor cells injected. The exposure of the skin flap to ionizing radiation prior to tumor cell injection reduced neovascularization. We further observed that heavily irradiated tumor cells retained their ability to induce angiogenic response and that lymphoid cells (peritoneal exudate and spleen cells) could also elicit an angiogenic response, although it is weaker than the response elicited by tumor cells. Thus this method is suitable for quantification and kinetics of early phases of tumor angiogenesis in individual mice bearing transplants of syngeneic tumors or human tumor xenografts, and it can be useful for investigating various regulators of tumor angiogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号