首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
《Molecular cell》2023,83(9):1393-1411.e7
  1. Download : Download high-res image (205KB)
  2. Download : Download full-size image
  相似文献   

4.
This communication presents a new method for evaluating phase response curves (PRCs). A PRC describes the phase shifts produced in an oscillator by stimuli applied at different initial phase-states of that oscillator. In the PRC bisection tests, we repeatedly cut in half the circular distribution of the initial phase-states of the oscillator when stimuli are given. Empirically, we locate that optimal diameter which best bisects the circular distribution of phase responses into arcs of relative phase advance and phase delay. We compute a D score reflecting the success of the best bisection. The null hypothesis of a random distribution of phase responses by initial phase is tested with a Monte Carlo procedure, which computes Dr scores from random combinations of phase shifts with initial phases, thus determining the probability, given the null hypothesis, that the observed D score was from a random distribution. The bisection procedure can be extended to examine whether stronger phase shifts are produced in one phase response curve than in contrasting curves. Also, the bisection procedure yields an estimate of the inflection point of the phase response curve. A method is given to estimate the power of the PRC bisection test.  相似文献   

5.
《Chronobiology international》2013,30(6):1117-1123
This communication presents a new method for evaluating phase response curves (PRCs). A PRC describes the phase shifts produced in an oscillator by stimuli applied at different initial phase‐states of that oscillator. In the PRC bisection tests, we repeatedly cut in half the circular distribution of the initial phase‐states of the oscillator when stimuli are given. Empirically, we locate that optimal diameter which best bisects the circular distribution of phase responses into arcs of relative phase advance and phase delay. We compute a D score reflecting the success of the best bisection. The null hypothesis of a random distribution of phase responses by initial phase is tested with a Monte Carlo procedure, which computes Dr scores from random combinations of phase shifts with initial phases, thus determining the probability, given the null hypothesis, that the observed D score was from a random distribution. The bisection procedure can be extended to examine whether stronger phase shifts are produced in one phase response curve than in contrasting curves. Also, the bisection procedure yields an estimate of the inflection point of the phase response curve. A method is given to estimate the power of the PRC bisection test.  相似文献   

6.
7.
A number of proteins accumulate in the anaphase spindle midzone, but the interaction and precise role of these proteins in midzone organization remain obscure. Here, we found that the microtubule-bundling protein PRC1 bound separately to the three motor proteins, KIF4, MKLP1 and CENP-E, but not to the chromosomal passenger proteins. In KIF4-deficient cells, the central spindle was disorganized, and all midzone-associated proteins including PRC1 failed to concentrate at the midline, instead being dispersed along the loosened microtubule bundles of the central spindle. This suggests that KIF4 is essential for the organization of central spindles and for midzone formation. In PRC1-deficient cells, no midzone was formed, KIF4 and CENP-E did not localize to the disconnected half-spindle, and MKLP1 and chromosomal passenger proteins localized to discrete subdomains near microtubule plus ends in the half-spindle. Thus, PRC1 is required for interaction of the two half-spindles and for localization of KIF4 and CENP-E. These results suggest that KIF4 and its binding partner PRC1 play essential roles in the organization of central spindles and midzone formation.  相似文献   

8.
Polycomb repressive complexes (PRCs) play critical roles in cell fate decisions during normal development as well as disease progression through mediating histone modifications such as H3K27me3 and H2AK119ub. How exactly PRCs recruited to chromatin remains to be fully illuminated. Here, we report that YTHDF1, the N6-methyladenine (m6A) RNA reader that was previously known to be mainly cytoplasmic, associates with RNF2, a PRC1 protein that mediates H2AK119ub in human embryonic stem cells (hESCs). A portion of YTHDF1 localizes in the nuclei and associates with RNF2/H2AK119ub on a subset of gene loci related to neural development functions. Knock-down YTHDF1 attenuates H2AK119ub modification on these genes and promotes neural differentiation in hESCs. Our findings provide a noncanonical mechanism that YTHDF1 participates in PRC1 functions in hESCs.  相似文献   

9.
10.
11.
12.
13.
Fu C  Yan F  Wu F  Wu Q  Whittaker J  Hu H  Hu R  Yao X 《Cell research》2007,17(5):449-457
During cell division, chromosome segregation is orchestrated by the interaction of spindle microtubules with thecentromere. A dramatic remodeling of interpolar microtubules into an organized central spindle between the separatingchromatids is required for the initiation and execution of cytokinesis. Central spindle organization requires mitotic kine-sins, the chromosomal passenger protein complex, and microtubule bundling protein PRC1. PRC1 is phosphorylated byCdc2 at Thr470 and Thr481 during mitosis. However, the functional relevance of PRC1 phosphorylation at Thr470 hasremained elusive. Here we show that expression of the non-phosphorylatable mutant PRC1~(T470A) but not the phospho-mimi-cking mutant PRC1~(T470E) causes aberrant organization of the central spindle. Immunoprecipitation experiment indicatesthat both PRC1~(T470A) and PRC1~(T470E) mutant proteins associate with wild-type PRC1, suggesting that phosphorylationof Thr470 does not alter PRC1 self-association. In addition, in vitro co-sedimentation experiment showed that PRC1binds to microtubule independent of the phosphorylation state of Thr470. Gel-filtration experiment suggested that phos-phorylation of Thr470 promotes oligomerization of PRC1. Given the fact that prevention of the Thr470 phosphorylationinhibits PRC1 oligomerization in vitro and causes an aberrant organization of central spindle in vivo, we propose thatthis phosphorylation-dependent PRC1 oligomerization ensures that central spindle assembly occurs at the appropriatetime in the cell cycle.  相似文献   

14.
André Eid 《Epigenetics》2016,11(6):389-397
An intense period of chromatin remodeling takes place after fertilization in mammals, which is thought necessary for epigenetic reprogramming to start a new developmental program. While much attention has been given to the role of Polycomb Repressive Complex 2 (PRC2) and to canonical PRC1 complexes during this process, little is known as to whether there is any contribution of non-canonical PRC1 in shaping the chromatin landscape after fertilization. Here, we first describe in detail the temporal dynamics and abundance of H2A ubiquitylation (H2AK119ub), a histone modification catalyzed by PRC1, during pre-implantation mouse development. In addition, we have analyzed the presence of the 2 characteristic subunits of non-canonical PRC1 complexes, RYBP and its homolog YAF-2. Our results indicate that H2AK119ub is inherited from the sperm, rapidly removed from the paternal chromatin after fertilization, but detected again prior to the first mitosis, suggesting that PRC1 activity occurs as early as the zygotic stage. RYBP and YAF-2, together with the non-canonical subunit L3MBTL2, are all present during pre-implantation development but show different temporal dynamics. While RYBP is absent in the zygote, it is strongly induced from the 4-cell stage onwards. YAF-2 is inherited maternally and localizes to the pericentromeric regions in the zygote, is strongly induced between the 2- and 4-cell stages but then remains weak to undetectable subsequently. All together, our data suggest that non-canonical PRC1 is active during pre-implantation development and should be regarded as an additional component during epigenetic reprogramming and in the establishment of cellular plasticity of the early embryo.  相似文献   

15.
16.
Epigenetic complexes play an essential role in regulating chromatin structure, but information about their assembly stoichiometry on chromatin within cells is poorly understood. The cellular assembly stoichiometry is critical for appreciating the initiation, propagation, and maintenance of epigenetic inheritance during normal development and in cancer. By combining genetic engineering, chromatin biochemistry, and single-molecule fluorescence imaging, we developed a novel and sensitive approach termed single-molecule chromatin immunoprecipitation imaging (Sm-ChIPi) to enable investigation of the cellular assembly stoichiometry of epigenetic complexes on chromatin. Sm-ChIPi was validated by using chromatin complexes with known stoichiometry. The stoichiometry of subunits within a polycomb complex and the assembly stoichiometry of polycomb complexes on chromatin have been extensively studied but reached divergent views. Moreover, the cellular assembly stoichiometry of polycomb complexes on chromatin remains unexplored. Using Sm-ChIPi, we demonstrated that within mouse embryonic stem cells, one polycomb repressive complex (PRC) 1 associates with multiple nucleosomes, whereas two PRC2s can bind to a single nucleosome. Furthermore, we obtained direct physical evidence that the nucleoplasmic PRC1 is monomeric, whereas PRC2 can dimerize in the nucleoplasm. We showed that ES cell differentiation induces selective alteration of the assembly stoichiometry of Cbx2 on chromatin but not other PRC1 components. We additionally showed that the PRC2-mediated trimethylation of H3K27 is not required for the assembly stoichiometry of PRC1 on chromatin. Thus, these findings uncover that PRC1 and PRC2 employ distinct mechanisms to assemble on chromatin, and the novel Sm-ChIPi technique could provide single-molecule insight into other epigenetic complexes.  相似文献   

17.
18.
The effect of light intensity on the phase response curve (PRC) and the period response curve (τRC) of the nocturnal field mouse Mus booduga was studied. PRCs and τRCs were constructed by exposing animals free-running in constant darkness (DD), to fluorescent light pulses (LPs) of 100 lux and 1000 lux intensities for 15min duration. The waveform of the PRCs and τRCs evoked by high light intensity (1000 lux) stimuli was significantly different compared to those constructed using low light intensity (100 lux). Moreover, a weak but significant correlation was observed between phase shifts and period changes when light stimuli of 1000 lux intensity were used; however, the phase shifts and period changes in the 100 lux PRC and τRC were not correlated. This suggests that the intensity of light stimuli affects both phase and period responses in the locomotor activity rhythm of the nocturnal field mouse M. booduga. These results indicate that complex mechanisms are involved in entrainment of circadian clocks, even in nocturnal rodents, in which PRC, τRC, and dose responses play a significant role.  相似文献   

19.
Targeting chromatin-modifying enzymes is a promising strategy for cancer treatment. The antitumor effectivity of compounds inhibiting histone methyltransferases — mainly EZH2 — is currently being tested in phase I/II clinical trials, some of them showing positive results in hematological malignancies and solid tumors of specific mutational background. In this review, we aim at highlighting the recent advances in the field of histone methyltransferase inhibitors and describing the challenges that need to be addressed for their successful implementation in the clinics.  相似文献   

20.
Risperidone is an atypical antipsychotic that is active at multiple dopamine and serotonin receptor subtypes. Based on its high affinity for serotonin receptors, we predicted that it might reset circadian rhythms in a nocturnal rodent. We report temporally differentiated and differential effects of various doses of risperidone on the voluntary locomotor activity rhythm in the Indian field mice, Mus booduga. Risperidone (0.5 mg/kg) elicited phase delays at phases between CT (circadian time) 12 to CT18 and CT0 to CT3, and phase advances at CT6, CT9 and CT21. However, mice injected at CT6 showed maximum advances (1.299 ± 0.286 h), whereas at CT15 showed maximum delays (?1.514 ± 0.312 h). Increasing the dose beyond 0.5 mg/kg at maximally responsive CTs (CT6 and CT15) resulted in progressively smaller but significant shifts. Thus, 0.5 mg/kg is the optimal dose in this species. The fact that risperidone resets the circadian rhythm in a mammal can be extended to clinical studies and used for optimal adjustment of the circadian rhythm in mental disorders. Conversely, risperidone administration for various treatments must be carefully timed to prevent unwanted phase shifts in patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号