首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Copper(I) complexes with {Cu(μ2-S)N}4 and {Cu(μ3-S)N}12 core portions of butterfly-shaped or double wheel architectures have been isolated in the reaction of Cu(I) with the Schiff base ligand C6H4(CHNC6H4S)2, “iso-abt”, under different conditions. containing the tetranuclear electroneutral complex is formed by the reaction of CuI in acetonitrilic solution and recrystallization from DMF, whereas containing dodecanuclear wheels is accessible starting from CuBF4. Complexes 2 and 4 represent the first examples of cyclic complexes with the same overall stoichiometry but different ring sizes. The ligand induces two different coordination environments around copper(I) by switching between μ2- and μ3-sulfur bridging modes.  相似文献   

2.
The photochemical behavior of a series of trans-[Ru(NH3)4L(NO)]3+ complexes, where L=nitrogen bound imidazole, L-histidine, 4-picoline, pyridine, nicotinamide, pyrazine, 4-acetylpyridine, or triethylphosphite is reported. In addition to ligand localized absorption bands (<300 nm), the electronic spectra of these complexes are dominated by relatively low intensity bands assigned as ligand field (LF) and metal to ligand (dπ → NO) charge transfer (MLCT) transitions. Irradiation of aqueous solutions of these complexes with near-UV light (300-370 nm) labilizes NO, i.e.,
  相似文献   

3.
The new organometallic cluster (η24-CO)2(CO)136-C6Me6) has been prepared by the thermolysis of Ru3(CO)12 with hexamethylbenzene in octane and characterised by a single crystal X-ray diffraction study. It is isostructural with the known cluster Ru624-CO)2(CO)136-C6H3Me3) and the metal core constitutnts the same tetrahedral Ru4 unit with two edge-bridging Ru atoms. The mesitylene derivative has been shown to undergo rearrangement to afford the octahedral carbido cluster Ru6C(CO)146-C6H3Me3), but this conversion is not observed for the new hexamethylbenzene derivative.  相似文献   

4.
A series of cuboidal iron-sulfur clusters [Fe4S3(NO)4(PR3)3]0,1+ (R = Et, Pri, Cy) were synthesized by two routes: reductive desulfurization of [Fe4S4(NO)4] by tertiary phosphines, and substitution of triphenylphosphine in [Fe44S3(NO)4(PPh3)3] by a more basic phosphine. The structures of 3[Fe4S3(NO)4(PEt3)3] · 0.5Et2O, [Fe4S3(NO)4(PEt3)3] [Fe4S3(NO)7] and partially substituted [Fe4S3(NO)4(PPh3)2 (PPri3)] have been determined by X-ray diffraction in order to define the cuboidal Fe4S3 core, previously known only in Roussin's black anion and its reduced form, [Fe4S3(NO)77]1−,2−, and as a part of the iron-molybdenum cofactor of nitrogenase.  相似文献   

5.
The trinuclear clusters [Pd3(μ-dppm)3(CO)]2+ and [PtPdCo(μ-dppm)2(CO)3(CNtBu)]+ exhibit a large and a small cavity, respectively, formed by the phenyl rings of the bridging diphosphine ligands. Their binding constants (K11) with halide ions (X) were obtained by UV-Vis spectroscopy. The binding ability varies as I > Br > Cl, and [Pd3(μ-dppm)3(CO)]2+ > [ptPdCo(μ-dppm)2-(CO)3(CNtBu)]+. The MO diagram for the related cluster [Pd2Co(μ-dppm)2(CO)4]+ has been addressed theoretically in order to predict the nature of the lowest energy electronic bands. For this class of compounds, the lowest energy bands are assigned to charge transfers from the Co center to the Pd2 centers.  相似文献   

6.
7.
8.
[PPN][Se5Fe(NO)2] (1) and [K-18-crown-6-ether][S5Fe(NO)2] (2′) were synthesized and characterized by IR, UV-Vis, EPR spectroscopy, magnetic susceptibility, and X-ray structure. [PPN][Se5Fe(NO)2] easily undergoes ligand exchange with S8 and (RS)2 (R = C7H4SN (5), o-C6H4NHCOCH3 (6), C4H3S (7)) to form [PPN][S5Fe(NO)2] and [PPN][(SR)2Fe(NO)2]. The reaction displays that [E5Fe(NO)2] (E = Se (3), S (4)) facilely converts to [Fe4E3(NO)7] by adding acid HBF4 or oxidant [Cp2Fe][BF4] in THF, respectively. Obviously, complexes 1 and 2′ serve as the precursors of the Roussin’s black salts 3 and 4. The electronic structure of {Fe(NO)2}9 core of [Se5Fe(NO)2] is best described as a dynamic resonance hybrid of {Fe+1(NO)2}9 and {Fe−1(NO+)2}9 modulated by the coordinated ligands. The findings, EPR signal of g = 2.064 for 1 at 298 K, implicate that the low-molecular-weight DNICs and protein-bound DNICs may not exist with selenocysteine residues of proteins as ligands, since the existence of protein-bound DNICs and low-molecular-weight DNICs in vitro has been characterized with a characteristic EPR signal at g = 2.03. In addition, complex 2′ treated human erythroleukemia K562 cancer cells exposed to UV-A light greatly decreased the percentage survival of the cell cultures.  相似文献   

9.
The reaction between the linear trinuclear complex [Pt{Fe(CO)3(NO)}2(PhCN)2] and Ph2(2-C5H4N)PSe led to the isolation and characterization of the 46-electron cluster [(CO)3Fe(μ3-Se){Pt(CO)P(2-C5H4N)Ph2}2] (1), whose structure has been determined by X-ray diffraction methods. The cluster typology, which consists of an open triangle Pt---Fe---Pt capped by a μ3-Se atom, is rather rare. The chemical bonding in 1 and in similar systems has been analyzed through density functional theory (DFT) and qualitative MO approaches. A strict analogy with the well understood L2M(μ-acetylene)ML2 systems is invoked by considering 1 as formed by the (CO)3FeSe tetrahedral unit stabilized by sidewise interactions of the triple bond with two d10-L2M fragments. Otherwise, the 18-electron (CO)3FeSe monomer is unstable as an isolate molecule. This is confirmed by our DFT calculations that indicate how the well characterized dimer (CO)3Fe(μ-Se2)Fe(CO)3 lies as much as, approximately, 58 kcal mol−1 deeper in energy. Finally, by considering an analogy with [L2M(μ-dichalcogen)ML2]0, +2 redox systems (M=Pd, Pt), reduction of 1 to a dianion has been hypothesized and the structure of the latter has been tentatively explored by DFT calculations.  相似文献   

10.
The cationic monoalkylated derivatives of the well-known metalloligand [Pt2(μ-S)2(PPh3)4], viz. [Pt2(μ-S)(μ-SR)(PPh3)4]+ (R = n-Bu, CH2Ph) are themselves able to act as metalloligands towards the Ph3PAu+ and R′Hg+ (R′ = Ph or ferrocenyl) fragments, by reaction with Ph3PAuCl or R′HgCl, respectively. The resulting dicationic products [Pt2(μ-SR)(μ-SAuPPh3)(PPh3)4]2+ and [Pt2(μ-SR)(μ-SHgR′)(PPh3)4]2+ are readily isolated as their hexafluorophosphate salts, and have been fully characterised by spectroscopic techniques and an X-ray structure determination on [Pt2(μ-SR)(μ-SHgFc)(PPh3)4](PF6)2.  相似文献   

11.
The reactions of the polysulfur and selenium cationic clusters S82+ and Se82+ with various iron carbonyls were investigated. Several new chalcogen containing iron carbonyl cluster cations were isolated, depending on the nature of the counteranion. In the presence of SbF6 as a counterion, the cluster [Fe3(E2)2(CO)10] [SbF6]2·SO2 (E = S, Se) could be isolated from the reaction of E82+ and excess iron carbonyl. The cluster is a picnic-basket shaped molecule of two iron centers linked by two Se2 groups, with the whole fragment capped by an Fe(CO)4 group. Crystallographic data for C10O12Fe3Se4Sb2F12S (I): space group monoclinic P21/c, A = 11.810(9), b = 24.023(6), c = 10.853(7) Å, β = 107.15(5)°, V = 2942(3) Å3, Z = 4, R = 0.0426, Rw = 0.0503. When Sb2F11 is present as the counterion, or Se4[Sb2F11]2 is used as the cluster cation source, a different cluster can be isolated, which has the formula [Fe4(Se2)3(CO)12] [SbF6]2·3SO2. The dication contains two Fe2Se2 fragments bridged by an Se2 group. Crystallographic data for C12O18Fe4Se6Sb2F12S3 (III): space group triclinic , b = 18.400(9), C = 10.253(4) Å, = 93.10(4), β = 103.74(3), γ = 93.98(3)°, V = 1995(1) Å3, Z = 2, R = 0.0328, Rw = 0.0325. The CO stretches in the IR spectrum all show a large shift to higher wavenumbers, suggesting almost no τ backbonding from the metals. This also correlates with the observed bond distances. All the compounds are extremely sensitive to air and water, and readily lose SO2 when removed from the solvent. Thus all the crystals were handled at −100°C. The clusters seem to be either insoluble or unstable in all solvents investigated.  相似文献   

12.
The reaction of iron(III) acetylacetonate with zirconium(IV) n-propanolate in n-propanol leads to a tetranuclear species Zr3FeO(OC3H7)10(acac)3. This compound crystallizes in the triclinic system (space group P ): a = 12.426(2), b = 12.977(2), c = 20.129(4) Å, α = 91.55(1), β = 97.90(1), γ = 100.53(1)°. The structure consists of discrete tetranuclear molecules. The metal atoms design an almost perfect tetrahedron around a four-fold coordinated oxygen atom. The zirconium atoms are in a seven-fold coordination and the iron atom in a five-fold coordination.  相似文献   

13.
The reaction of TiCl4 with Li2[(SiMe2)25-C5H3)2] in toluene at room temperature afforded a mixture of cis- and trans-[(TiCl3)2{(SiMe2)25-C5H3)2}] in a molar ratio of 1/2 after recrystallization. The complex trans-[(TiCl3)2{(SiMe2)25-C5H3)2}] was hydrolyzed immediately by the addition of water to THF solutions to give trans-[(TiCl2)2(μ-O){(SiMe2)25-C5H3)2}] as a solid insoluble in all organic solvents, whereas hydrolysis of cis-[(TiCl3)2{(SiMe2)25-C5H3)2}] under different conditions led to the dinuclear μ-oxo complex cis-[(TiCl2)2)(μ-O){(SiMe2)25-C5H3)2}] and two oxo complexes of the same stoichiometry [(TiCl)2(μ-O){(SiMe2)25-C5H3)2}]2(μ-O)2 as crystalline solids. Alkylation of cis- and trans-[(TiCl3)2{(SiMe2)25-C5H3)2}] with MgCIMe led respectively to the partially alkylated cis-[(TiMe2Cl)2{(SiMe2)25-C5H3)2}] and the totally alkylated trans-[(TiMe3)2{(SiMe2)25-C5H3)2}] compounds. The crystal and molecular structure of the tetranuclear oxo complex [(TiCl)2(μ-O){(SiMe2)25-C5H3)2}]2(μ-O)2 was determined by X-ray diffraction.  相似文献   

14.
15.
With exposure to trace amounts of air and moisture, the Cr2(II, II) complex Cr2(μ-3,5Cl2-form)4, where 3,5Cl2-form is [(3,5-Cl2C6H3)NC(H)N(3,5-Cl2C6H3)], undergoes an oxidative addition reaction. Structural information from the X-ray crystal structure of the edge-sharing bioctahedral (ESBO) Cr2(III, III) product Cr2(μ-OH)2(μ-3,5Cl2-form)22-3,5Cl2-form)2 (1) indicates 1 has a significantly longer Cr–Cr distance [2.732(2) Å] than Cr2(μ-3,5Cl2-form)4 [1.9162(10) Å], but the shortest Cr–Cr distance in an ESBO Cr2(III, III) complex recorded to date.  相似文献   

16.
The character of the two lowest energy transitions of W(CO)4(bpym) and (μ-bpym)[M(CO)4]2 (M=Mo, W) were established with resonance Raman spectroscopy. According to these spectra the two bands belong to MLCT transitions to different π* orbitals of the bpym ligand. Contrary to expectations it is not the first (lowest energy) but the second and more intense electronic transition which, according to the resonance Raman spectra, is directed to the lowest lying π* orbital (b2u*, LUMO) of these complexes. This interpretation explains the different band intensities and the untypically low g values of the ESR signals of corresponding anion radicals. Excitation of (μ-bpym)[Mo(CO)4]2 in CH2Cl2 at 400 nm produced a weak emission with an onset at 700 nm. According to the excitation spectrum, this emission originates from the lowest MLCT-excited state of the complex.  相似文献   

17.
The reaction of RuCl3(H2O), with C5Me4CF3J in refluxing EtOH gives [Ru25-C5Me1CF2)2 (μ-Cl2] (20 in 44% yield. Dimer 2 antiferromagnetic (−2J=200 cm1). The crystal structures of 2 (rhombohedral system, R3 space group, Z=9, R=0.0589) and [Rh25-C5Me4CF3(2Cl2(μ-Cl)2] (3) (rhombohedral system. space group, Z = 9, R = 0.0641) were solved; both complexes have dimeric structures with a trans arrangement of the η5-C5Me4CF4 rings. Comparison of the geometry of 2 and 3 with those of the corresponding η5-C5Me5 complexes shows that lowering the ring symmetry causes significant distortion of the M2(μ-Cl)2 moiety. The analysis of the MCl3 fragment conformations in 2 and 3 and in the η5-C5ME5 analogues shows that they are correlated with the M---M distances. The Cl atoms are displaced by Br on reaction of 2 with KBr in MeOH to give the diamagnetic dimer [Ru25-C5Me4CF3)2Br2 (μ-Br2] (4). Complex 2 reacts with O2 in CH2Cl2 solution at ambient temperature to form a mixture of isomeric η6-fulvene dimers [Ru26-C5Me3CF3 = CH2)2Cl2(μ-Cl)2] (5). Reactions of 5 with CO and allyl chloride give Ru(η5-C5Me3CF3CH2Cl)(CO)2Cl (6) and Ru(η5-C5Me3CF3CF3CH2Cl)(η3-C3H5)Cl2 (7) respectively.  相似文献   

18.
Pressure-tuning infrared spectra (up to ca. 40 kbar) are reported for Magnus’ Green salt, [Pt(NH3)4][PtCl4] and two of its derivatives, [Pt(ND3)4][PtCl4] and [Pt(NH3)4][PtBr4]. The spectroscopic data indicate that there is restricted rotation of the coordinated ammonia groups about the Pt-N bonds in the complexes. It is possible that this restricted rotation is due to the presence of weak hydrogen bonding to the halogens, i.e., N-H?X (X = Cl, Br) interactions.  相似文献   

19.
Two synthetic procedures have been employed that allow access to the new tetranuclear cluster [Fe4O2(O2CMe)6(N3)2(phen)2] (1), where phen is 1,10-phenanthroline. Complex 1 · 3MeCN displays an unusual structural asymmetry (observed for the second time) in its [Fe4O2]8+ core that can be considered as a hybrid of the bent (butterfly) and planar dispositions of four metal ions seen previously in such compounds with transition metals. Complex 1 has been characterized by variable-temperature magnetic susceptibility studies, and by IR and variable-temperature 57Fe Mössbauer spectroscopies. Magnetochemical data reveal a diamagnetic ground state (S=0) with antiferromagnetic body-body and body-wingtip interactions between the iron(III) ions of the butterfly core (Jbb=−11 cm−1, Jwb=−70 cm−1). Magnetochemical and Mössbauer studies on 1 show that its structural asymmetry has practically no influence on these properties compared with the more symmetric types.  相似文献   

20.
Reactions of Cr(CO)36-BT), in which the Cr is π-coordinated to the benzene ring of benzo[b]thiophene (BT), with Cp′(CO)2Re(THF), where Cp′ = η5-C5H5 or η5-C5Me5, give the products Cp′(CO)2Re(η262-BT)Cr(CO)3 in which the Cr remains coordinated to the benzene ring and Re is bound to the C(2)=C(3) double bond. An X-ray diffraction study of Cp(CO)2Re(η262-BT)Cr(CO)3 (3) provides details of the geometry. This structure contrasts with that of the Cp′(CO)2Re(BT) complexes that exist as mixtures of isomers in which the BT is coordinated to the Re through either the double bond (2,3-η2) or the sulfur (η1(S)). Thus, the electron-withdrawing Cr(CO)3 group in 3 stabilizes the 2,3-η2 mode of BT coordination to the Cp′(CO)2Re fragment. Implications of these results for catalytic hydrodesulfurization of BT are discussed. Crystal data for 3: triclinic, space group .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号