首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclic-AMP-binding proteins in membrane and soluble fractions from rat forebrain were compared; membrane fractions included smooth and rough microsomes and a plasma membrane fraction enriched in synaptic membranes. Protein fractions were treated with 8-azido-[32P]cyclic AMP and ultraviolet irradiation to covalently tag cyclic-AMP-binding proteins. Labeled proteins were then analyzed by two-dimensional gel electrophoresis (2DGE) and fluorography. The soluble CNS proteins contained two major cyclic-AMP-binding species at 48K (48K 5.5 and 48K 5.45), differing slightly in their isoelectric points. Another protein was seen at 54K (54K 5.3) adjacent to the beta-tubulin subunits in the 2D electrophoretogram. The analysis of the smooth microsome and plasma membrane fractions differed from the soluble fraction in that there were two cyclic-AMP-binding proteins adjacent to the beta-tubulin region (54K 5.3 and 52K 5.3) differing slightly in apparent molecular weight. The membrane fractions also contained a cyclic-AMP-binding protein at 54K 5.8. The 52K 5.3 and 54K 5.8 species were unique to the membrane fractions. The rough microsomes did not contain detectable amounts of cyclic-AMP-binding proteins. Free polysomes were isolated from brain tissue, and translation products were analyzed by cyclic AMP affinity chromatography and immunopurification with antibodies to the brain specific type II regulatory subunit. The translation products that were found to bind cyclic AMP Sepharose are as follows: 48K 5.5, 48K 5.45, 52K 5.3, and 54K 5.8. These species comigrated with proteins that were photoaffinity-labeled in cytosol and membrane fractions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The studies reported here were undertaken to clarify the cellular mechanism of the hypothalamic tripeptide, thyrotropin-releasing hormone (TRH), in clonal, hormone-responsive GH pituitary cells and to assess the possibility of a role for cyclic AMP as a mediator of TRH action. We investigated patterns of protein phosphorylation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography of high speed supernatant and pellet fractions from untreated and treated GH cells. Brief treatment of cells with agents which elevate or mimic cellular cyclic AMP (8-bromo cyclic AMP, dibutyryl cyclic AMP, vasoactive intestinal polypeptide or cholera toxin) stimulated the phosphorylation of five supernatant peptides (41, 45, 47, 72, and 82 kilodaltons) and one pellet peptide (135 kilodaltons) and decreased the phosphorylation of one supernatant peptide (55 kilodaltons). In contrast, TRH promoted the phosphorylation of four different supernatant peptides (two 59, 65, and 80 kilodaltons). In addition, TRH also stimulated the phosphorylation of cyclic AMP-responsive 41-, 45-, and 82-kilodalton supernatant peptides and 135-kilodalton pellet protein and decreased the phosphorylation of 55-kilodalton supernatant peptide. Altered labeling of 47- and 72-kilodalton supernatant peptides, however, was not observed with TRH. Time course studies, as well as the overlapping biological action of TRH and vasoactive intestinal polypeptide, lead us to conclude that these peptide hormones utilize distinct, parallel pathways which converge at some late step. Furthermore, the results indicate that effects of TRH are mediated by a cyclic AMP-independent pathway.  相似文献   

3.
Incubation of subcellular fractions of fibroblasts with [32P]ATP demonstrated 10 phosphoproteins whose phosphorylation can be increased by cyclic AMP or cyclic AMP-dependent protein kinase. One of these phosphoproteins, MW 240,000, resembles the actin binding protein, filamin, and can be selectively precipitated by antibodies to chicken gizzard filamin. Furthermore chicken gizzard filamin can be phosphorylated by skeletal muscle protein kinase and cyclic AMP stimulates this reaction.  相似文献   

4.
Phosphoproteins of the Adrenal Chromaffin Granule Membrane   总被引:4,自引:1,他引:3  
A fraction of chromaffin granule membranes contained a number of substrates for endogenous protein kinase activity as well as endogenous phosphatase activity. The major 32P-labelled polypeptide of molecular weight 43,000 appeared to be the alpha-subunit of pyruvate dehydrogenase of residual mitochondria. Several polypeptides showed cyclic AMP stimulation of phosphorylation of which the major polypeptide of molecular weight 59,000 shows half-maximal phosphorylation with 0.49 microM cyclic AMP. The phosphorylation of several other polypeptides is inhibited at high cyclic AMP concentrations. From studies with immunoprecipitation and two-dimensional electrophoresis it was found that alpha- and beta-tubulin and actin were absent from the granule membranes. However 32P labelling of a proportion of the copies of dopamine-beta-hydroxylase was demonstrated. The majority of the substrates for endogenous protein kinase activity are probably on the cytoplasmic side of the granule membrane.  相似文献   

5.
Phosphorylation of soluble proteins in rat mammary acinar cells was investigated. When phosphorylation proceeded in intact cells, in the presence of [32P]Pi, the major non-casein phosphoproteins, including acetyl-CoA carboxylase, were unresponsive to incubation conditions that caused major increases in the intracellular concentration of cyclic AMP. The overall 32P specific radioactivity (c.p.m./microgram of protein) of acetyl-CoA carboxylase, assessed after affinity purification of the enzyme with avidin-Sepharose, was unchanged by incubation under such conditions. Furthermore, the distribution of 32P among tryptic phosphopeptides of the enzyme, resolved by reversed-phase h.p.l.c., was not altered by cyclic AMP-increasing treatments of the acinar cells. When cytosol fractions were incubated with [gamma-32P]ATP, some phosphoproteins responded to the addition of micromolar concentrations of dibutyryl cyclic AMP or cyclic AMP by undergoing an enhancement of phosphate incorporation. In these experiments in vitro, protein phosphatase activity did not make a major contribution to the net phosphorylation of individual phosphoproteins, and acetyl-CoA carboxylase was not prominent among the phosphoproteins identified after short (less than 1 min) incubations of cytosols with [gamma-32P]ATP. The resistance of protein phosphorylation to variations in the cyclic AMP concentration in intact mammary epithelial cells, demonstrated by this work, is one of several mechanisms that ensure the pleiotropic refractoriness of those cells to agents which normally cause a stimulation of adenylate cyclase activity in hormone-sensitive cells.  相似文献   

6.
The heat shock response of Neurospora crassa was investigated. A 80-kilodalton heat shock protein (HSP 80) was purified to near homogeneity from heat-shocked mycelial extracts employing ammonium sulphate fractionation, gel filtration, and ion-exchange and affinity chromatography. It was observed to migrate as a single band on one-dimensional sodium dodecyl sulphate--polyacrylamide gels, with a molecular mass of approximately 83 kilodaltons (kDa). On two-dimensional gels it resolved into four polypeptide species with isoelectric points in the acidic range, which on staining with periodic acid--Schiff method were demonstrated to be glycosylated. In the native state, HSP 80 had a molecular size of approximately 610 kDa.  相似文献   

7.
An adenosine 3':5'-monophosphate (cyclic AMP)-binding protein in the human erythrocyte plasma membrane was isotopically labeled using a photoaffinity analog of cyclic AMP, N6-(ethyl 2-diazomalonyl) cyclic [3H]AMP. The cyclic AMP-binding site is located in a polypeptide chain having a molecular weight of 48,000. Cyclic AMP-binding protein and cyclic AMP-dependent protein kinase were solubilized with 0.5% Triton X-100 in 56 mM sodium borate, pH 8, but 32P-labeled membrane phosphoproteins were retained in the Triton-insoluble fraction, suggesting that the membrane-associated binding protein is not a primary substrate for protein kinase. Triton-solubilized and membrane-associated protein kinase activities were stimulated 15- and 17-fold by cyclic AMP, suggesting that the degree of association between the catalytic anc cyclic AMP-binding components was very similar in both preparations. Fractionation and characterization of membrane phosphoproteins have shown that protein III and a co-migrating minor protein are substrates for protein kinase but membrane sialoglycoproteins are not phosphorylated.  相似文献   

8.
Phosphorylation of endogenous proteins in subcellular fractions of human peripheral-blood lymphocytes was studied by one- and two-dimensional polyacrylamide-gel electrophoresis. Studies using extensively purified subcellular fractions indicated that the endogenous phosphorylating activity in the particulate fractions was derived primarily from the plasma membrane. Electrophoresis of (32)P-labelled subcellular fractions in two dimensions [O'Farrell (1975) J. Biol. Chem.250, 4007-4021] provided much greater resolution of the endogenous phosphoproteins than electrophoresis in one dimension, facilitating their excision from gels for quantification of (32)P content. More than 100 cytoplasmic and 20 plasma-membrane phosphorylated species were observed. Phosphorylation of more than 10 cytoplasmic proteins was absolutely dependent on cyclic AMP. In the plasma membrane, cyclic AMP-dependent phosphoproteins were observed with mol.wts. of 42000, 42000, 80000 and 90000 and pI values of 6.1, 6.3, 6.25 and 6.5 respectively. Phosphorylation of endogenous cytoplasmic and plasma-membrane proteins was rapid with t((1/2))=5-12s at 25 degrees C. Between 40 and 70% of the (32)P was recovered as phosphoserine and phosphothreonine when acid hydrolysates of isolated plasma-membrane phosphoproteins were analysed by high-voltage paper electrophoresis. The presence of cyclic AMP-dependent protein kinase and endogenous phosphate-acceptor proteins in the plasma membranes of lymphocytes provides a mechanism by which these cells might respond to plasma-membrane pools of cyclic AMP generated in response to stimulation by mitogens or physiological modulators of lymphocyte function.  相似文献   

9.
Cyclic AMP inhibits platelet aggregation induced by physiological agents. 8 Azido [32P]cyclic AMP (N3 cyclic AMP) has been utilized as a photoaffinity probe to define the cyclic AMP-binding proteins present in unperturbed human platelets and their subcellular fractions. Specificity of cyclic AMP binding was determined by contrasting binding in the presence and absence of excess unlabelled cyclic AMP, cyclic GMP and 5′-AMP. Binding was unaffected by 5′-AMP and obliterated by cyclic AMP. Four major species of binding proteins, 49 000, 42 000, 39 000, 37 000, were obtained in all platelet fractions (crude homeogenate, cytosol, membranes and granules). Two-dimensional gel electrophoresis of platelet cytosol resolved the major molecular weight species into 15 specific cyclic AMP binding proteins of four molecular weight classes differing by charge density. These studies suggest that platelets contain an array of specific cyclic AMP-binding proteins which may function in hemostatic regulation.  相似文献   

10.
The photoaffinity label 8-azido[32P]adenosine 3':5'-monophosphate (8-azido-cyclic [32P]AMP) was used to analyze both the cAMP-binding component of the purified cAMP-dependent protein kinase, and the cAMP-binding proteins present in crude tissue extracts of bovine cardiac muscle. 8-Azido-cyclic [32P]AMP reacted specifically and in stoichiometric amounts with the cAMP-binding proteins of bovine cardiac muscle. Upon phosphorylation, the purified cAMP-binding protein from bovine cardiac muscle changed its electrophoretic mobility on sodium dodecyl sulfate-polyacrylamide gels from an apparent molecular weight of 54,000 to an apparent molecular weight of 56,000. In tissue extracts of bovine cardiac muscle, most of the 8-azido-cyclic [32P]AMP was incorporated into a protein band with an apparent molecular weight of 56,000 which shifted to 54,000 upon treatment with a phosphoprotein phosphatase. Thus a substantial amount of the cAMP-binding protein appeared to be in the phosphorylated form. Autoradiograms following sodium dodecyl sulfate-polyacrylamide gel electrophoresis of both the pure and impure cAMP-binding proteins labeled with 8-azido-cyclic [32P]AMP revealed another binding component with a molecular weight of 52,000 which incorporated 32P from [gamma-32P]ATP without changing its electrophoretic mobility. Limited proteolysis of the 56,000- and 52,000-dalton proteins labeled with 32P from either [gamma-32P]ATP.Mg2+ or 8-azido-cyclic [32P]AMP showed patterns indicating homology. On the other hand, peptide maps of the major 8-azido-cyclic [32P]AMP-labeled proteins from tissue extracts of bovine cardiac muscle (Mr = 56,000) and rabbit skeletal muscle (Mr = 48,000) displayed completely different patterns as expected for the cAMP-binding components of types II and I protein kinases. Both phospho- and dephospho-cAMP-binding components from the purified bovine cardiac muscle protein kinase were also resolved by isoelectric focusing on polyacrylamide slab gels containing 8 M urea. The phosphorylated forms labeled with 32P from either [gamma-32P]ATP or 8-azido-cyclic [32P]AMP migrated as a doublet with a pI of 5.35. The 8-azido-cyclic [32P]AMP-labeled dephosphorylated form also migrated as a doublet with a pI of 5.40. The phosphorylated and dephosphorylated cAMP-binding proteins migrated with molecular weights of 56,000 and 54,000, respectively, following a second dimension electrophoresis in sodium dodecyl sulfate. The lower molecular weight cAMP-binding component (Mr = 52,000) was also apparent in these gels. Similar experiments with the cAMP-binding proteins present in tissue extracts of bovine cardiac muscle indicate that they are predominantly in the phosphorylated form.  相似文献   

11.
Bark, wood, and root tissues of several Populus species contain a 32- and a 36-kilodalton polypeptide which undergo seasonal fluctuations and are considered to be storage proteins. These two proteins are abundant in winter and not detectable in summer as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunodetection. An antibody raised against the 32-kilodalton storage protein of Populus trichocarpa (T. & G.) cross-reacts with the 36-kilodalton protein of this species. The synthesis of the 32- and 36-kilodalton proteins can be induced in micropropagated plants by short-day conditions in the growth chamber. These proteins are highly abundant in structural roots, bark, and wood and combined represent >25% of the total soluble proteins in these tissues. Nitrate concentration in the leaves and nitrate uptake rate decreased dramatically when LD plants were transferred to short-day conditions; the protein content in leaves was unaffected. A decrease of the 32- and 36-kilodalton polypeptides occurs after transferring induced plants back to LD conditions. Both polypeptides are glycosylated and can be efficiently purified by affinity chromatography using concanavalin A-Sepharose 4B. The 32- and the 36-kilodalton polypeptides have identical basic isoelectric points and both consist of at least three isoforms. The storage proteins show a loss in apparent molecular mass after deglycosylation with trifluoromethanesulfonic acid. It is concluded that the 32- and 36-kilodalton polypeptides are glycoforms differing only in the extent of glycosylation. The relative molecular mass of the native storage protein was estimated to be 58 kilodalton, using gel filtration. From the molecular mass and the elution pattern it is supposed that the storage protein occurs as a heterodimer composed of one 32- and one 36-kilodalton subunit. Preliminary data suggest the involvement of the phytochrome system in the induction process of the 32- and 36-kilodalton polypeptides.  相似文献   

12.
Calmodulin-dependent kinase activity was investigated in cold-stable microtubule fractions. Calmodulin-dependent kinase activity was enriched approximately 20-fold over cytosol in cold-stable microtubule preparations. Calmodulin-dependent kinase activity in cold-stable microtubule preparations phosphorylated microtubule-associated protein-2, alpha- and beta-tubulin, an 80,000-dalton doublet, and several minor phosphoproteins. The endogenous calmodulin-dependent kinase in cold-stable microtubule fractions was identical to a previously purified calmodulin-dependent kinase from rat brain by several criteria including (1) subunit molecular weights, (2) subunit isoelectric points, (3) calmodulin-binding properties, (4) subunit autophosphorylation, (5) calmodulin-binding subunit composition on high-resolution sodium dodecyl sulfate-polyacrylamide gel electrophoresis, (6) isolation of kinase on calmodulin affinity resin, (7) kinetic parameters, (8) phosphoamino acid phosphorylation sites on beta-tubulin, and (9) phosphopeptide mapping. Endogenous cold-stable calmodulin-dependent kinase activity was isolated from the microtubule fraction by calmodulin affinity resin column chromatography and specifically eluted with EGTA. This kinase fraction contained the calmodulin-binding, autophosphorylating rho and sigma subunits of the previously purified kinase. The rho and sigma subunits of this kinase represented the major calmodulin-binding proteins in the cold-stable microtubule fractions as assessed by denaturing and non-denaturing procedures. These results indicate that calmodulin-dependent kinase is a major calmodulin-binding enzyme system in cold-stable microtubule fractions and may play an important role in mediating some of the effects of calcium on microtubule and cytoskeletal dynamics.  相似文献   

13.
Fractionation of octyl glucoside-solubilized proteins from young rat brain was monitored using rat brain neurons, which were cultured in microwells coated with various protein fractions to be studied. An adhesive protein that promotes neurite outgrowth in rat brain neurons was isolated by chromatography on heparin-Sepharose followed by Affi-Gel blue. The apparent molecular mass of the protein in sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions was about 30 kilodaltons (p30). Under nonreducing conditions a closely spaced doublet band was observed corresponding to 27-28-kilodalton size. Gel filtration in the presence of 4 M urea indicated the molecular size of 58 kilodaltons suggesting a dimeric structure. Western blotting experiments using affinity-purified rabbit antibodies detected p30 as an immunochemically distinct protein in brain and in N18 neuroblastoma cells. The p30 protein was also detected in the N18 cells by lactoperoxidase-catalyzed cell surface iodination. Western blotting of heparin-binding proteins solubilized from brains of rats of various age groups indicated that p30 is clearly more abundant in perinatal brain as compared to adult tissue. The neuron-binding and neurite outgrowth-promoting properties of p30 as well as the developmental regulation of its content in brain tissue suggest a role in neuronal growth.  相似文献   

14.
Ethylene enhanced the senescence of cucumber (Cucumis sativus L. cv `Poinsett 76') cotyledons. The effect of 10 microliters per liter ethylene was inhibited by 1 millimolar silver thiosulfate, an inhibitor of ethylene action. An increase in proteins with molecular weights of 33 to 30 kilodaltons and lower molecular weights (25, 23, 20, 16, 12, and 10 kilodaltons) were observed in sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels after ethylene enhanced senescence. The measurement of DNase and RNase activity in gels indicated that these new proteins were not nucleases. Two proteins from ethylene-treated cotyledons were purified on the basis of their association with a red chromaphore and subsequently were identified as peroxidases. The molecular weights and isoelectric points (pI) of two of these peroxidases were 33 kilodaltons (cationic, pI = 8.9) and 60 kilodaltons (anionic, pI = 4.0). The observation that [35S]Na2SO4 was incorporated into these proteins during ethylene-enhanced senescence suggests that these peroxidases represent newly synthesized proteins. Antibodies to the 33-kilodalton peroxidase precipitated two in vitro translation products from RNA isolated from ethylene-treated but not from control cucumber seedlings. This indicates that the increase in 33-kilodalton peroxidase activity represents de novo protein synthesis. Both forms of peroxidase degraded chlorophyll in vitro, which is consistent with the hypothesis that peroxidases have catabolic or scavenging functions in senescent tissues.  相似文献   

15.
Polypeptides of whole-cell extracts of Naegleria fowleri flagellates and growing amebae were resolved by two-dimensional polyacrylamide gel electrophoresis. Autoradiograms of the [35S]methionine-labeled polypeptides of amebae and flagellates were analyzed by two dimensional densitometry to determine whether there were correlations between intracellular concentration of a protein and subunit size or charge. The majority of the polypeptides of amebae and flagellates had molecular sizes in the range of 20 to 60 kilodaltons. The radioactivity per polypeptide species in the size range of 20 to 60 kilodaltons was greater in amebae than in flagellates. The greatest number of polypeptides detected in amebae and flagellates was in the isoelectric focusing range of pH 6 to 7. The radioactivity per polypeptide species in the isoelectric focusing gradient below 6.3 was greater in amebae than in flagellates. Polypeptides in the size range of 20 to 60 kilodaltons had a median isoelectric point below pI 6.3, whereas those larger than 60 kilodaltons had a median pI value above 6.3. These data indicated that molecular size and charge were not entirely independent variables and that the size and charge of a polypeptide might have an important influence in determining its intracellular concentration in both amebae and flagellates. Autoradiograms were also compared so that changes in intracellular protein complement and concentrations occurring during differentiation could be recognized. The relative amounts of a limited number of polypeptides increased markedly, and others decreased markedly, during enflagellation.  相似文献   

16.
Endogenous phosphorylation of intact cells was studied with four mouse, hamster and human cell lines using [gamma-32P]ATP and [gamma-32P]GTP as exogenous substrates. With all four cell lines distinct differences in the phosphoprotein patterns could be demonstrated for cells grown in suspension culture compared to cells grown in monolayers. Two major, apparently ubiquitous phosphoproteins with molecular weights of 135 000 (128 000 in HeLa cells) and 105 000, representing up to 60% of total phosphorylation, were phosphorylated only in cells grown in suspension. These phosphoproteins and the kinase(s) were located on the surface of the suspension cells. Evidence showed that phosphorylation was apparently not a true endogenous reaction, that rather it occurred by cell-cell collision, showing exponentially increasing 32P incorporation with increasing cell population density. Phosphorylation of pp135 and pp105 was established with ATP as well as with GTP and was not dependent on cyclic nucleotides cyclic AMP, cyclic GMP and cyclic CMP. The substrate-attached cells of all four cell lines have protein kinases on the cell surface. The lack of pp135 and pp105 phosphorylation may be due to the fact that these phosphoproteins are not expressed at all on the surface of substrate-attached cells or that these phosphoproteins are already fully phosphorylated.  相似文献   

17.
The effects of the naturally occurring polyamines spermine and spermidine on phosphorylation promoted by cyclic AMP (cAMP)-dependent protein kinase (PK) (cAMP-PK; EC 2.7.1.37) were studied using the brain of the tobacco hornworm, Manduca sexta. Four particulate-associated peptides (280, 34, 21, and 19 kilodaltons) in day 1 pupal brains are endogenous substrates for a particulate type II cAMP-PK. These phosphoproteins are present in brain synaptosomal, as well as microsomal, particulate fractions but are not present in the cytosol. They are distributed throughout the CNS and PNS and are present in several nonneuronal tissues as well. Phosphorylation of these proteins via cAMP-PK was inhibited markedly by micromolar concentrations of spermine and spermidine. Other particulate-associated peptides phosphorylated via a Ca2+/calmodulin-PK or Ca2+ and cAMP-independent PKs were unaffected by polyamines, whereas the phosphorylation of a 260-kilodalton peptide was markedly enhanced. Spermine did not exert its inhibitory effect indirectly by enhancement of cAMP or ATP hydrolysis or via proteolysis, but its action appears to involve a substrate-directed inhibition of cAMP-PK-promoted phosphorylation as well as enhanced dephosphorylation. Although addition of spermine resulted in marked ribosome aggregation in synaptosomal and microsomal particulate fractions, this phenomenon was not involved in the inhibition of cAMP-PK-promoted phosphorylation.  相似文献   

18.
Phosphopeptide and phosphoprotein phosphorylation was studied in rat brain microsomes and rat brain slices which were incubated in the presence of [γ-32P] ATP under various experimental conditions. Radioactive phosphoserine was isolated from phosphopeptides and phosphoproteins.Na+, K+, Mg2+ and cyclic AMP had a stimulating effect on the labelling of phosphopeptides. Ouabain and Ca2+ lowered the level of 32P incorporation into the phosphopeptides.The phosphoproteins behaved similarly to the phosphopeptides except for the potassium effect.Chase experiments showed a faster decrease in the labelling of phosphopeptides than in phosphoproteins. We suggest that both compounds may be involved in active transport phenomena.  相似文献   

19.
Phycobilisomes isolated from actively growing Synechocystis sp. strain 6308 (ATCC 27150) consist of 12 polypeptides ranging in molecular mass from 11.5 to 95 kilodaltons. The phycobilisome anchor and linker polypeptides are glycosylated. Nitrogen starvation causes the progressive loss of phycocyanin and allophycocyanin subunits with molecular masses between 16 and 20 kilodaltons and of two linker polypeptides with molecular masses of 27 and 33 kilodaltons. Nitrogen starvation also leads to enrichment of four additional polypeptides with molecular masses of 46, 53, 57, and 61 kilodaltons and a transient enrichment of 35- and 41-kilodalton polypeptides in isolated phycobilisomes. The 57-kilodalton additional polypeptide was identified by immunoblotting as the large subunit of ribulosebisphosphate carboxylase/oxygenase. Proteins with the same molecular weights as the additional polypeptides were also coisolated with the 12 phycobilisome polypeptides in the supernatant of nitrogen-replete Synechocystis thylakoid membranes extracted in high-ionic-strength buffer and washed with deionized water. These observations suggest that the additional polypeptides in phycobilisomes from nitrogen-starved cells may be soluble or loosely bound membrane proteins which associate with phycobilisomes. The composition and degree of association of phycobilisomes with soluble and adjacent membrane polypeptides appear to be highly dynamic and specifically regulated by nitrogen availability. Possible mechanisms for variation in the strength of association between phycobilisomes and other polypeptides are suggested.  相似文献   

20.
Phosphoprotein phosphatase prepared from bovine cardiac muscle was used to study the roles of axonemal phosphoproteins in the flagellar motility of sea urchin spermatozoa. When isolated axonemes were incubated with cyclic AMP-dependent protein kinase, gamma-[32P]ATP and cyclic AMP, more than 15 polypeptides were phosphorylated. Most were dephosphorylated by treatment with phosphoprotein phosphatase. When Triton models of sea urchin spermatozoa were treated with phosphoprotein phosphatase followed by an addition of ATP, the flagellar motility of the models was drastically reduced in comparison with that of the untreated models. The motility of the phosphatase-treated Triton models was partially restored by an addition of cyclic AMP and cyclic AMP-dependent protein kinase. These data give strong support to the idea that the motility of eukaryotic flagella is controlled by a protein phosphorylation-dephosphorylation system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号