首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Sfixem is an sequence feature series (SFS) visualization tool implemented in Java. It is designed to visualize data from sequence analysis programs, allowing the user to view multiple sets of computationally generated analysis to assist the analysis process. SFS is used as the data exchange format. AVAILABILITY: Sfixem is available for direct usage or download for local usage at http://sfixem.cgb.ki.se. A protein sequence analysis workbench using Sfixem is available at http://sfinx.cgb.ki.se.  相似文献   

2.
SUMMARY: Orthostrapper is a program that calculates orthology support values for pairs of sequences in a multiple alignment (Storm and Sonnhammer, Bioinformatics, 18, 92-99, 2002). Here we present OrthoGUI, a web interface and display tool for Orthostrapper analysis. OrthoGUI visualizes the Orthostrapper output in both tabular and tree representations, and can also apply a clustering algorithm to identify groups of multiple orthologs, which are indicated by colour coding. AVAILABILITY: http://www.cgb.ki.se/OrthoGUI CONTACT: erik.sonnhammer@cgb.ki.se  相似文献   

3.
PfamAlyzer is a Java applet that enables exploration of Pfam domain architectures using a user-friendly graphical interface. It can search the UniProt protein database for a domain pattern. Domain patterns similar to the query are presented graphically by PfamAlyzer either in a ranked list or pinned to the tree of life. Such domain-centric homology search can assist identification of distant homologs with shared domain architecture. AVAILABILITY: PfamAlyzer has been integrated with the Pfam database and can be accessed at http://pfam.cgb.ki.se/pfamalyzer.  相似文献   

4.
5.
6.
Finishing, i.e. gap closure and editing, is the most time-consuming part of genome sequencing. Repeated sequences together with sequencing errors complicate the assembly and often result in misassemblies that are difficult to correct. Repeat Discrepancy Tagger (ReDiT) is a tool designed to aid in the finishing step. This software processes assembly results produced by any fragment assembly program that outputs ace files. The input sequences are analyzed to determine possible differences between repeated sequences. The output is written as tags in an ace file that can be viewed by, e.g. the Consed sequence editor. AVAILABILITY: The ReDiT program is freely available at http://web.cgb.ki.se/redit  相似文献   

7.
The Pfam Protein Families Database   总被引:17,自引:0,他引:17       下载免费PDF全文
Pfam is a large collection of protein multiple sequence alignments and profile hidden Markov models. Pfam is available on the World Wide Web in the UK at http://www.sanger.ac.uk/Software/Pfam/, in Sweden at http://www.cgb.ki.se/Pfam/, in France at http://pfam.jouy.inra.fr/ and in the US at http://pfam.wustl.edu/. The latest version (6.6) of Pfam contains 3071 families, which match 69% of proteins in SWISS-PROT 39 and TrEMBL 14. Structural data, where available, have been utilised to ensure that Pfam families correspond with structural domains, and to improve domain-based annotation. Predictions of non-domain regions are now also included. In addition to secondary structure, Pfam multiple sequence alignments now contain active site residue mark-up. New search tools, including taxonomy search and domain query, greatly add to the functionality and usability of the Pfam resource.  相似文献   

8.
MEDUSA is a tool for automatic selection and visual assessment of PCR primer pairs, developed to assist large scale gene expression analysis projects. The system allows specification of constraints of the location and distances between the primers in a pair. For instance, primers in coding, non-coding, exon/intron-spanning regions might be selected. Medusa applies these constraints as a filter to primers predicted by three external programs, and displays the resulting primer pairs graphically in the Blixem (Sonnhammer and Durbin, COMPUT: Appl. Biosci. 10, 301-307, 1994; http://www.cgr.ki.se/cgr/groups/sonnhammer/Blixem.html) viewer. AVAILABILITY: The MEDUSA web server is available at http://www.cgr.ki.se/cgr/MEDUSA. The source code and user information are available at ftp://ftp.cgr.ki.se/pub/prog/medusa.  相似文献   

9.
10.
SUMMARY: LogoBar is a Java application to display protein sequence logos. In our software gaps are accounted for when calculating the information content present at each residue position in a multiple alignment. The resulting logo is displayed as a graph consisting of bars, although traditional letter representation is also possible. Amino acids are displayed from the bottom up with decreasing frequencies i.e. the most abundant residue is placed at the bottom of the logo. The bars can be color-coded according to user specifications. Gaps in the alignment are also displayed, either on top or at the bottom of the logo. Furthermore, residues can either be arranged according to their relative abundance or grouped according to user criteria to emphasize the conserved nature of particular positions. AVAILABILITY: LogoBar and further documentation is available at http://www.biosci.ki.se/groups/tbu/logobar/  相似文献   

11.
The Pfam protein families database   总被引:105,自引:12,他引:93  
Pfam is a large collection of protein multiple sequence alignments and profile hidden Markov models. Pfam is available on the WWW in the UK at http://www.sanger.ac.uk/Software/Pfam/, in Sweden at http://www.cgr.ki.se/Pfam/ and in the US at http://pfam.wustl.edu/. The latest version (4.3) of Pfam contains 1815 families. These Pfam families match 63% of proteins in SWISS-PROT 37 and TrEMBL 9. For complete genomes Pfam currently matches up to half of the proteins. Genomic DNA can be directly searched against the Pfam library using the Wise2 package.  相似文献   

12.
MOTIVATION: Multi-domain proteins have evolved by insertions or deletions of distinct protein domains. Tracing the history of a certain domain combination can be important for functional annotation of multi-domain proteins, and for understanding the function of individual domains. In order to analyze the evolutionary history of the domains in modular proteins it is desirable to inspect a phylogenetic tree based on sequence divergence with the modular architecture of the sequences superimposed on the tree. RESULT: A Java applet, NIFAS, that integrates graphical domain schematics for each sequence in an evolutionary tree was developed. NIFAS retrieves domain information from the Pfam database and uses CLUSTAL W to calculate a tree for a given Pfam domain. The tree can be displayed with symbolic bootstrap values, and to allow the user to focus on a part of the tree, the layout can be altered by swapping nodes, changing the outgroup, and showing/collapsing subtrees. NIFAS is integrated with the Pfam database and is accessible over the internet (http://www.cgr.ki.se/Pfam). As an example, we use NIFAS to analyze the evolution of domains in Protein Kinases C.  相似文献   

13.
MOTIVATION: The complete sequencing of many genomes has made it possible to identify orthologous genes descending from a common ancestor. However, reconstruction of evolutionary history over long time periods faces many challenges due to gene duplications and losses. Identification of orthologous groups shared by multiple proteomes therefore becomes a clustering problem in which an optimal compromise between conflicting evidences needs to be found. RESULTS: Here we present a new proteome-scale analysis program called MultiParanoid that can automatically find orthology relationships between proteins in multiple proteomes. The software is an extension of the InParanoid program that identifies orthologs and inparalogs in pairwise proteome comparisons. MultiParanoid applies a clustering algorithm to merge multiple pairwise ortholog groups from InParanoid into multi-species ortholog groups. To avoid outparalogs in the same cluster, MultiParanoid only combines species that share the same last ancestor. To validate the clustering technique, we compared the results to a reference set obtained by manual phylogenetic analysis. We further compared the results to ortholog groups in KOGs and OrthoMCL, which revealed that MultiParanoid produces substantially fewer outparalogs than these resources. AVAILABILITY: MultiParanoid is a freely available standalone program that enables efficient orthology analysis much needed in the post-genomic era. A web-based service providing access to the original datasets, the resulting groups of orthologs, and the source code of the program can be found at http://multiparanoid.cgb.ki.se.  相似文献   

14.
HGVbase (Human Genome Variation database; http://hgvbase.cgb.ki.se, formerly known as HGBASE) is an academic effort to provide a high quality and non-redundant database of available genomic variation data of all types, mostly comprising single nucleotide polymorphisms (SNPs). Records include neutral polymorphisms as well as disease-related mutations. Online search tools facilitate data interrogation by sequence similarity and keyword queries, and searching by genome coordinates is now being implemented. Downloads are freely available in XML, Fasta, SRS, SQL and tagged-text file formats. Each entry is presented in the context of its surrounding sequence and many records are related to neighboring human genes and affected features therein. Population allele frequencies are included wherever available. Thorough semi-automated data checking ensures internal consistency and addresses common errors in the source information. To keep pace with recent growth in the field, we have developed tools for fully automated annotation. All variants have been uniquely mapped to the draft genome sequence and are referenced to positions in EMBL/GenBank files. Data utility is enhanced by provision of genotyping assays and functional predictions. Recent data structure extensions allow the capture of haplotype and genotype information, and a new initiative (along with BiSC and HUGO-MDI) aims to create a central repository for the broad collection of clinical mutations and associated disease phenotypes of interest.  相似文献   

15.
16.
G protein-coupled receptors (GPCRs) constitute a large superfamily involved in various types of signal transduction pathways triggered by hormones, odorants, peptides, proteins, and other types of ligands. The superfamily is so diverse that many members lack sequence similarity, although they all span the cell membrane seven times with an extracellular N and a cytosolic C terminus. We analyzed a divergent set of GPCRs and found distinct loop length patterns and differences in amino acid composition between cytosolic loops, extracellular loops, and membrane regions. We configured GPCRHMM, a hidden Markov model, to fit those features and trained it on a large dataset representing the entire superfamily. GPCRHMM was benchmarked to profile HMMs and generic transmembrane detectors on sets of known GPCRs and non-GPCRs. In a cross-validation procedure, profile HMMs produced an error rate nearly twice as high as GPCRHMM. In a sensitivity-selectivity test, GPCRHMM's sensitivity was about 15% higher than that of the best transmembrane predictors, at comparable false positive rates. We used GPCRHMM to search for novel members of the GPCR superfamily in five proteomes. All in all we detected 120 sequences that lacked annotation and are potentially novel GPCRs. Out of those 102 were found in Caenorhabditis elegans, four in human, and seven in mouse. Many predictions (65) belonged to Pfam domains of unknown function. GPCRHMM strongly rejected a family of arthropod-specific odorant receptors believed to be GPCRs. A detailed analysis showed that these sequences are indeed very different from other GPCRs. GPCRHMM is available at http://gpcrhmm.cgb.ki.se.  相似文献   

17.
Abhiman S  Sonnhammer EL 《Proteins》2005,60(4):758-768
Protein function shift can be predicted from sequence comparisons, either using positive selection signals or evolutionary rate estimation. None of the methods have been validated on large datasets, however. Here we investigate existing and novel methods for protein function shift prediction, and benchmark the accuracy against a large dataset of proteins with known enzymatic functions. Function change was predicted between subfamilies by identifying two kinds of sites in a multiple sequence alignment: Conservation-Shifting Sites (CSS), which are conserved in two subfamilies using two different amino acid types, and Rate-Shifting Sites (RSS), which have different evolutionary rates in two subfamilies. CSS were predicted by a new entropy-based method, and RSS using the Rate-Shift program. In principle, the more CSS and RSS between two subfamilies, the more likely a function shift between them. A test dataset was built by extracting subfamilies from Pfam with different EC numbers that belong to the same domain family. Subfamilies were generated automatically using a phylogenetic tree-based program, BETE. The dataset comprised 997 subfamily pairs with four or more members per subfamily. We observed a significant increase in CSS and RSS for subfamily comparisons with different EC numbers compared to cases with same EC numbers. The discrimination was better using RSS than CSS, and was more pronounced for larger families. Combining RSS and CSS by discriminant analysis improved classification accuracy to 71%. The method was applied to the Pfam database and the results are available at http://FunShift.cgb.ki.se. A closer examination of some superfamily comparisons showed that single EC numbers sometimes embody distinct functional classes. Hence, the measured accuracy of function shift is underestimated.  相似文献   

18.
Pfam is a collection of multiple alignments and profile hidden Markov models of protein domain families. Release 3.1 is a major update of the Pfam database and contains 1313 families which are available on the World Wide Web in Europe at http://www.sanger.ac.uk/Software/Pfam/ and http://www.cgr.ki.se/Pfam/, and in the US at http://pfam.wustl.edu/. Over 54% of proteins in SWISS-PROT-35 and SP-TrEMBL-5 match a Pfam family. The primary changes of Pfam since release 2.1 are that we now use the more advanced version 2 of the HMMER software, which is more sensitive and provides expectation values for matches, and that it now includes proteins from both SP-TrEMBL and SWISS-PROT.  相似文献   

19.
DNA microarray assays represent the first widely used application that attempts to build upon the information provided by genome projects in the study of biological questions. One of the greatest challenges with working with microarrays is collecting, managing, and analyzing data. Although several commercial and noncommercial solutions exist, there is a growing body of freely available, open source software that allows users to analyze data using a host of existing techniques and to develop their own and integrate them within the system. Here we review three of the most widely used and comprehensive systems, the statistical analysis tools written in R through the Bioconductor project (http://www.bioconductor.org), the Java-based TM4 software system available from The Institute for Genomic Research (http://www.tigr.org/software), and BASE, the Web-based system developed at Lund University (http://base.thep.lu.se).  相似文献   

20.
TMpro is a transmembrane (TM) helix prediction algorithm that uses language processing methodology for TM segment identification. It is primarily based on the analysis of statistical distributions of properties of amino acids in transmembrane segments. This article describes the availability of TMpro on the internet via a web interface. The key features of the interface are: (i) output is generated in multiple formats including a user-interactive graphical chart which allows comparison of TMpro predicted segment locations with other labeled segments input by the user, such as predictions from other methods. (ii) Up to 5000 sequences can be submitted at a time for prediction. (iii) TMpro is available as a web server and is published as a web service so that the method can be accessed by users as well as other services depending on the need for data integration. Availability: http://linzer.blm.cs.cmu.edu/tmpro/ (web server and help), http://blm.sis.pitt.edu:8080/axis/services/TMProFetcherService (web service).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号