首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The observation that a starchless mutant (TC7) of Arabidopsis thaliana (L.) Heynh. is gravitropic (T. Caspar and B.G. Pickard, 1989, Planta 177, 185–197) raises questions about the hypothesis that starch and amyloplasts play a role in gravity perception. We compared the kinetics of gravitropism in this starchless mutant and the wild-type (WT). Wild-type roots are more responsive to gravity than TC7 roots as judged by several parameters: (1) Vertically grown TC7 roots were not as oriented with respect to the gravity vector as WT roots. (2) In the time course of curvature after gravistimulation, curvature in TC7 roots was delayed and reduced compared to WT roots. (3) TC7 roots curved less than WT roots following a single, short (induction) period of gravistimulation, and WT, but not TC7, roots curved in response to a 1-min period of horizontal exposure. (4) Wild-type roots curved much more than TC7 roots in response to intermittent stimulation (repeated short periods of horizontal exposure); WT roots curved in response to 10 s of stimulation or less, but TC7 roots required 2 min of stimulation to produce a curvature. The growth rates were equal for both genotypes. We conclude that WT roots are more sensitive to gravity than TC7 roots. Starch is not required for gravity perception in TC7 roots, but is necessary for full sensitivity; thus it is likely that amyloplasts function as statoliths in WT Arabidopsis roots. Furthermore, since centrifugation studies using low gravitational forces indicated that starchless plastids are relatively dense and are the most movable component in TC7 columella cells, the starchless plastids may also function as statoliths.Abbreviations S2 story two - S3 story three - WT wild-type  相似文献   

2.
Gravitropism in roots of intermediate-starch mutants of Arabidopsis   总被引:6,自引:0,他引:6  
Gravitropism was studied in roots of wild type (WT) Arabidopsis thaliana (L.) Heynh. (strain Wassilewskija) and three starch-deficient mutants that were generated, by T-DNA insertional mutagenesis. One of these mutants was starchless while the other two were intermediate mutants, which had 51% and 60%, respectively, of the WT amount of starch as. determined by light and electron microscopy. The four parameters used to assay gravitropism were: orientation during vertical growth, time course of curvature, induction, and intermittent stimulation experiments. WT roots were much more responsive to gravity than were roots of the slarchless mutant, and the intermediate starch mutants exhibited an intermediate graviresponse. Our data suggest that lowered starch content in the mutants primarily affects gravitropism rather than differential growth because both phototropic curvature and growth rates were approximately equal among all four genotypes. Since responses of intermediate-starch mutants were closer to the WT response than to that of the starchless mutant, it appears that 51–60% of the WT level of starch is near the threshold amount needed for full gravitropic sensitivity. While other interpretations are possible, the data are consistent with the starch statolith hypothesis for gravity perception in that the degree of graviresponsiveness is proportional to the total mass of plastids per cell.  相似文献   

3.
The starch-statolith theory of gravity reception has been tested with a mutant of Arabidopsis thaliana (L.) Heynh. which, lacking plastid phosphoglucomutase (EC 2.7.5.1) activity, does not synthesize starch. The hypocotyls and seedling roots of the mutant were examined by light and electron microscopy to confirm that they did not contain starch. In upright wild-type (WT) seedlings, starch-filled plastids in the starch sheath of the hypocotyl and in three of the five columellar layers of the root cap were piled on the cell floors, and sedimented to the ceilings when the plants were inverted. However, starchless plastids of the mutant were not significantly sedimented in these cells in either upright or inverted seedlings. Gravitropism of light-grown seedling roots was vigorous: e.g., 10o curvature developed in mutants rotated on a clinostat following a 5 min induction at 1 · g, compared with 14o in the WT. Curvatures induced during intervals from 2.5 to 30 min were 70% as great in the mutant as the WT. Thus under these conditions the presence of starch and the sedimentation of plastids are unnecessary for reception of gravity by Arabidopsis roots. Gravitropism by hypocotyls of light-grown seedlings was less vigorous than that by roots, but the mutant hypocotyls exhibited an average of 70–80% as much curvature as the WT. Roots and hypocotyls of etiolated seedlings and flower stalks of mature plants were also gravitropic, although in these cases the mutant was generally less closely comparable to the WT. Thus, starch is also unnecessary for gravity reception in these tissues.Abbreviations PAR photosynthetically active radiation - PAS periodic acid-Schiff's reagent - PGM phosphoglucomutase - WT wild-type  相似文献   

4.
Roots of cress (Lepidium sativum L, ) seedlings continuouslystimulated at an angle of 135°—root tips pointingobliquely upwards—develop a larger final geotropic curvaturethan roots stimulated at 45° or 90°. This well-knownbehaviour has previously been interpreted as support for thestarch statolith hypothesis. In the present experiments two groups of cress and lettuce (Lactucasativa L.) seedlings were used: (a) the control group in whichthe roots were allowed to curve without adjustment of the stimulationangle, and (b) the test group in which the roots were readjustedat different time intervals to the original stimulation angle.They were stimulated continuously at 45°, 90°, or 135°and the development of root curvatures was followed over a periodof 5–8 h. Initially (1–2 h) the rate of curvature was approximatelythe same for 135° and 90° control and tested cress andlettuce roots. Thereafter the test roots stimulated at 135°followed a linear curvature pattern. Seedlings stimulated at45° and 90° did not show the same linearity in curvaturedevelopment in the test group. The rates of curvature in thetest group were generally higher than in the control group atangles less than 135°. Cress seedlings were examined by light and electron microscopyin order to follow the movement of the cell organelles in thestatocytes. In the statocytes of roots of test seedlings thestarch statoliths were located in the position attained beforethe first readjustment of the stimulation angle. In the statocytesof control roots the starch statoliths followed the curvatureof the root tip sliding along the cell walls and attaining therest position as in normally orientated roots. The behaviour of control and readjusted roots is interpretedas a result of interaction between starch statoliths and endoplasmicreticulum membranes.  相似文献   

5.
Despite the extensive study of plant gravitropism, there have been few experiments which have utilized hypergravity as a tool to investigate gravisensitivity in flowering plants. Previous studies have shown that starch-deficient mutants of Arabidopsis are less sensitive to gravity compared to the wild-type (WT). In this report, the question addressed was whether hypergravity could restore the sensitivity of starch-deficient mutants of Arabidopsis. The strains examined include a WT, a starchless mutant and a reduced-starch mutant. Vertical orientation studies with dark-grown seedlings indicate that increased centrifugal acceleration improves orientation relative to the acceleration vector for all strains, even the WT. For starchless roots, growth of seedlings under constant 5 g acceleration was required to restore orientation to the level of the WT at 1 g. In contrast, approximately 10 g was required to restore the orientation of the starchless mutant hypocotyls to a WT level at 1 g. Examination of plastid position in root cap columella cells of the starchless mutant revealed that the restoration of gravitropic sensitivity was correlated with the sedimentation of plastids toward the distal cell wall. Even in WT plants, hypergravity caused greater sedimentation of plastids and improved gravitropic capability. Collectively, these experiments support the hypothesis of a statolith-based system of gravity perception in plants. As far as is known, this is the first report to use hypergravity to study the mechanisms of gravitropism in Arabidopsis.  相似文献   

6.
Gravitropism in dark-grown hypocotyls of the wild type was compared with a starch-deficient Nicotiana sylvestris mutant (NS 458) to test the effects of starch deficiency on gravity sensing. In a time course of curvature measured using infrared video, the response of the mutant was greatly reduced compared to the wild type; 72 hours after reorientation, curvature was about 10° for NS 458 and about 70° for wild type. In dishes maintained in a vertical orientation, wild-type hypocotyls were predominantly vertical, whereas NS 458 hypocotyls were severely disoriented with about 5 times more orientational variability than wild type. Since the growth rates were equal for both genotypes and phototropic curvature was only slightly inhibited in NS 458, the mutation probably affects gravity perception rather than differential growth. Our data suggest that starch deficiency reduces gravitropic sensitivity more in dark-grown hypocotyls than in dark- or light-grown roots in this mutant and support the hypothesis that amyloplasts function as statoliths in shoots as well as roots.  相似文献   

7.
The major purpose of this spaceflight project was to investigate the starch-statolith hypothesis for gravity perception, and a secondary goal was to study plant growth and development under spaceflight conditions. This research was based on our ground studies of gravity perception in the wild type and three starch-deficient (one starchless and two reduced starch) mutants of Arabidopsis thaliana (L.) Heynh. Dark-grown seedlings that developed in microgravity were given one of several (30 min, 60 min, or 90 min) 1-g stimuli by an on-board centrifuge, and additional controls for seedling development also were performed. These latter control experiments included a morphological study of plants that developed in space in microgravity (F μg), in space on a centrifuge (F 1g), on the ground (G 1g), and on a rotating clinostat on the ground. Since elevated levels of ethylene were reported in the spacecraft atmosphere, additional controls for morphology and gravitropism with added ethylene also were performed. While exogenous ethylene reduced the absolute magnitude of the response in all four strains of Arabidopsis, this gas did not appear to change the relative graviresponsiveness among the strains. The relative response of hypocotyls of microgravity-grown seedlings to the stimuli provided by the in-flight centrifuge was: wild type > starch-deficient mutants. Although the protoplast pressure model for gravity perception cannot be excluded, these results are consistent with a statolith-based model for perception in plants. Received: 12 February 1999 / Accepted: 9 March 1999  相似文献   

8.
Sedimentation and movement of plastids in columella cells of the root cap were measured in seedlings of wild-type, a reduced starch mutant, and a starchless mutant of Arabidopsis. To assay for sedimentation, we used both linear measurements and the change of angle from the cell center as indices in vertical and reoriented plants with the aid of computer-assisted image analysis. Seedlings were fixed at short periods after reorientation, and plastid sedimentation correlated with starch content in the three strains of Arabidopsis. Amyloplasts of wild-type seedlings showed the greatest sedimentation, whereas plastids of the starchless mutant showed no significant sedimentation in the vertically grown and reoriented seedlings. Because previous research has shown that a full complement of starch is needed for full gravitropic sensitivity, this study correlates increased sensitivity with plastid sedimentation. However, although plastid sedimentation contributed to gravisensitivity, it was not required, because the gravitropic starchless mutant had plastids that did not sediment. This is the first study, to our knowledge, to measure plastid sedimentation in Arabidopsis roots after reorientation of seedlings. Taken together, the results of this study are consistent with the classic plastid-based and protoplast-based models of graviperception and suggest that multiple systems of perception exist in plant cells.  相似文献   

9.
The sites of gravity perception are columella cells in roots and endodermal cells in hypocotyls and inflorescence stems. Since plastids are likely to play a role in graviperception, we investigated gravitropism in plastid mutants of Arabidopsis . Previous studies have shown that the arc 6 and arc 12 ( a ccumulation and r eplication of c hloroplasts) mutants have an average of two large plastids per leaf mesophyll cell. In this study, we found that these arc mutants have altered plastid morphology throughout the entire plant body, including the cells involved in gravity perception. There were no major differences in total starch content per cell in endodermal and columella cells of the wild-type (WT) compared to arc 6 and arc 12 as assayed by iodine staining. Thus, the total mass of plastids per cell in arc 6 and arc 12 is similar to their respective WT strains. Results from time course of curvature studies demonstrated that the plastid mutation affected gravitropism only of inflorescence stems and hypocotyls, but not roots. Thus, roots appear to have different mechanisms of gravitropism compared to stems and hypocotyls. Time course of curvature studies with light-grown seedlings were performed in the presence of latrunculin B (Lat-B), an actin-depolymerizing drug. Lat-B promoted gravitropic curvature in hypocotyls of both the WT and arc 6 but had little or no effect on gravitropism in roots of both strains. These results suggest that F-actin is not required for hypocotyl gravitropism.  相似文献   

10.
Wild-type and starchless Arabidopsis thaliana mutant seedlings(TC7) were grown and fixed in the microgravity environment ofa U.S. Space Shuttle spaceflight. Computer image analysis oflongitudinal sections from columella cells suggest a differentplastid positioning mechanism for mutant and wild-type in theabsence of gravity. (Received September 24, 1996; Accepted January 21, 1997)  相似文献   

11.
Saether N  Iversen TH 《Planta》1991,184(4):491-497
The mutant TC 7 of Arabidopsis thaliana (L.) Heynh. has been reported to be starch-free and still exhibit root gravitropism (T. Caspar and B. G. Pickard 1989, Planta 177, 185–197). This is not consistent with the hypothesis that plastid starch has a statolith function in gravity perception. In the present study, initial light microscopy using the same mutant showed apparently starch-free statocytes. However, ultrastructural examination detected residues of amyloplast starch grains in addition to the starch-depleted amyloplasts. Applying a point-counting morphometric method, the starch grains in the individual amyloplasts in the mutant were generally found to occupy more than 20% and in a few cases up to 60% of the amyloplast area. In the wild type (WT) the starch occupied on average 98 % of the amyloplast area and appeared as densely packed grains. The amyloplasts occupied 13.9% of the area of the statocyte in the mutant and 23.3% of the statocyte area in the WT. Sedimentation of starch-depleted amyloplasts in the mutant was not detected after 40 min of inversion while in the WT the amyloplasts sedimented at a speed of 6 m · h-1. The gravitropic reactivity and the curvature pattern were also examined in the WT and the mutant. The time-courses of root curvature in the WT and the mutant showed that when cultivated under standard conditions for 60 h in darkness, the curvatures were 83° and 44°, respectively, after 25 h of continuous stimulation in the horizontal position. The WT roots curved significantly more rapidly and with a more normal gravitropic pattern than those of the mutant. These results are discussed in relation to the results previously obtained with the mutant and with respect to the starch-statolith hypothesis.Abbreviation WT wild type This work was supported by grants from Norwegian Research Council for Science and the Humanities (NAVF) which we gratefully acknowledge. We would also like to thank Dr. Timothy Caspar, Michigan State University, East Lansing, USA, for providing us with the seeds of TC 75.  相似文献   

12.
MOORE  RANDY 《Annals of botany》1989,64(3):271-277
Primary roots of a starchless mutant of Arabidopsis thalianaL. are strongly graviresponsive despite lacking amyloplastsin their columella cells. The ultrastructures of calyptrogenand peripheral cells in wild-type as compared to mutant seedlingsare not significantly different. The largest difference in cellulardifferentiation in caps of mutant and wild-type roots is therelative volume of plastids in columella cells. Plastids occupy12.3% of the volume of columella cells in wild-type seedlings,but only 3.69% of columella cells in mutant seedlings. Theseresults indicate that: (1) amyloplasts and starch are not necessaryfor root graviresponsiveness; (2) the increase in relative volumeof plastids that usually accompanies differentiation of columellacells is not necessary for root graviresponsiveness; and (3)the absence of starch and amyloplasts does not affect the structureof calyptrogen (i.e. meristematic) and secretory (i.e. peripheral)cells in root caps. These results are discussed relative toproposed models for root gravitropism. Arabidopsis thaliana, gravitropism (root), plastids, root cap, stereology, ultrastructure  相似文献   

13.
Gravitropic sensing in stems and stem-like organs is hypothesized to occur in the endodermis. However, since the endodermis runs the entire length of the stem, the precise site of gravisensing has been difficult to define. In this investigation of gravisensitivity in inflorescence stems of Arabidopsis, we positioned stems in a high gradient magnetic field (HGMF) on a rotating clinostat. Approximately 40% of the young, wild-type (WT) inflorescences, for all positions tested, curved toward the HGMF in the vicinity of the stem exposed to the field. In contrast, when the wedge was placed in the basal region of older inflorescence stems, no curvature was observed. As a control, the HGMF was applied to a starchless mutant, and 5% of the stems curved toward the field. Microscopy of the endodermis in the WT showed amyloplast displacement in the vicinity of the HGMF. Additional structural studies demonstrated that the basal region of WT stems experienced amyloplast displacement and, therefore, suggest this region is capable of gravity perception. However, increased lignification likely prevented curvature in the basal region. The lack of apical curvature after basal amyloplast displacement indicates that gravity perception in the base is not transmitted to the apex. Thus, these results provide evidence that the signal (and thus, response) resulting from perception in Arabidopsis inflorescence stems is spatially restricted.  相似文献   

14.
The sedimentation of starch-filled plastids is thought to be the primary mechanism by which gravity is perceived in roots. Following gravity perception, auxin redistribution toward the lower flank of roots, initiated in the root cap, is believed to play a role in regulation of the gravity response. Amyloplast sedimentation and auxin flux, however, have never been directly linked. The overall aim of this study was to investigate the relationship among plastid sedimentation, gravitropism and auxin flux. Our data show that pgm-1 roots respond to gravity at one-third the rate of wild-type (WT) roots. Maintaining the root tip at a constant angle using image analysis coupled to a rotating stage resulted in a constant rate of response regardless of the angle of tip orientation in pgm-1 mutants, in contrast to the responses of WT and pin3-1 mutants, which showed increasing response rates as the tip was constrained at greater angles. To indirectly visualize auxin flux following reorientation, we generated a pgm-1 mutant line expressing the DR5::GFPm reporter gene. In WT roots a GFP gradient was observed with a maximum along the lower flank, whereas pgm-1 roots formed a GFP maximum in the central columella but lacked any observable gradient up to 6 h following reorientation. Our study suggests that the relationship between root cap angle and gravitropic response depends upon plastid sedimentation-based gravity sensing and supports the idea that there are multiple, overlapping sensory response networks involved in gravitropism.  相似文献   

15.
Shoots of higher plants grow upward in response to gravity.To elucidate the molecular mechanism of this response, we haveisolated shoot gravitropism (sgr) mutants in Arabidopsis thaliana.In this report, we describe three novel mutants, sgr4-1, sgr5-1and sgr6-1 whose inflorescence stems showed abnormal gravitropicresponses as previously reported for sgr1, sgr2 and sgr3. Thesenew sgr mutations were recessive and occurred at three independentgenetic loci. The sgr4-1 mutant showed severe defect in gravitropismof both inflorescence stem and hypocotyl but were normal inroot gravitropism as were sgr1 and sgr2. The sgr5-1 and sgr6-1mutants showed reduced gravitropism only in inflorescence stemsbut normal in both hypocotyls and roots as sgr3. These resultssupport the hypothesis that some mechanisms of gravitropismare genetically different in these three organs in A. thaliana.In addition, these mutants showed normal phototropic responses,suggesting that SGR4, SGR5 and SGR6 genes are specifically involvedin gravity perception and/or gravity signal transduction forthe shoot gravitropic response. (Received November 21, 1996; Accepted February 17, 1997)  相似文献   

16.
The auxins contained in 5-mm. tips of horizontal Vicia fabaroots have been compared with those in tips of vertical rootsafter cold ethanol extraction, paper-chromatographic separation,and Avena mesocotyl bioassay. At about the time curvature commencesin horizontal roots there is a marked increase in the contentof an auxin corresponding to ‘AP(ii)’ of pea roots(Rf 0.35–0.65 in isobutanol/methanol/water). There areindications that this is not due to its release from an inactivebound state but that it is either synthesized de novo or maybe converted from another auxin corresponding to ‘AP(iii)’of pea roots (Rf 0.75–1.0). The literature dealing with the auxins of geotropically stimulatedorgans is reassessed and it is concluded that, with the exceptionof the Avena coleoptile, there is very little evidence favouringa simple transport redistribution of auxin under gravity; themajority of the data favour an effect of gravity on auxin metabolism.  相似文献   

17.
Shoots of the lazy-2 mutant of tomato (Lycopersicon esculentum Mill., cv. Ailsa Craig) exhibit negative gravitropism in the dark, but respond positively gravitropically in (red) light. In order to test whether high-gradient magnetic fields (HGMFs) exert only ponderomotive effects on amyloplasts or affect other physiological processes, we induced magnetophoretic curvature in wild-type (WT) and lazy-2 mutant seedlings. Straight hypocotyls of 4-d-old plants were selected and the tips of their hooks were placed in an HGMF near the edge of a magnetized ferromagnetic wedge [grad (H2/2) ≈ 109–1010 Oe2/cm] and mounted on a 1-rpm clinostat. After 4 h in the dark, 85% of WT hypocotyls and 67% of mutant hypocotyls curved toward the wedge. When the seedlings were exposed to red light for 1 h prior to and during the application of the HGMF, 78% of the WT seedlings curved toward the magnetic gradient, but the majority of the lazy-2 seedlings (75%) curved away from the stronger field area. Intracellular amyloplast displacement in the HGMF was similar for both varieties and resembled the displacement after horizontal reorientation. The WT showed a distinct graviresponse pattern depending on the orientation of the hook, even after excision of the apex. Application of HGMFs to decapitated hypocotyls resulted in curvature consistent with that obtained after horizontal reorientation. After light exposure, decapitated lazy-2 seedlings did not respond positively gravitropically. The data imply that the lazy-2 mutants perceive the displacement of amyloplasts in a similar manner to the WT and that the HGMF does not affect the graviresponse mechanism. The study demonstrates that ponderomotive forces due to HGMFs are useful for the analysis of the gravity-sensing mechanism in plants. Received: 31 August 1998 / Accepted: 6 October 1998  相似文献   

18.
In an attempt to explain the influence of gravity on the behaviour of ageotropic plant organs, a pea mutant (Pisum sativum ageotropum) and normal pea (Pisum sativum cv. Sabel) were examined. The mutant has a significantly lower germination rate (large seeds: 25%, small seeds: 10%) than normal pea seeds (55%). Removal of testa increased germination dramatically, the values obtained were 63 and 89%, respectively. Immediately after imbibition the mutant from which the testa had been removed, developed more slowly than normal pea seeds; after 28 h the difference in elongation rate between the two types was reversed. When continuously stimulated geotropically in the horizontal position the elongation in the mutant is larger than in the normal pea roots kept in the same position. During a 24 h period starting 48 h after imbibition the mutant root elongated 45.0 mm while the value for the normal pea root was 11.5 mm. The course of the geotropic curvature in roots of the two types has been followed during a period of 24 h. Normal pea roots develop an asymmetry in the extreme root tip region after 30 min of horizontal stimulation. After prolonged stimulation (exceeding 2 h) the asymmetry has disappeared and the curvature distributed over the entire growth region. When roots of normal pea are stimulated continuously at various angles, the optimum angle of geotropic response is 90° with decreasing responses in the order 135° (i.e. the root tip is pointing obliquely upward) and 45°. The presumed ageotropic behaviour of the mutant has only to a certain extent been confirmed in the present study. When stimulated at 135° a slight positive curvature developed; stimulation at 90° and 45° gave a slight negative curvature.  相似文献   

19.
Aquaporin-2 (AQP2) is the vasopressin-sensitive water channel that regulates water reabsorption in the distal nephron collecting duct. Inherited AQP2 mutations that disrupt folding lead to nephrogenic diabetes insipidus (NDI) by targeting newly synthesized protein for degradation in the endoplasmic reticulum (ER). During synthesis, a subset of wild-type (WT) AQP2 is covalently modified by N-linked glycosylation at residue Asn123. To investigate the affect of glycosylation, we expressed WT AQP2 and four NDI-related mutants in Xenopus laevis oocytes and compared stability of glycosylated and nonglycosylated isoforms. In all constructs, 15–20% of newly synthesized AQP2 was covalently modified by N-linked glycosylation. At steady state, however, core glycosylated WT protein was nearly undetectable, whereas all mutants were found predominantly in the glycosylated form (60–70%). Pulse-chase metabolic labeling studies revealed that glycosylated isoforms of mutant AQP2 were significantly more stable than their nonglycosylated counterparts. For nonglycosylated isoforms, the half-life of WT AQP2 was significantly greater (>48 h) than that of mutant AQP2 (T126M 4.1 ± 1.0 h, A147T 4.2 ± 0.60 h, C181W 4.5 ± 0.50 h, R187C 6.8 ± 1.2 h). This is consistent with rapid turnover in the ER as previously reported. In contrast, the half-lives of mutant proteins containing N-linked glycans were similar to WT (25 h), indicating that differences in steady-state glycosylation profiles are caused by increased stability of glycosylated mutant proteins. These results suggest that addition of a single N-linked oligosaccharide moiety can partially compensate for ER folding defects induced by disease-related mutations. endoplasmic reticulum-associated degradation; nephrogenic diabetes insipidus; oocytes  相似文献   

20.
Ruppel NJ  Hangarter RP  Kiss JZ 《Planta》2001,212(3):424-430
The interaction between light and gravity is critical in determining the final form of a plant. For example, the competing activities of gravitropism and phototropism can determine the final orientation of a stem or root. The results reported here indicate that, in addition to the previously described blue-light-dependent negative phototropic response in roots, roots of Arabidopsis thaliana (L.) Heynh. display a previously unknown red-light-dependent positive phototropic response. Both phototropic responses in roots are considerably weaker than the graviresponse, which often masks phototropic curvature. However, through the use of mutant strains with impaired gravitropism, we were able to identify a red-light-dependent positive phototropic response in Arabidopsis roots. The red-induced positive phototropic response is considerably weaker than the blue-light response and is barely detectable in plants with a normal gravitropic response. Received: 22 May 2000 / Accepted: 3 July 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号