首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pulmonary and systemic arterial hypertension are associated with profound alterations in Ca2+ homeostasis and smooth muscle cell proliferation. A novel class of non-selective cation channels, the transient receptor potential (TRP) channels, have emerged at the forefront of research into hypertensive disease states. TRP channels are identified as molecular correlates for receptor-operated and store-operated cation channels in the vasculature. Over 10 TRP isoforms are identified at the mRNA and protein expression levels in the vasculature. Current research implicates upregulation of specific TRP isoforms to be associated with increased Ca2+ influx, characteristic of vasoconstriction and vascular smooth muscle cell proliferation. TRP channels are implicated as Ca2+ entry pathways in pulmonary hypertension and essential hypertension. Caveolae have recently emerged as membrane microdomains in which TRP channels may be co-localized with the endoplasmic reticulum in both smooth muscle and endothelial cells. Such enhanced expression and function of TRP channels and their localization in caveolae in pathophysiological hypertensive disease states highlights their importance as potential targets for pharmacological intervention.  相似文献   

2.
Inositol 1,4,5-trisphosphate receptors (IP(3)Rs) are a family of tetrameric intracellular calcium (Ca(2+)) release channels that are located on the sarcoplasmic reticulum (SR) membrane of virtually all mammalian cell types, including smooth muscle cells (SMC). Here, we have reviewed literature investigating IP(3)R expression, cellular localization, tissue distribution, activity regulation, communication with ion channels and organelles, generation of Ca(2+) signals, modulation of physiological functions, and alterations in pathologies in SMCs. Three IP(3)R isoforms have been identified, with relative expression and cellular localization of each contributing to signaling differences in diverse SMC types. Several endogenous ligands, kinases, proteins, and other modulators control SMC IP(3)R channel activity. SMC IP(3)Rs communicate with nearby ryanodine-sensitive Ca(2+) channels and mitochondria to influence SR Ca(2+) release and reactive oxygen species generation. IP(3)R-mediated Ca(2+) release can stimulate plasma membrane-localized channels, including transient receptor potential (TRP) channels and store-operated Ca(2+) channels. SMC IP(3)Rs also signal to other proteins via SR Ca(2+) release-independent mechanisms through physical coupling to TRP channels and local communication with large-conductance Ca(2+)-activated potassium channels. IP(3)R-mediated Ca(2+) release generates a wide variety of intracellular Ca(2+) signals, which vary with respect to frequency, amplitude, spatial, and temporal properties. IP(3)R signaling controls multiple SMC functions, including contraction, gene expression, migration, and proliferation. IP(3)R expression and cellular signaling are altered in several SMC diseases, notably asthma, atherosclerosis, diabetes, and hypertension. In summary, IP(3)R-mediated pathways control diverse SMC physiological functions, with pathological alterations in IP(3)R signaling contributing to disease.  相似文献   

3.
A rise in cytosolic Ca(2+) concentration ([Ca(2+)](cyt)) due to Ca(2+) release from intracellular Ca(2+) stores and Ca(2+) influx through plasmalemmal Ca(2+) channels plays a critical role in mitogen-mediated cell growth. Depletion of intracellular Ca(2+) stores triggers capacitative Ca(2+) entry (CCE), a mechanism involved in maintaining Ca(2+) influx and refilling intracellular Ca(2+) stores. Transient receptor potential (TRP) genes have been demonstrated to encode the store-operated Ca(2+) channels that are activated by Ca(2+) store depletion. In this study, we examined whether CCE, activity of store-operated Ca(2+) channels, and human TRP1 (hTRP1) expression are essential in human pulmonary arterial smooth muscle cell (PASMC) proliferation. Chelation of extracellular Ca(2+) and depletion of intracellularly stored Ca(2+) inhibited PASMC growth in media containing serum and growth factors. Resting [Ca(2+)](cyt) as well as the increases in [Ca(2+)](cyt) due to Ca(2+) release and CCE were all significantly greater in proliferating PASMC than in growth-arrested cells. Consistently, whole cell inward currents activated by depletion of intracellular Ca(2+) stores and the mRNA level of hTRP1 were much greater in proliferating PASMC than in growth-arrested cells. These results suggest that elevated [Ca(2+)](cyt) and intracellularly stored [Ca(2+)] play an important role in pulmonary vascular smooth muscle cell growth. CCE, potentially via hTRP1-encoded Ca(2+)-permeable channels, may be an important mechanism required to maintain the elevated [Ca(2+)](cyt) and stored [Ca(2+)] in human PASMC during proliferation.  相似文献   

4.
In smooth muscle cells, agonists such as neurotransmitters or hormones can induce an increase in [Ca(2+)](i) via a release of intracellular stored calcium or/and an influx of extracellular calcium. The calcium entry pathway operates through a variety of plasmalemmal calcium channels which involve voltage-dependent and voltage-independent calcium channels. Voltage-independent calcium channels include (1) receptor-operated channels (ROCs) activated by agonist-receptor interaction and, in the majority of cases, the downstream signal transduction proteins, (2) store-operated channels (SOCs) activated by the emptying of intracellular Ca(2+) store (mainly the sarcoplasmic reticulum), (3) mechanosensitive or stretch-activated channels (SACs) activated by membrane stretch. Generally, voltage-independent calcium channels are calcium permeable non-selective cation channels with electrophysiological differences, complex regulatory mechanisms and pharmacology. Although the molecular identity of voltage-independent calcium channels is not yet fully elucidated, there are growing evidences that these channels correspond to a new family of membrane proteins encoded by mammalian homologues of specific transient receptor potential (TRP) genes. Several types of TRP proteins are ubiquitously expressed in smooth muscle cells and variations in the expression depend on tissue and species. More recently, other proteins such as Orai1 and STIM1 proteins have been also proposed as participating in the molecular identity of voltage-independent calcium channels. These channels control phenomena such as smooth muscle cells proliferation and/or contraction.  相似文献   

5.
6.
Arterial smooth muscle cells enter the cell cycle and proliferate in conditions of disease and injury, leading to adverse vessel remodeling. In the pulmonary vasculature, diverse stimuli cause proliferation of pulmonary artery smooth muscle cells (PASMCs), pulmonary artery remodeling, and the clinical condition of pulmonary hypertension associated with significant health consequences. PASMC proliferation requires extracellular Ca(2+) influx that is intimately linked with intracellular Ca(2+) homeostasis. Among the primary sources of Ca(2+) influx in PASMCs is the low-voltage-activated family of T-type Ca(2+) channels; however, up to now, mechanisms for the action of T-type channels in vascular smooth muscle cell proliferation have not been addressed. The Ca(v)3.1 T-type Ca(2+) channel mRNA is upregulated in cultured PASMCs stimulated to proliferate with insulin-like growth factor-I (IGF-I), and this upregulation depends on phosphatidylinositol 3-kinase/Akt signaling. Multiple stimuli that trigger an acute rise in intracellular Ca(2+) in PASMCs, including IGF-I, also require the expression of Ca(v)3.1 Ca(2+) channels for their action. IGF-I also led to cell cycle initiation and proliferation of PASMCs, and, when expression of the Ca(v)3.1 Ca(2+) channel was knocked down by RNA interference, so were the expression and activation of cyclin D, which are necessary steps for cell cycle progression. These results confirm the importance of T-type Ca(2+) channels in proper progression of the cell cycle in PASMCs stimulated to proliferate by IGF-I and suggest that Ca(2+) entry through Ca(v)3.1 T-type channels in particular interacts with Ca(2+)-dependent steps of the mitogenic signaling cascade as a central component of vascular remodeling in disease.  相似文献   

7.
Hypotonic stimulation induces airway constriction in normal and asthmatic airways. However, the osmolarity sensor in the airway has not been characterized. TRPV4 (also known as VR-OAC, VRL-2, TRP12, OTRPC4), an osmotic-sensitive cation channel in the transient receptor potential (TRP) channel family, was recently cloned. In the present study, we show that TRPV4 mRNA was expressed in cultured human airway smooth muscle cells as analyzed by RT-PCR. Hypotonic stimulation induced Ca(2+) influx in human airway smooth muscle cells in an osmolarity-dependent manner, consistent with the reported biological activity of TRPV4 in transfected cells. In cultured muscle cells, 4alpha-phorbol 12,13-didecanoate (4-alphaPDD), a TRPV4 ligand, increased intracellular Ca(2+) level only when Ca(2+) was present in the extracellular solution. The 4-alphaPDD-induced Ca(2+) response was inhibited by ruthenium red (1 microM), a known TRPV4 inhibitor, but not by capsazepine (1 microM), a TRPV1 antagonist, indicating that 4-alphaPDD-induced Ca(2+) response is mediated by TRPV4. Verapamil (10 microM), an L-type voltage-gated Ca(2+) channel inhibitor, had no effect on the 4-alphaPDD-induced Ca(2+) response, excluding the involvement of L-type Ca(2+) channels. Furthermore, hypotonic stimulation elicited smooth muscle contraction through a mechanism dependent on membrane Ca(2+) channels in both isolated human and guinea pig airways. Hypotonicity-induced airway contraction was not inhibited by the L-type Ca(2+) channel inhibitor nifedipine (1 microM) or by the TRPV1 inhibitor capsazepine (1 microM). We conclude that functional TRPV4 is expressed in human airway smooth muscle cells and may act as an osmolarity sensor in the airway.  相似文献   

8.
Prostate smooth muscle cells predominantly express alpha1-adrenoceptors (alpha1-AR). alpha1-AR antagonists induce prostate smooth muscle relaxation and therefore they are useful therapeutic compounds for the treatment of benign prostatic hyperplasia symptoms. However, the Ca(2+) entry pathways associated with the activation of alpha1-AR in the prostate have yet to be elucidated. In many cell types, mammalian homologues of transient receptor potential (TRP) genes, first identified in Drosophila, encode TRPC (canonical TRP) proteins. They function as receptor-operated channels (ROCs) which are involved in various physiological processes such as contraction, proliferation, apoptosis, and differentiation. To date, the expression and function of TRPC channels have not been studied in prostate smooth muscle. In fura-2 loaded PS1 (a prostate smooth muscle cell line) which express endogenous alpha1A-ARs, alpha-agonists epinephrine (EPI), and phenylephrine (PHE) induced Ca(2+) influx which depended on the extracellular Ca(2+) and PLC activation but was independent of PKC activation. Thus, we have tested two membrane-permeable analogues of diacylglycerol (DAG), oleoyl-acyl-sn-glycerol (OAG) and 1,2-dioctanoyl-sn-glycerol (DOG). They initiated Ca(2+) influx whose properties were similar to those induced by the alpha-agonists. Sensitivity to 2-aminoethyl diphenylborate (2-APB), SKF-96365 and flufenamate implies that Ca(2+)-permeable channels mediated both alpha-agonist- and OAG-evoked Ca(2+) influx. Following the sarcoplasmic reticulum (SR) Ca(2+) store depletion by thapsigargin (Tg), a SERCA inhibitor, OAG and PHE were both still able to activate Ca(2+) influx. However, OAG failed to enhance Ca(2+) influx when added in the presence of an alpha-agonist. RT-PCR and Western blotting performed on PS1 cells revealed the presence of mRNAs and the corresponding TRPC3 and TRPC6 proteins. Experiments using an antisense strategy showed that both alpha-agonist- and OAG-induced Ca(2+) influx required TRPC3 and TRPC6, whereas the Tg-activated ("capacitative") Ca(2+) entry involved only TRPC3 encoded protein. It may be thus concluded that PS1 cells express TRPC3 and TRPC6 proteins which function as receptor- and store-operated Ca(2+) entry pathways.  相似文献   

9.
Intracellular Ca2+ homeostasis is essential for vascular function and blood pressure regulation. Because of their unique roles in regulating intracellular Ca2+ concentration and vascular function, a novel class of non-selective cation channels, called transient receptor potential (TRP) channels, have emerged at the frontier of hypertension research. Based on their role in vasculature function regulation, TRP channels can be divided into two functional subtypes: one that participates in vasoconstriction and one that participates in vasodilatation. A functional imbalance of these two subtypes of TRP channels may disturb intracellular calcium ([Ca2+]i) homeostasis, and the consequent vascular dysfunction may contribute to the development of hypertension. The potential of these TRP channels as novel pharmacological targets for the treatment of human hypertension is of great interest.  相似文献   

10.
Myogenic vasoconstriction results from pressure-induced vascular smooth muscle cell depolarization and Ca(2+) influx via voltage-dependent Ca(2+) channels, a process that is significantly attenuated by inhibition of protein kinase C (PKC). It was recently reported that the melastatin transient receptor potential (TRP) channel TRPM4 is a critical mediator of pressure-induced smooth muscle depolarization and constriction in cerebral arteries. Interestingly, PKC activity enhances the activation of cloned TRPM4 channels expressed in cultured cells by increasing sensitivity of the channel to intracellular Ca(2+). Thus we postulated that PKC-dependent activation of TRPM4 might be a critical mediator of vascular myogenic tone. We report here that PKC inhibition attenuated pressure-induced constriction of cerebral vessels and that stimulation of PKC activity with phorbol 12-myristate 13-acetate (PMA) enhanced the development of myogenic tone. In freshly isolated cerebral artery myocytes, we identified a Ca(2+)-dependent, rapidly inactivating, outwardly rectifying, iberiotoxin-insensitive cation current with properties similar to those of expressed TRPM4 channels. Stimulation of PKC activity with PMA increased the intracellular Ca(2+) sensitivity of this current in vascular smooth muscle cells. To validate TRPM4 as a target of PKC regulation, antisense technology was used to suppress TRPM4 expression in isolated cerebral arteries. Under these conditions, the magnitude of TRPM4-like currents was diminished in cells from arteries treated with antisense oligonucleotides compared with controls, identifying TRPM4 as the molecular entity responsible for the PKC-activated current. Furthermore, the extent of PKC-induced smooth muscle cell depolarization and vasoconstriction was significantly decreased in arteries treated with TRPM4 antisense oligonucleotides compared with controls. We conclude that PKC-dependent regulation of TRPM4 activity contributes to the control of cerebral artery myogenic tone.  相似文献   

11.
Transient receptor potential (TRP) cation channels are a critical pathway for Ca2+ entry during pulmonary artery (PA) smooth muscle contraction. However, whether canonical TRP (TRPC) subunits and which TRP channel isoforms are involved in store depletion-induced pulmonary vasoconstriction in vivo remain unclear. This study was designed to test whether overexpression of the human TRPC1 gene (hTRPC1) in rat PA enhances pulmonary vasoconstriction due to store depletion-mediated Ca2+ influx. The hTRPC1 was infected into rat PA rings with an adenoviral vector. RT-PCR and Western blot analyses confirmed the mRNA and protein expression of hTRPC1 in the arterial rings. The amplitude of active tension induced by 40 mM K+ (40K) in PA rings infected with an empty adenoviral vector (647 +/- 88 mg/mg) was similar to that in PA rings infected with hTRPC1 (703 +/- 123 mg/mg, P = 0.3). However, the active tension due to capacitative Ca2+ entry (CCE) induced by cyclopiazonic acid was significantly enhanced in PA rings overexpressing hTRPC1 (91 +/- 13% of 40K-induced contraction) compared with rings infected with an empty adenoviral vector (61 +/- 14%, P < 0.001). Endothelial expression of hTRPC1 was not involved since the CCE-induced vasoconstriction was also enhanced in endothelium-denuded PA rings infected with the adenoviral vector carrying hTRPC1. These observations demonstrate that hTRPC1 is an important Ca(2+)-permeable channel that mediates pulmonary vasoconstriction when PA smooth muscle cell intracellular Ca2+ stores are depleted.  相似文献   

12.
Hypoxic pulmonary vasoconstriction: role of ion channels.   总被引:9,自引:0,他引:9  
Acute hypoxia induces pulmonary vasoconstriction and chronic hypoxia causes structural changes of the pulmonary vasculature including arterial medial hypertrophy. Electro- and pharmacomechanical mechanisms are involved in regulating pulmonary vasomotor tone, whereas intracellular Ca(2+) serves as an important signal in regulating contraction and proliferation of pulmonary artery smooth muscle cells. Herein, we provide a basic overview of the cellular mechanisms involved in the development of hypoxic pulmonary vasoconstriction. Our discussion focuses on the roles of ion channels permeable to K(+) and Ca(2+), membrane potential, and cytoplasmic Ca(2+) in the development of acute hypoxic pulmonary vasoconstriction and chronic hypoxia-mediated pulmonary vascular remodeling.  相似文献   

13.
TRIC channel subtypes, namely TRIC-A and TRIC-B, are intracellular monovalent cation channels postulated to mediate counter-ion movements facilitating physiological Ca(2+) release from internal stores. Tric-a-knockout mice developed hypertension during the daytime due to enhanced myogenic tone in resistance arteries. There are two Ca(2+) release mechanisms in vascular smooth muscle cells (VSMCs); incidental opening of ryanodine receptors (RyRs) generates local Ca(2+) sparks to induce hyperpolarization, while agonist-induced activation of inositol trisphosphate receptors (IP(3)Rs) evokes global Ca(2+) transients causing contraction. Tric-a gene ablation inhibited RyR-mediated hyperpolarization signaling to stimulate voltage-dependent Ca(2+) influx, and adversely enhanced IP(3)R-mediated Ca(2+) transients by overloading Ca(2+) stores in VSMCs. Moreover, association analysis identified single-nucleotide polymorphisms (SNPs) around the human TRIC-A gene that increase hypertension risk and restrict the efficiency of antihypertensive drugs. Therefore, TRIC-A channels contribute to maintaining blood pressure, while TRIC-A SNPs could provide biomarkers for constitutional diagnosis and personalized medical treatment of essential hypertension.  相似文献   

14.
Smooth muscle membrane potential is determined, in part, by K(+) channels. In the companion paper to this article, we demonstrated that superior mesenteric arteries from rats made hypertensive with N(omega)-nitro-l-arginine (l-NNA) are depolarized and express less K(+) channel protein compared with those from normotensive rats. In the present study, we used patch-clamp techniques to test the hypothesis that l-NNA-induced hypertension reduces the functional expression of K(+) channels in smooth muscle. In whole cell experiments using a Ca(2+)-free pipette solution, current at 0 mV, largely due to voltage-dependent K(+) (K(V)) channels, was reduced approximately 60% by hypertension (2.7 +/- 0.4 vs. 1.1 +/- 0.2 pA/pF). Current at +100 mV with 300 nM free Ca(2+), largely due to large-conductance Ca(2+)-activated K(+) (BK(Ca)) channels, was reduced approximately 40% by hypertension (181 +/- 24 vs. 101 +/- 28 pA/pF). Current blocked by 3 mM 4-aminopyridine, an inhibitor of many K(V) channel types, was reduced approximately 50% by hypertension (1.0 +/- 0.4 vs. 0.5 +/- 0.2 pA/pF). Current blocked by 1 mM tetraethylammonium, an inhibitor of BK(Ca) channels, was reduced approximately 40% by hypertension (86 +/- 14 vs. 53 +/- 19 pA/pF). Differences in BK(Ca) current magnitude are not attributable to changes in single-channel conductance or Ca(2+)/voltage sensitivity. The data support the hypothesis that l-NNA-induced hypertension reduces K(+) current in vascular smooth muscle. Reduced molecular and functional expression of K(+) channels may partly explain the depolarization and augmented contractile sensitivity of smooth muscle from l-NNA-treated rats.  相似文献   

15.
Li S  Westwick J  Poll C 《Cell calcium》2003,33(5-6):551-558
Calcium-permeable channels have traditionally been thought of as therapeutic targets in excitable cells. For instance, voltage-operated Ca2+ channels in neurones and smooth muscle cells for neurological and cardiovascular diseases although calcium-permeable channels are also functionally important in electrically non-excitable cells. In the lung, calcium channels play a pivotal role in the activation of all the cell types present, whether resident cells such as airway smooth muscle cells and macrophages or migratory cells such as neutrophils or lymphocytes.Previously, research in this area has been hindered by the lack of obvious molecular identity. More recently, the emergence of the transient receptor potential (TRP) cation family has yielded promising candidates which may underpin the different receptor-operated calcium influx pathways. The challenge now, is to ascribe function to the TRP channels expressed in each cell type as a first step in identifying which TRP channels may be potential drug targets for asthma and chronic obstructive pulmonary disease (COPD) (Fig. 1).  相似文献   

16.
17.
"Transient receptor potential" cation channels (TRP channels) play a unique role as cell sensors, are involved in a plethora of Ca(2+)-mediated cell functions, and play a role as "gate-keepers" in many homeostatic processes such as Ca(2+) and Mg(2+) reabsorption. The variety of functions to which TRP channels contribute and the polymodal character of their activation predict that failures in correct channel gating or permeation will likely contribute to complex pathophysiological mechanisms. Dysfunctions of TRPs cause human diseases but are also involved in a complex manner to contribute and determine the progress of several diseases. Contributions to this special issue discuss channelopathias for which mutations in TRP channels that induce "loss-" or "gain-of-function" of the channel and can be considered "disease-causing" have been identified. The role of TRPs will be further elucidated in complex diseases of the intestinal, renal, urogenital, respiratory, and cardiovascular systems. Finally, the role of TRPs will be discussed in neuronal diseases and neurodegenerative disorders.  相似文献   

18.
Plant TD  Schaefer M 《Cell calcium》2003,33(5-6):441-450
The seven mammalian channels from the classical (TRPC) subfamily of transient receptor potential (TRP) channels are thought to be receptor-operated cation channels activated in a phospholipase C (PLC)-dependent manner. Based on sequence similarity, TRPC channels can be divided into four subgroups. Group 4 comprises TRPC4 and TRPC5, and is most closely related to group 1 (TRPC1). The functional properties observed following heterologous expression of TRPC4 or TRPC5 in mammalian cells are contradictory and, therefore, controversial. In our hands, and in several independent studies, both channels, probably as homotetramers, form receptor-operated, Ca2+-permeable, nonselective cation channels activated independently of inositol 1,4,5-trisphosphate (InsP(3)) receptor activation or Ca2+ store-depletion. As heteromultimers with TRPC1, TRPC4 and TRPC5 form receptor-operated, Ca2+-permeable, nonselective cation channels with biophysical properties distinct from homomeric TRPC4 or TRPC5. In other studies, TRPC4 and TRPC5 have been shown to be store-operated channels, with moderate to high Ca2+ permeabilities. At present there is no clear explanation for these major differences in functional properties. To date, little is known as to which native cation channels are formed by TRPC4 and TRPC5. Endothelial cells from TRPC4(-/-) mice lack a highly Ca2+-permeable, store-dependent current, and data support a role for TRPC4 in endothelium-mediated vasorelaxation. A similar current in adrenal cortical cells is reduced by TRPC4 antisense. From similarities in the properties of the currents and expression of appropriate isoforms in the tissues, it is likely that heteromultimers of TRPC1 and TRPC4 or TRPC5 form receptor-operated nonselective cation channels in central neurones, and that TRPC4 contributes to nonselective cation channels in intestinal smooth muscle.  相似文献   

19.
Various beta subunit isoforms stabilize different gating properties of voltage-gated L-type Ca(2+) channels. We therefore investigated the expression of Ca(2+) channel beta subunit isoforms in different smooth muscle types on the protein level by immunoblotting and immunoprecipitation employing beta subunit-selective sequence-directed antibodies. From the four known beta subunit isoforms only beta2 and beta3 were detected in porcine uterus, bovine trachea and bovine aorta membranes. Multiple immunoreactive beta2 bands were detected in a tissue-selective manner indicating structural heterogeneity of beta2. Immunoprecipitation of (+)-[(3)H]isradipine-prelabeled channels revealed that beta2 and beta3 participate in Ca(2+) channel formation in uterus and trachea, and beta3 in aortic smooth muscle. We conclude that beta2 and beta3 subunits form L-type Ca(2+) channels in smooth muscle tissues. This subunit heterogeneity may be important to fine-tune channel function.  相似文献   

20.
The melastatin transient receptor potential (TRP) channel, TRPM4, is a critical regulator of smooth muscle membrane potential and arterial tone. Activation of the channel is Ca(2+)-dependent, but prolonged exposures to high global Ca(2+) causes rapid inactivation under conventional whole-cell patch clamp conditions. Using amphotericin B perforated whole cell patch clamp electrophysiology, which minimally disrupts cytosolic Ca(2+) dynamics, we recently showed that Ca(2+) released from 1,2,5-triphosphate receptors (IP(3)R) on the sarcoplasmic reticulum (SR) activates TRPM4 channels, producing sustained transient inward cation currents (TICCs). Thus, Ca(2+)-dependent inactivation of TRPM4 may not be inherent to the channel itself but rather is a result of the recording conditions. We hypothesized that under conventional whole-cell configurations, loss of intrinsic cytosolic Ca(2+) buffering following cell dialysis contributes to inactivation of TRPM4 channels. With the inclusion of the Ca(2+) buffers ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA, 10mM) or bis-ethane-N,N,N',N'-tetraacetic acid (BAPTA, 0.1mM) in the pipette solution, we mimic endogenous Ca(2+) buffering and record novel, sustained whole-cell TICC activity from freshly-isolated cerebral artery myocytes. Biophysical properties of TICCs recorded under perforated and whole-cell patch clamp were nearly identical. Furthermore, whole-cell TICC activity was reduced by the selective TRPM4 inhibitor, 9-phenanthrol, and by siRNA-mediated knockdown of TRPM4. When a higher concentration (10mM) of BAPTA was included in the pipette solution, TICC activity was disrupted, suggesting that TRPM4 channels on the plasma membrane and IP(3)R on the SR are closely opposed but not physically coupled, and that endogenous Ca(2+) buffer proteins play a critical role in maintaining TRPM4 channel activity in native cerebral artery smooth muscle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号